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Abstract
AI-assisted morphological analysis using whole-slide images (WSIs) shows promise in supporting complex pathological diagnosis. However, 
the implementation in clinical settings is costly and demands extensive data storage. This study aimed to develop a compact, practical 
classification model using patch images selected by pathologists from representative disease areas under a microscope. To evaluate the 
limits of classification performance, we applied multiple pretraining strategies and convolutional neural networks (CNNs) specifically for 
the diagnosis of particularly challenging malignant lymphomas and their subtypes. The EfficientNet CNN, pretrained with ImageNet, 
exhibited the highest classification performance among the tested models. Our model achieved notable accuracy in a four-class 
classification (normal lymph node and three B cell lymphoma subtypes) using only hematoxylin and eosin-stained specimens (AUC =  
0.87), comparable to results from immunohistochemical and genetic analyses. This finding suggests that the proposed model enables 
pathologists to independently prepare image data and easily access the algorithm and enhances diagnostic reliability while significantly 
reducing costs and time for additional tests, offering a practical and efficient diagnostic support tool for general medical facilities.
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Significance Statement

AI can improve pathologic diagnostic efficiency, but existing systems often require large datasets and advanced computational re-
sources, limiting accessibility and raising concerns about patient trust. This study introduces a simple, cost-effective AI model 
that pathologists can fine-tune using images selected during routine microscopic examination. Our model achieved diagnostic accur-
acy comparable to advanced techniques such as genetic testing and classified challenging cases, including malignant lymphoma, 
with minimal resources. This approach enables efficient diagnostics in resource-limited settings while maintaining patient trust. 
By demonstrating an accessible and reliable AI framework, this study offers a practical pathway for integrating AI as a supportive 
tool in clinical practice, advancing the role of AI in enhancing medical diagnostics.
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Introduction
AI has significantly advanced early disease detection and improved 
diagnostic accuracy by analyzing medical images such as X-rays, 
CT scans, and MRIs, thereby helping to mitigate radiologist short-
ages (1). Additionally, research is progressing in optimizing surgical 
procedures through AI analysis of large video datasets (2, 3). 
Pathology presents unique challenges owing to its high-resolution, 
information-rich nature (4). Moreover, the lack of standardization 
in the preparation of microscope specimens, which serve as the ba-
sis for imaging, poses an additional challenge (5).

In recent years, a large number of whole-slide images (WSIs) 
captured by scanners are stored as digital images. Many systems 
have been developed to analyze WSIs using digital image analysis 
based on machine learning algorithms to support diagnostics (6). 

Machine learning techniques commonly used in digital pathology 
image analysis can be divided into supervised and unsupervised 
learning. The purpose of supervised learning is to use training 
data to infer a function that can properly map an input image to 
an appropriate label (e.g. cancer). The label is associated with the 
WSI or an object within the WSI. Supervised learning algorithms in-
clude support vector machines, random forests, and deep learning. 
In particular, convolutional neural networks (CNNs) in deep learn-
ing are used to optimize features and classifiers simultaneously, 
and features learned by CNNs often outperform other traditional 
features in histopathological image analysis. However, implement-
ing AI using WSI in digital pathology presents several significant 
challenges, including implementation costs, data management, 
and standardization of data formats. There are also fundamental 
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issues, such as how physicians should explain AI-driven diagnos-
tics to patients and whether the AI diagnoses are trustworthy. 
Despite these challenges, addressing the barriers to AI-assisted 
diagnostics is essential, considering the potential benefits of im-
proving patient outcomes. These benefits include faster diagnosis 
through prediagnostic image screening (7, 8).

In this study, we evaluated the cancer classification perform-
ance of several convolutional CNN models with established ac-
curacy, utilizing compact pathological images that are easy for 
pathologists to manage. The efficacy of such approaches was 
tested in diagnosing malignant lymphomas, which are often chal-
lenging for pathologists to diagnose based solely on morphological 
observation. The diagnosis of lymphomas frequently requires 
supplementary data from costly and time-intensive genetic ana-
lyses or immunophenotypic assessments (9).

First, we selected malignant lymphomas as examples, because 
their diagnosis requires complex and costly pathological techni-
ques, including genetic analysis and immunohistochemistry (IHC) 
staining. This is a tissue staining technique that uses special dyes 
to detect specific proteins in tissues, helping pathologists under-
stand diseases such as cancer. The results take ∼1 week to be re-
turned, which is comparable to the time required for genetic 
testing. The samples include extranodal marginal zone lymphoma 
of mucosa-associated lymphoid tissue (MALT lymphoma (10)), a 
low-grade malignancy linked to lymphocytic infiltration, which 
can progress to diffuse large B cell lymphoma (DLBCL), a high-grade 
malignancy. Additionally, we aim to subclassify DLBCL based on the 
cell of origin—the germinal center B cell type (GCB) vs. non-GCB 
type (or activated B-cell-like lymphoma) (11–15). The non-GCB 
type has resulted in shorter malignant disease-free and overall sur-
vival rates (16–19), as well as a low response to nivolumab (20), high-
lighting the clinical importance of distinguishing these subtypes. 
Therefore, this differentiation is clinically significant.

The current study challenges to develop a compact model to cat-
egorize pathological images into normal vs. lymphoma, or into 
lymphoma subtypes such as MALT lymphoma, DLBCL GCB type, 
and DLBCL non-GCB type, for two-, three-, and four-class classifica-
tion tasks. Pretraining datasets, such as the Columbia-Utrecht 
Reflectance and Texture Database (CUReT) (21), ImageNet (22), 
or a combination of both that can tuned by pathologists, are 
used for pretraining. CUReT and ImageNet are image datasets 
that are used for training and evaluating machine learning mod-
els. CUReT is a dataset specialized in the properties of textures 
and materials, whereas ImageNet is a general-purpose dataset 
broadly applicable to object recognition. Classification models 
using a set of CNNs, including AlexNet (23), VGG16 (24), 
ResNet18 (25), SqueezeNet (26), GoogleNet (27), and EfficientNet 
(28), are examined and compared to determine the most effective 
classifier combinations. Each model varies in complexity, effi-
ciency, and accuracy, offering diverse strengths for classifier 
evaluation. In particular, EfficientNet is a compact, efficient 
CNN architecture that balances performance and computational 
cost, making it ideal for mobile applications. If the classification 
of diagnostically challenging lymphomas is successfully 
achieved, the utility of the compact model will be validated, lead-
ing to the realization of AI implementation as a diagnostic sup-
port tool in clinical settings.

Results
Deep learning of images
This study analyzed data from 160 patients, comprising 25 
normal lymph nodes (NL), 26 MALT lymphoma, 31 GCB, and 78 

non-GCB cases purchased from Biomax tissue microarrays 
(TMAs) (Fig. 1 and Table 1). The details about the patients and ana-
tomic sites from which the tissues were sourced, as well as the 
number of training and test data samples, are given in Table S1. 
The samples were initially stained with H&E staining for micro-
scopic observation. After confirmation by two hematopatholo-
gists, all original images were preprocessed as follows: (i) each 
original image was divided into 16 parts to create 250 × 250 pixel 
images; (ii) images with an average RGB pixel value exceeding 
210, which indicated an insufficient sample tissue imaging 
area, were excluded; (iii) images containing features unsuitable 
for training the identification model, such as tissue edges 
(Fig. 1A), scar fibrosis (Fig. 1B), adipose tissue (Fig. 1C), and blood 
vessels (Fig. 1D), were also removed; (iv) to mitigate variations 
in staining intensity among samples, grayscale conversion 
(output channels = 3) was applied to all patch images; and 
(v) all images were resized to 224 × 224 pixels to match the rec-
ommended input size of EfficientNet (Fig. 1: image after process-
ing). According to Hans’ criteria, cases are classified using IHC as 
the GCB subtype if lymphoma cells were CD10+ or CD10− Bcl6+ 

MUM−. Conversely, cases are classified as the non-GCB subtype 
if lymphoma cells were CD10− Bcl6− or CD10− Bcl6 + MUM1+. 
The process of constructing the lymphoma AI classification mod-
el is illustrated in Fig. 2.

AI classification models
We developed a two-class model to distinguish NL from B cell 
lymphomas (Fig. 3A), a three-class model to differentiate NL, 
MALT lymphoma, and DLBCL (Fig. 3B), and a four-class model to 
classify NL, MALT lymphoma, GCB, and non-GCB (Fig. 3C).

In the two-class model, for case 1 (NL vs. DLBCL), the specificity 
was 0.89, while other evaluation metrics (accuracy, precision, sen-
sitivity, and F-value) exceeded 0.94, indicating high performance. 
In case 2 (NL vs. MALT lymphoma), all metrics exceeded 0.89, 
demonstrating the effectiveness of the proposed method. In 
case 3 (NL vs. all lymphomas), the specificity stood at 0.84, but 
the other metrics again exceeded 0.92 (Fig. 3A). These findings 
underscore the robustness of our model, proving its ability to reli-
ably distinguish NL from lymphomas. An example of the Receiver 
Operating Characteristic (ROC) curve and the confusion matrix in 
each case is shown in Fig. S1.

Next, we attempted to classify NL vs. MALT, NL vs. DLBCL, and 
MALT vs. DLBCL. In the created three-classification model, all 
evaluation metrics surpassed the 0.900 mark except for the spe-
cificity in classifying NL, which was 0.88 (Fig. 3B). Classification 
performance was assessed as binary classifications for each cat-
egory against the remaining two classes. The average AUC for the 
three-class classification reached 0.999. These results indicate 
that the model is highly effective for clinical diagnostic support 
and is capable of accurately classifying NL, MALT lymphoma, 
and DLBCL from H&E-stained images. An example of an ROC 
curve and a confusion matrix is shown in Fig. S2.

In the four-classification model: NL, MALT lymphoma, and 
DLBCL, the AUC reached 0.87 in one test, with an average of 0.86 
across 10 tests (Fig. 3C and D). Specifically, in the creation of this 
model, to achieve optimal classification performance, this study 
employed five CNN architectures: AlexNet, VGG16, ResNet18, 
SqueezeNet, GoogleNet, and EfficientNet, to compare the four- 
class classification performance. The results showed that in terms 
of AUC values, the performance ranking was as follows: 0.81, 0.79, 
0.83, 0.82, 0.81, and 0.86, with EfficientNet demonstrating 
the most superior performance (Figs. 3E and S3A-F). Thus, 
EfficientNet emerged as the most effective model in terms of 
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classification performance (28). Notably, EfficientNet demon-
strated particularly high classification performance for MALT 
lymphoma, surpassing the other CNN models.

Furthermore, for pretraining EfficientNet-B0—the smallest 
model in the EfficientNet series, known for its lightweight struc-
ture and low computational cost—we evaluated its classification 
performance using the CUReT database. The experimentation 
involved four pretraining database combinations: no pretraining 
(Fig. S4A), CUReT alone (Fig. S4B), ImageNet alone (Fig. S4C), and 
both ImageNet and CUReT (Fig. S4D). To evaluate the effect of 
pretraining, we further validated our four-class classifier 
using different pretraining scenarios: no pretraining, using 
only CUReT, using only ImageNet, and using both CUReT 
and ImageNet. The results showed that pretraining with 
ImageNet alone significantly enhanced classification perform-
ance (Fig. 3F). While combining both ImageNet and CUReT 
yielded some metric improvements, the overall enhancement 
was not substantial (Fig. S4D). Therefore, pretraining with 
ImageNet alone is sufficient, highlighting the potential of our 
compact model for identifying different types of B cell lymph-
omas. Thus, the development of an AI diagnostic system capable 
of simultaneously classifying lymphatic tissues into challenging 
categories such as MALT lymphoma and DLBCL (GCB type and 
non-GCB type) represents a significant advancement. This sys-
tem is sufficient as a supportive tool for lymphoma diagnosis. 
The clinical significance of this achievement is detailed in the 
Discussion section.

Visualization of rationale using 
gradient-weighted class activation mapping
The results of the visualization using gradient-weighted class ac-
tivation mapping (GRAD-CAM) (29, 30) are shown in Fig. 4. The 
GRAD-CAM was applied to the classification model, which was 
fine-tuned using EfficientNet. In MALT lymphoma, the focus 
was primarily on medium-sized lymphoid cells. These morpho-
logical characteristics are indeed like MALT lymphoma. For the 
GCB subtype, the model concentrated on large centroblasts-like 
tumor cells. Centroblasts are a type of activated B cell found in 
the germinal center, which is thought to be the origin of the 
DLBCL GCB type. Morphologically, centroblasts are large cells 
with coarse chromatin and nuclei containing multiple nucleoli 
with minimal cytoplasm. It was also noted that in the GCB sub-
type, there was a tendency to recognize medium-to-large cells 
other than centroblasts (indicated by white arrows in the upper 
panel of Fig. 4), which could be a contributing factor to the mis-
classification. In contrast, for the non-GCB subtype, the focus 
was on medium to large-sized immunoblastic cells in this study 
(lower panel in Fig. 4). These observations closely resembled the 
cells typically scrutinized by pathologists, validating the model’s 
performance (31).

Classification based on Ki67 positivity
The protein Ki67 serves as a critical tumor marker in IHC and is 
extensively employed in cancer research and diagnosis (32). 

A B C D

Fig. 1. Process of providing training image data to the AI model. TMAs for DLBCL were stained using H&E, and for BCL6, MUM1, and CD10, IHC was used to 
acquire essential data for Hans’ classification. Based on the positivity or negativity of these stains, the samples were labeled as either GCB or non-GCB. 
Each image was captured at 400× magnification. The original images were divided into 16 patch images. From these, patches that lacked sufficient tissue 
content (A), fibrotic scar tissue (B), adipose tissue (C), or blood vessels (D) were excluded. The remaining images were resized and provided as teacher 
image data to the model. Scale bars represent 20 µm.
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The association between Ki67 expression and nuclear chromatin 
density is well established throughout the cell cycle. Ki67 pro-
motes the phosphorylation of histone H3, a key component of 
chromatin, and facilitates forming of appropriate chromatin 
structures during various cell cycle stages (33). High Ki67 expres-
sion correlates with fast cancer progression, increased malig-
nancy, and a heightened risk of recurrence, due to active tumor 
cell division, particularly when its percentage exceeds 40 to 85% 
(34–37).

We attempted to construct an AI model to predict Ki67 positiv-
ity using H&E-stained images of NL, MALT lymphoma, and 
DLBCL, hypothesizing that chromatin changes are reflected in 
H&E staining patterns. We adopted 60% (36)—approximately the 
midpoint of the reported range of 40 (38) to 85% (39)—as the 
benchmark. In the current study, for the two-class classification, 
samples with Ki67 values from 0 to 59% were classified as low 
risk and those with values from 60 to 100% were classified as 
high risk (37, 40).

To evaluate the classification performance of the CNN model, 
test data comprising 240 images from the high-value class and 
480 images from low-value class (224 × 224 pixels) were processed 

(Fig. S5A–D). An example of the ROC curve and confusion matrix 
for this classification is shown (Fig. 5A and B). In this classification, 
the high-value class, which has greater clinical relevance, was 
designated as positive. The results demonstrated that the model 
accurately identified low- and high-risk classes in over 75% of 
cases, indicating good classification performance. A specificity 
value of 0.806 suggested that the model accurately identified the 
low-value Ki67 class (Fig. 5C and Fig. S5E).

Discussion
It is entirely feasible for pathologists, as part of their clinical path-
ology practice, to appropriately select representative images from 
the whole tissue used for diagnosis and create training images. 
Moreover, if the image data were created from 250 × 250 pixel 
photos with a real magnification of 400×, the memory size is about 
2 MB. This small image size allows for straightforward data man-
agement, making it feasible for clinical laboratories and pathology 
diagnostic facilities to handle. Thus, implementing a compact 
CNN model is highly achievable, enabling the development of a 
system that fully supports pathologists. The EfficientNet model 
adopted in this study can be easily implemented even in small- 
scale medical facilities with limited high-performance computing 
resources, such as GPUs (Graphics Processing Units) (41).

Pretraining with ImageNet drastically reduced the time re-
quired for constructing CNNs that cope with a target dataset. 
We chose ImageNet because we thought that adding a specific 
cancer type to the training image would not only be biased but 
would also incur additional costs related to image management. 
This is the motivation for introducing CNNs pretrained using 
ImageNet as models for image processing available in the medical 
field (42–45). For example, such an approach is adopted to develop 
a model in ultrasound images for computer-aided diagnosis. The 
VGG16 CNN-based method estimates the osteochondritis disse-
cans of the humeral capitellum probability of the region of inter-
est (ROI) (43).

It is expected that the approach based on early stopping and 
cross-validation in the current study can make it possible to avoid 
overfitting the target dataset. This approach does not always ap-
ply to any small dataset, especially for unseen clinical cases 
with more variability in the members (i.e. images). To examine 
in detail the limitations of this approach will be beyond the scope 
of this paper. To apply the proposed approach to other medical da-
tasets remains as a future problem. In (46), we have been engaged 
in adopting AI technology to medical practices in an ophthalmic 
surgery, including continuous curvilinear capsulorhexis (CCC), 
the process of removing the central part of the lens (nuclear ex-
traction), and the process of removing the central part of the 
lens. A CNN-based method of extracting important phases from 
videos of cataract surgeries was proposed. A CNN, known as 
InceptionV3, was employed to construct the model for extraction. 
The correct response rate of the cataract surgical phase classifica-
tion was 90.7% for CCC, 94.5% for nuclear extraction, and 97.9% 
for other phases, with a mean correct response rate of 96.5%. In 
(47), a method of checking the eye lotion instillation was proposed 
for ophthalmology patients. It first estimated tilt angles of an eye 
dropper bottle from acceleration values measured by a triaxial 
sensor attached to the bottle. Next, we prepared the data to pre-
sent to the discrimination model, equivalent to a sequence of 
standardized slope values. It employed a long short-term mem-
ory. Once the data to be checked were presented to the model, it 
produced a certainty degree indicating whether a patient corre-
sponding to the presented data applies eye lotion at the time 

Table 1. Profiling of patients with MALT lymphoma, DLBCL GCB 
subtype, and DLBCL non-GCB subtype.

MALT lymphoma

Sex Female 9 Male 17
Age (years) <20 3 20–39 5

40–60 14 60< 4
Anatomic site Parotid gland 2 Stomach 6

Liver 2 Small intestine 3
Colon 13

Total 26
GCB DLBCL
Sex Female 6 Male 25

Age (years) <20 2 20–39 12
40–60 13 60< 4

Phenotype CD10+ 28 CD10− Bcl6 + MUM1− 3
Anatomic site Abdominal cavity 2 Colon 4

Groin 4 Neck 3
Lymph node 1 Mesentery 2
Retroperitoneum 3 Pelvic cavity 1
Shoulder 1 Small intestine 4
Stomach 6

Total 31
Non-GCB DLBCL
Sex Female 35 Male 43

Age <20 3 20–39 21
40–60 42 60< 12

Phenotype CD10− Bcl6− 5 CD10− Bcl6 + MUM1+ 73
Anatomic site Abdominal cavity 1 Armpit 7

Brain 1 Broad ligament 1
Colon 13 Gallbladder 1
Groin 9 Ischium 1
Liver 1 Lumbar part 1
Mediastinum 4 Mesentery 1
Neck 19 Omentum 3
Parotid gland 1 Pelvic cavity 2
Retroperitoneum 5 Shoulder 2
Stomach 1 Submaxillary 2
Thyroid gland 1 Tongue 1

Total 78
NL
Sex Female 4 Male 21

Age (years) <20 0 20–39 14
40–60 11 60< 0

Total 25
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zone in which a sequence of the tilt values used to prepare the pre-
sented data was measured. The final judgment for the instillation 
depended on thresholding of the certainty degree. Experimental 

results with practical data demonstrated that the models 
achieved favorable judgment accuracy for the installation. By 
analyzing these videos, we have gained experience in the analysis 

Fig. 2. Construction process of the lymphoma AI classification model. The model was developed based on EfficientNet-B0, which was pretrained using 
ImageNet. Images selected by pathologists from tissue cores, typical images obtained in the final process outlined in Fig. 1, were used to create the lymphoma 
AI classification model. After model construction, the outputs included the differentiation between NL, MALT lymphoma (extranodal marginal zone 
lymphoma of mucosa-associated lymphoid tract lymphoma), GCB-type DLBCL, non-GCB-type DLBCL, and the risk related to Ki67 (either high or low).

A B C

D E F

Fig. 3. Model performance evaluation. A) Evaluation metrics for the two-class classification models: DLBCL vs. NL; MALT lymphoma vs. NL; and all 
lymphomas (MLs) vs. NL. B) Evaluation metrics for three-class classification models. C) Evaluation metrics for classifications among NL, MALT 
lymphoma, GCB DLBCL (GCB), and non-GCB DLBCL (non-GCB). D) Examples of ROC curves. E) Evaluation metrics for four-class classification among NL, 
MALT lymphoma, GCB, and non-GCB using AlexNet, VGG16, ResNet18, SqueezeNet, GoogleNet, and EfficientNet. F) Evaluation metrics for four-class 
classification among NL, MALT lymphoma, GCB, and non-GCB using no pretraining, pretrained with CUReT, pretrained with ImageNet, and pretrained 
with ImageNet followed by CUReT.
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of medical image applying various CNN models. Below, we discuss 
the pathological significance of our model in more detail.

Our model demonstrated robust functionality in classifying NL 
and B cell lymphomas, achieving an AUC of over 0.900 across all 
combinations. For lymphomas with distinctive histomorphological 
features, such as follicular lymphoma, AI exhibited excellent clas-
sification performance (48). On the contrary, although research on 
diagnosing MALT lymphoma using AI technology is rare (49), as 
MALT lymphoma is often difficult to distinguish from inflamma-
tion, our results indicate that machine learning can effectively 
diagnose MALT lymphoma (50). High-grade transformation in 
MALT lymphoma occurs with a likelihood of 5–10%. There is a not-
ably low 2-year survival rate of ∼60% after transformation, high-
lighting the critical nature of early histological diagnosis for 
differentiating DLBCL from MALT lymphoma (51, 52). Our model 
is significant for the differential diagnosis of DLBCL from MALT 
lymphoma, underscoring the important clinical implications of 
this research (52). For the subclassification of DLBCL, the advanced 
gene profiling techniques have been used to observe non-GCB cases 
with a higher relative contribution of the activation-induced cyti-
dine deaminase-dependent mutational motif RCH (where R = A or 
G, H = C, T, or A). In GCB cases, a higher relative contribution of 
the polymerase η-like mutational motif TW (W = A or T) has been 
observed. These approaches allow the allocation of the tumor cell 
origin with a high degree of accuracy (precision: 0.86, sensitivity: 
0.75, and specificity: 0.95). This classification performance is com-
parable to the IHC method based on the Hans classification and 
matches the results of detailed genetic analyses (53, 54). Notably, 
our model demonstrated that all combinations achieved an AUC 
exceeding 0.900 in classifying NL and B cell lymphomas, indicating 
robust capabilities. Specifically, the four-class classification, which 
includes NL, MALT lymphoma, and DLBCL, achieved an AUC ex-
ceeding 0.87, a value comparable to the classification performance 
achieved through the above genetic analysis (53–55). Additionally, 
our two-class classification effectively distinguished between the 
Ki67 low (0–59%) and high (60–100%) classes (AUC = 0.82). 

Therefore, by combining our three-class classification (AUC >  
0.99) or four-class classification models with risk assessment based 
on Ki67 positivity rates, it is expected to improve prognosis through 
rapid screening and facilitate the early formulation of treatment 
plans (56). Finally, we describe the relationship between Ki67 posi-
tivity and lymphoma subtypes. Of note, it was significantly differ-
ent between the MALT and DLBC (GCB, non-GCB) subtypes (P =  
7.2 × 10−4). However, when comparing GCB and non-GCB groups, 
the Mann–Whitney U test yielded a U statistic 718.0 and a P-value 
of ∼0.040. Moreover, substantial interindividual variation within 
the non-GCB group (Supplementary 3E) led to inconclusive findings 
regarding significant differences in Ki67 positivity rates between 
these groups. Consequently, differentiating between GCB and 
non-GCB groups based solely on Ki67 with AI modeling proved chal-
lenging, suggesting that predicting high-risk and low-risk classes 
should be considered independent of DLBCL subtype classification. 
The application of GRAD-CAM in pathology analysis holds signifi-
cant potential for visualizing model decision-making processes. 
However, GRAD-CAM primarily provides qualitative visualizations, 
which makes it challenging to establish robust, quantitative met-
rics for clinical decision-making or validation (57). To overcome 
this limitation, integrating GRAD-CAM with complementary tech-
niques could yield more precise and clinically meaningful insights. 
Moreover, thorough validation using independent datasets and ex-
pert pathological reviews remains crucial.

In this study, we successfully classified low- and high-grade B cell 
malignancies. Although the model achieved a reasonably high AUC 
in 160 patient samples, the classification performance is still limited. 
The expansion of the dataset is essential to address the variability ob-
served in real clinical cases, especially in rare and complex subtypes 
of malignant lymphomas. In addition, the model can be applied to 
any type of disease if the pathologist chooses the ROI appropriately.

The main strength of this approach lies in its practicality and 
compactness. Pathologists can easily integrate the method into 
their daily work by selecting representative ROIs and using the 
classification output as a diagnostic reference. These outputs 

Fig. 4. Visualization of data using GRAD-CAM. The image highlights the types of tissues identified. Scale bars represent 20 µm.

6 | PNAS Nexus, 2025, Vol. 4, No. 5

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf137#supplementary-data


streamline subsequent analyses, such as narrowing down protein 
staining to essential markers, improving efficiency and specificity. 
In addition, pathologists can directly validate the AI classification 
results, incorporate new training images, adjust parameters, and 
refine the algorithm to improve the model’s performance. This it-
erative process allows for the effective integration of AI into the 
diagnostic workflow while maintaining confidence in the diagnos-
tic process through direct oversight by pathologists.

It is important to emphasize that AI does not replace physician ex-
pertise, but serves as an auxiliary tool to support it (58). The FDA 
(Food and Drug Administration) (59) mandates that AI-based diag-
nostic tools that utilize imaging data must be used only by qualified 
professionals, emphasizing the need for physician oversight. 
Pathologists can reassure patients that their data will be collected 
for diagnostic purposes only, will be managed under their direct 
supervision with robust security measures to protect sensitive med-
ical data, and will adhere to ethical guidelines for the handling of im-
aging data and associated clinical data. As demonstrated in this 
study, our model does not require high-performance computing in-
frastructure and does not impose additional financial burdens on 
healthcare budgets. This accessibility will eliminate disparities 

between medical facilities caused by financial constraints and en-
sure equitable access to high-quality diagnostics, even in complex 
cases such as lymphoma classification. Similar to the analysis of sur-
gical processes mentioned above (46, 47), our approach is expected to 
contribute to improving diagnostic standards through the education 
and training of resident physicians in hospitals.

Conclusion
Compact and cost-effective AI models offer a practical and scalable 
solution for integrating AI into the medical field. By aligning with real- 
world medical needs, such AI systems are expected to play a crucial 
role in advancing diagnostics and supporting healthcare delivery.

Materials and methods
Samples
TMAs containing numerous 1-mL-diameter circular tissue cores 
were obtained from Biomax (cat. ID LM208, LY800a, LY616a, 
LY1001d, LY2081, LY2083, LY2084, LY2085, and LM208, US Biomax, 
Rockville, MD, USA), which included samples of NL, MALT 

A

C

B

Fig. 5. Model performance evaluation in the two-class classification of Ki67 high and low positivity rates. A) An example of ROC curves and B) evaluation metrics. 
C) Confusion matrix composed of averages from 10-fold cross-validation for low-value Ki67-positive cells (<60%) and high-value Ki67-positive cells (≥60%).
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lymphoma, and DLBCL (Fig. 1). These TMAs were reassessed by mul-
tiple hematopathologists with over 20 years of experience based on 
H&E- and IHC-stained sample. Informed consent was obtained 
from the patients before the primary samples were taken. The 
Medical Ethics Committee of the Kyoto University Graduate School 
of Medicine reviewed the research protocol and deemed exempt be-
cause the used TMAs were commercially purchased. The profiles of 
the patients are listed in Table 1.

Staining and preprocessing
The DLBCL subtype was confirmed by IHC for BCL6, CD10, and 
MUM1. Staining was performed using the Ventana BenchMark 
ULTRA (Roche Diagnostics, Basel, Switzerland) with diaminobenzi-
dine chromogen, revealing positive cells with a brown coloration. 
The antibodies used in this study are listed in Table S2. Image data 
from 160 individuals comprised 31 GCB, 78 non-GCB, 26 MALT 
lymphoma, and 25 NL cases (Table 1). Based on IHC data, the prepro-
cessed image data, up to 30 patch images (224 × 224-pixel size), were 
randomly selected for each patient and labeled GCB or non-GCB.

For the lymphoma subtype classification, the training data in-
cluded 2,151 patch images for GCB (24 patients), 5,490 for 
non-GCB (62 patients), 1,842 for MALT lymphoma (21 patients), 
and 1,350 for NL (20 patients). In addition, data augmentation 
was performed by including images rotated by 90° and 270°. The 
test data comprised 210 patch images for GCB (7 patients), 480 
for non-GCB (16 patients), 122 for MALT lymphoma (5 patients), 
and 150 for NL (5 patients).

The Ki67 values were given by Datasheet of TMAs and were la-
beled for 22 GCB cases (Ki67 value range: 10–100%), 52 non-GCB 
cases (Ki67 value range: 2–95%), 25 MALT lymphoma cases (Ki67 
value range: 1–40%), and 25 NL (Ki67 value range: 0%). The original 
images were captured using an Olympus OX40 inspection micro-
scope camera at 200 × and 400× magnification. Images were ran-
domly captured from two to eight locations on each tissue 
section to ensure no overlap in the imaged areas.

Classification model construction
The process of constructing the lymphoma AI classification model 
is illustrated in Fig. 2. Initially, pretraining was conducted on 
EfficientNet-B0 using the ImageNet dataset. Training was 
implemented using the PyTorch library (https://pytorch.org/). 
Subsequently, the output layer of the network was modified. The ori-
ginal output layer was set to 1,000 neurons owing to pretraining with 
ImageNet. After modification, the number of neurons in the output 
layer was adjusted to match the number of classes (2–4) depending 
on the targeted lymphoma type. During pretraining with CUReT, 
the settings included a batch size of 32, the cross-entropy loss func-
tion, stochastic gradient descent as the optimization function (mo-
mentum: 0.9), and a maximum of 300 epochs. Early stopping was 
implemented if the validation error increased for ten consecutive 
epochs, indicating potential overfitting, thereby terminating the 
training. For image input to the model, the size of the images was re-
sized to 224 × 224 pixels. Data augmentation techniques were ap-
plied, including random horizontal flipping and adjustments in 
brightness, contrast, saturation, hue, and grayscale conversion. In 
addition, the pixel values were normalized to have a mean of 0 and 
a SD of 1.

Adoption of early stopping and cross-validation
To prevent overfitting in the neural networks, we adopted early 
stopping. Early stopping in our method is based on cross-validation, 

utilizing K-fold cross-validation to determine the combination of 
training and validation data.

Performance comparison verification of CNNs
The number of parameters in the AlexNet, VGG16, ResNet18, 
SqueezeNet, GoogleNet, and EddicientNet CNN architectures 
was 57,020,228, 134,276,932, 11,178,564, 724,548, 5,604,004, and 
4,012,672, respectively.
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