
Infectious Disease Modelling 8 (2023) 1108e1116
Contents lists available at ScienceDirect
Infectious Disease Modelling

journal homepage: www.keaipubl ishing.com/idm
Impact of human mobility on the epidemic spread during
holidays

Han Li a, b, Jianping Huang a, b, *, Xinbo Lian a, b, Yingjie Zhao a, b, Wei Yan a, b,
Li Zhang a, b, Licheng Li a, c

a Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000,
China
b College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China
c School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000, China
a r t i c l e i n f o

Article history:
Received 10 August 2023
Received in revised form 24 September
2023
Accepted 3 October 2023
Available online 5 October 2023
Handling Editor: Dr Yiming Shao

Keywords:
COVID-19
Modified SEIR model
Human mobility
Parameterization scheme
* Corresponding author. Collaborative Innovation
730000, China.

E-mail address: hjp@lzu.edu.cn (J. Huang).
Peer review under responsibility of KeAi Comm

https://doi.org/10.1016/j.idm.2023.10.001
2468-0427/© 2023 The Authors. Publishing services
BY-NC-ND license (http://creativecommons.org/licen
a b s t r a c t

COVID-19 has posed formidable challenges as a significant global health crisis. Its
complexity stems from factors like viral contagiousness, population density, social be-
haviors, governmental regulations, and environmental conditions, with interpersonal in-
teractions and large-scale activities being particularly pivotal. To unravel these
complexities, we used a modified SEIR epidemiological model to simulate various outbreak
scenarios during the holiday season, incorporating both inter-regional and intra-regional
human mobility effects into the parameterization scheme. In addition, evaluation met-
rics were used to evaluate the accuracy of the model simulation by comparing the
congruence between simulated results and recorded confirmed cases. The findings sug-
gested that intra-city mobility led to an average surge of 57.35% in confirmed cases of
China, while inter-city mobility contributed to an average increase of 15.18%. In the
simulation for Tianjin, China, a one-week delay in human mobility attenuated the peak
number of cases by 34.47% and postponed the peak time by 6 days. The simulation for the
United States revealed that human mobility played a more pronounced part in the
outbreak, with a notable disparity in peak cases when mobility was considered. This study
highlights that while inter-regional mobility acted as a trigger for the epidemic spread, the
diffusion effect of intra-regional mobility was primarily responsible for the outbreak. We
have a better understanding on how human mobility and infectious disease epidemics
interact, and provide empirical evidence that could contribute to disease prevention and
control measures.

© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

COVID-19 is a serious global public health emergency with a devastating impact on the society, this pandemic not only
brought an unprecedented crisis to socio-economic order, but it also posed a monumental challenge to global health systems
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(Jain et al., 2022; Nicola et al., 2020; Lian et al., 2020; Kraemer et al., 2020). The virus spread is influenced bymultiple complex
factors, such as infectivity, population density, social activities, protective measures, sanitation, government controls, and
environmental aspects (Cheng et al., 2020; Qiu et al., 2020; Honein et al., 2020; Hamidi et al., 2020; Huang et al., 2020).
Interpersonal communication significantly contributes to the virus's spread, and large-scale human activities correlate
significantly with epidemic spread (Prem et al., 2020; Hu et al., 2021; Yang et al., 2020).

Manymodels have upgraded the traditional SIR model for simulating complex scenarios (He et al., 2020; Yang et al., 2020).
Huang et al. (2020) combined statistical and dynamic climate prediction methods in atmospheric science with a modified
SEIR model of infectious disease transmission dynamics to develop a COVID-19 global pandemic prediction system. The
system incorporates government control and isolation, congregation and indoor transmission, seasonal and environmental
impacts, virus mutation and vaccination parameter schemes (Liu et al., 2021; Huang et al., 2021). Furthermore, Chen et al.
(2020) constructed a COVID-19 transmission dynamics model with multiple population groups and multiple transmission
modes using multidisciplinary methods such as mathematical modeling, epidemiology, and genomics. Meanwhile, incor-
porating human mobility into such models is essential due to its significant impact on disease spread (Drake et al., 2020).
Studies have demonstrated a close link between mobility and infection rates, with reduced mobility potentially curbing case
growth (Li, 2020; Prem et al., 2020; Hu et al., 2021; Jia et al., 2020).

Many studies have shown that the spread of epidemics is affected by factors related to human mobility. However, it is
currently unclear to what extent humanmobility factors influence the epidemic spread. In this study, humanmobility factors
are integrated into the modified SEIR model to measure its impact on the epidemic. Epidemics during the Spring Festival in
China and Christmas in the US are simulated separately, assessing both intra-regional and inter-regional mobility contri-
butions to disease spread. We introduce a delay in human mobility, simulating control measures' effects, and propose a
possible mobility impact mechanism on epidemic transmission. The model's effectiveness is confirmed using various eval-
uation metrics. Overall, this research enhances the existing research on the relationship of human mobility and epidemic
spread, providing a scientific foundation for disease control and prevention strategies.
2. Materials and methods

2.1. Data source

This study utilizes the COVID-19 dataset from the Center for Systems Science and Engineering at Johns Hopkins University
(Dong et al., 2020), accessible through their GitHub repository (https://github.com/CSSEGISandData/COVID-19). Data on
confirmed cases, daily recoveries, and deaths in China are sourced from the National Health Commission (http://www.nhc.
gov.cn/). China's human mobility data comes from Baidu's migration platform (http://qianxi.baidu.com) and traffic website
(https://jiaotong.baidu.com), while the mobility data of US is obtained from the Department of Transportation's Bureau of
Transportation Statistics (https://www.bts.dot.gov/covid-19).
2.2. The modified SEIR model

We employed the second version of the Global Prediction System for the COVID-19 Pandemic (GPCP) proposed by Lanzhou
University for our epidemiological simulations. This advanced version expands on the SEIR model to better simulate and
predict epidemics. It recognizes seven disease states: susceptible (S), protected (P), exposed (E), infected (I), quarantined (Q),
recovered (R), and deaths (D). The coefficients a, b, g, d, l, and k signify rates of protection, transmission, average latent period
inversion, infection-to-quarantine transition, variable recovery, and variable mortality, respectively. The model is built on the
following equations:

dSðtÞ =dt ¼ � bIðtÞSðtÞ=N � aSðtÞ
dEðtÞ = dt ¼ bIðtÞSðtÞ=N � gEðtÞ
dIðtÞ = dt ¼ gEðtÞ � dIðtÞ

dQðtÞ = dt ¼ dIðtÞ � lðtÞQðtÞ � kðtÞQðtÞ
dRðtÞ =dt ¼ lðtÞQðtÞ

dDðtÞ =dt ¼ kðtÞQðtÞ

dPðtÞ = dt ¼ aSðtÞ

Sþ P þ E þ I þ Q þ Rþ D ¼ N
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2.3. Inter-regional human mobility parameterization scheme

This scheme incorporates human mobility between regions by factoring in both inflow and outflow of susceptible and
exposed individuals. The quantitiesMin andMout denote population flow into and out of a given region. Ein and Eout represent
estimated exposed individuals flowing in and out of the region, whereas Sin and Sout represent estimated susceptible in-
dividuals flowing in and out of the region. Elocal and Emove represent the changes in the number of exposed individuals within a
specific region and the changes in the number of exposed individuals during the process of population inflow and outflow,
respectively. Similarly, Slocal and Smove represent the same for the susceptible population. Kin and Kout are trainable parameters,
and N is the total population of a region at time t. The model equation for inter-regional human mobility is as follows:

Ein½t� ¼Kin �
Xn�1

i¼1

Mi½t� �
Confirmed½t�

N½t�

Xn�1 Confirmed½t�

Eout ½t� ¼Kout �

i¼1

Mi½t� � N½t�

E½t� ¼ Elocal½t� þ Emove½t�

Sin½t� ¼Min½t� � Ein½t�

Sout ½t� ¼Mout ½t� � Eout ½t�

S½t� ¼ Slocal½t� þ Smove½t�

N½tþ1� ¼N½t� þMin½t� �Mout ½t�
2.4. Intra-regional human mobility parameterization scheme

Increased intra-regional mobility accelerates the chance of transmission sources interacting with susceptible individuals,
possibly causing a higher infection risk. The susceptible population in a region grows by PT[t] per time unit, while the pro-
tected population decreases by the same amount. In the parameterization scheme for intra-regional human mobility, the
changes between the susceptible and protected populations are considered. Here, the susceptible population primarily refers
to individuals in a susceptible state, indicating thosewho have the opportunity to come into contact with infected individuals
and are prone to infection. The protected population mainly represents those with a higher level of immunity due to
vaccination or those with a relatively lower risk of infection due to certain restrictive measures. Moreover, in the intra-
regional mobility scheme, since only the mobility of people within the region is considered, it is assumed that the total
population of the area remains constant. Kre is a trainable parameter. Themodel equation for intra-regional humanmobility is
as follows:

PT½t� ¼Kre � TI½t�
b� I½t� � S½t�
S½tþ1� ¼ S½t� �
N½t� � aSðtÞ þ PT ½t�

P½tþ1� ¼ P½t� þ aSðtÞ � PT½t�
2.5. Inter-regional and intra-regional human mobility parameterization scheme

Fig. 1a illustrates the integration of both inter-regional and intra-regional human mobility into our model, accounting for
their collective impact on epidemic spread. The finalized 'Inter-regional and Intra-regional human mobility model' frame-
work is depicted in Fig. 1b, with Kre、Kin、Kout as trainable parameters.

S½tþ1� ¼ S½t� � b� I½t� � S½t�
N½t� þ Sin½t� � Sout ½t� � aSðtÞ þ PT ½t�

b� I½t� � S½t�

E½tþ1� ¼ E½t� þ

N½t� þ Ein½t� � Eout ½t� � gEðtÞ

I½tþ1� ¼ I½t� þ gEðtÞ � dIðtÞ
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Fig. 1. The inter-regional and intra-regional human mobility simulation scheme. a The transmission process of the epidemic influenced by human mobility. b The
modified inter-regional and intra-regional human mobility model scheme that integrates human mobility parameters.
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Q ½tþ1� ¼Q ½t� þ dIðtÞ � lðtÞQðtÞ � kðtÞQðtÞ

R½tþ1� ¼R½t� þ lðtÞQðtÞ

D½tþ1� ¼D½t� þ kðtÞQðtÞ

P½tþ1� ¼ P½t� þ aSðtÞ � PT½t�

N½tþ1� ¼N½t� þMin½t� �Mout ½t�
Xn�1 Confirmed½t�

Ein½t� ¼Kin �

i¼1

Mi½t� � N½t�

Xn�1 Confirmed½t�

Eout ½t� ¼Kout �

i¼1

Mi½t� � N½t�

E½t� ¼ Elocal½t� þ Emove½t�

PT½t� ¼Kre � TI½t�

Sin½t� ¼Min½t� � Ein½t�

Sout ½t� ¼Mout ½t� � Eout ½t�

S½t� ¼ Slocal½t� þ Smove½t�
2.6. Evaluation metrics

This study evaluates simulation accuracy usingMean Relative Error (MRE), Pearson Correlation Coefficient (PCC), and Root
Mean Squared Error (RMSE). PCC gauges the linear relationship between two curves, MRE measures prediction variations
relative to real values, and RMSE provides an aggregate evaluation of prediction precision.
1111
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PCC¼

PN
t¼1

ðYt � YÞðXt � XÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
t¼1

ðYt � YÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

t¼1
ðXt � XÞ2

s

1XT ��R � R
��
MRE¼
T

t¼1

��� s t

Rt
���

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

vu

RMSE¼ 1

T

X
t¼1

ðYsim � YobsÞ2
ut
3. Results

3.1. Empirical analysis of human mobility and COVID-19

In 2022, with the relative easing of pandemic restrictions, human mobility in China increased significantly, rising by
193.3% compared to 2020, and 46.5% compared to 2021 (Fig. 2a). A major COVID-19 outbreak occurred during the 2022 Spring
Festival, resulting in a nationwide increase in new cases by over 631.43% within a month (Fig. 2b). Correlation analysis be-
tween confirmed cases and travel intensity, inflow and outflow indices in Guangdong during this period, showed significant
correlations, most notably when human mobility lagged by 7 days (Fig. 2d). A positive correlation was found between
confirmed cases and both travel intensity and the inflow index, whereas a negative correlation existed with the outflow index.
Fig. 2c displays the spatial distribution of new cases and the average mobility scale index from January 20 to March 30, 2022,
revealing that regions with higher incidence rates corresponded to areas of greater mobility.
Fig. 2. Empirical analysis of human mobility and COVID-19 during the Chinese New Year period. a The national human mobility index from 2020 to 2022. b The
number of newly confirmed cases nationwide from 2020 to 2022. c The spatial distribution of confirmed cases and human mobility scale in 2022. d The cor-
relation analysis between the number of confirmed cases in the cities of Guangdong province and the travel intensity, inflow index and outflow index.
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3.2. Simulation results for cities in China

In Fig. 3, this study illustrates inter-city mobility simulations for China. For some cities in Guangdong province with high
population outflow, the inter-city mobility negatively influences the epidemic spread. This adverse effect arises primarily
from the high numbers of departing exposed and susceptible individuals. In most other cities, inflow and outflow populations
are comparable. On average, inter-city mobility increases case numbers by 15.18% (Supplementary Fig. A1a). To reflect control
measure impacts, simulations with delayed human mobility were conducted, revealing that such delays resulted in a slight
decrease in peak case numbers and minimal impact on peak arrival time (Supplementary Fig. A2).

In the intra-city mobility simulation (Fig. 4), considering humanmobility results in significantly higher case numbers than
the simulation without mobility, with an average increase of 57.35%, outstripping inter-city mobility contributions
(Supplementary Fig. A1b). Furthermore, mobility lag time significantly impacts results (Supplementary Fig. A3). In the
simulation of Tianjin city in China, delaying humanmobility has a significant effect on the COVID-19 outbreak. In particular, a
delay of five days, one week, two weeks, and three weeks reduces the peak number of cases by 23.86%, 34.47%, 71.59%, and
90.15%, respectively. Meanwhile, the time required to reach the peak is delayed by 4, 6, 13, and 19 days, respectively. Current
results indicate that the intra-city mobility has a greater impact on amplifying epidemic transmission dynamics than inter-
city mobility. When an external infection source interacts with local populations, intra-city mobility becomes the primary
epidemic driver.

Simulations considering both inter-city and intra-city mobility accurately capture reported confirmed cases, showing a
notable concordance (Supplementary Fig. A4). This study emphasizes that intra-regional mobility, which primarily influences
virus spread within a region, has a larger impact than inter-regional mobility. By adjusting human mobility scheduling, we
demonstrate the effects of control measures. Advancing humanmobility timing increases contact between individuals across
regions, raising transmission rates and confirmed cases. In contrast, control measures that delay mobility reduce exposure
risk and help mitigate the impact of an upcoming peak in the epidemic.
3.3. Simulation results for states in US

During the 2021 Christmas season, the US experienced a substantial COVID-19 outbreak, with cases increasing by 443.06%
within one month, approximately 2.27 times the incidence recorded in the corresponding period of 2020 (Supplementary
Fig. A5). This study simulates the outbreak across 36 states, using only intra-regional human mobility data due to lack of
inter-regional data. As illustrated in Supplementary Fig. A6-A7, ourmodel effectively captures COVID-19 spread dynamics.We
further quantified human mobility's impact on outbreaks in US states, showing that intra-state mobility increased case
numbers by 72.04% on average (Supplementary Fig. A8). Comparisons of peak cases simulated with and without mobility
considerations show an average difference of nearly 6992 individuals and a maximum difference of 36,807 (Supplementary
Fig. A9).
Fig. 3. The simulation of daily new cases considering inter-city human mobility. The red dashed line represents the simulated curve generated by the scheme
considering inter-city human mobility, with circles corresponding to daily reported confirmed cases. The blue solid line represents the simulation result without
considering inter-city human mobility.
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Fig. 4. The simulation of daily new cases considering intra-city human mobility. The red dashed line represents the simulated curve generated by the scheme
considering intra-city human mobility, with circles corresponding to daily reported confirmed cases. The blue solid line represents the simulation result without
considering intra-city human mobility.
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3.4. Evaluation of simulation results for China

Table 1 presents the evaluation results of simulating confirmed cases in China, and incorporating humanmobility into our
model generally improved its fitting capabilities. Of the three schemes, the inter-city and intra-city model performed best,
with average MRE, PCC, and RMSE values of 0.02449, 0.99486, and 27.31250, respectively. These high scores underscore the
importance of considering both inter-regional and intra-regional mobility in disease transmission modeling, and highlight
the effectiveness of the combined inter-regional and intra-regional mobility scheme.

3.5. Evaluation of simulation results for US

Table 2 displays the evaluation results of our simulation of confirmed cases in the US, emphasizing themodel's exceptional
performance, as detailed within the table. It accurately reflected the trend in case numbers during this period and aligned
well with the reported cases, showing its ability to effectively capture the outbreak's dynamics in the US.

4. Conclusion

Large-scale human mobility can easily cause widespread transmission of epidemics during holiday periods. This study
considers the influence of human social behaviors such as inter-regional and intra-regional human mobility in the con-
structed model schemes. Simulations revealed an average case increase of 57.35% due to intra-city mobility and 15.18% due to
inter-city mobility in Chinese cities. The delayed duration of human mobility has a significant effect on the intra-city human
mobility simulation results. In the simulation for Tianjin, China, a one-week delay reduces peak case numbers by 34.45% and
Table 1
Evaluation of simulation results for the confirmed cases of China.

City Inter-City Scheme Intra-City Scheme Inter-City and Intra-City Scheme

MRE PCC RMSE MRE PCC RMSE MRE PCC RMSE

Guangzhou 0.00563 0.99419 16.2 0.00219 0.99854 6.2 0.00339 0.99573 9.9
Shenzhen 0.10110 0.98594 160.2 0.08903 0.98658 155.1 0.06693 0.99143 117.2
Dongguan 0.05220 0.99162 22.2 0.05161 0.99618 23.1 0.03170 0.99559 12.7
Zhuhai 0.02869 0.99738 8.2 0.04822 0.98248 16.7 0.01619 0.99645 5.4
Beijing 0.01434 0.99295 26.7 0.00836 0.99899 16.2 0.00913 0.99641 18.5
Tianjin 0.03869 0.98090 68.9 0.01744 0.99563 35.9 0.01897 0.98962 40.8
Shenyang 0.05121 0.99577 9.7 0.03486 0.99721 6.8 0.04573 0.99596 8.8
Chengdu 0.00626 0.99763 8.6 0.00552 0.99618 7.6 0.00384 0.99769 5.2
Average 0.03727 0.99205 40.0875 0.03215 0.99397 33.4500 0.02449 0.99486 27.31250
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Table 2
Evaluation of simulation results for the confirmed cases of US.

State MRE RMSE State MRE RMSE State MRE RMSE

Alabama 0.01032 13248.5 Kentucky 0.00793 10777.6 Ohio 0.00289 9825.6
Arizona 0.01013 20753.4 Louisiana 0.00730 10087.7 Oklahoma 0.01611 17259.7
Arkansas 0.00565 4541.0 Maryland 0.01644 15716.6 Oregon 0.00850 6041.5
California 0.00299 29684.5 Massachusetts 0.00696 12409.4 Pennsylvania 0.00261 8101.1
Colorado 0.00283 4341.7 Minnesota 0.01225 20184.4 South Carolina 0.01490 21557.7
Connecticut 0.00473 4393.4 Mississippi 0.01183 10091.5 Tennessee 0.00470 9744.1
Delaware 0.00297 863.0 Missouri 0.00644 11224.3 Texas 0.00613 42225.1
Florida 0.00978 58887.3 Nevada 0.01378 9737.4 Utah 0.01399 13372.3
Hawaii 0.01133 2435.9 New Jersey 0.00401 8550.2 Virginia 0.00506 10010.2
Illinois 0.00426 16440.0 New Mexico 0.00673 3882.2 Washington 0.01740 24743.4
Indiana 0.00956 17093.7 New York 0.00365 18920.5 West Virginia 0.00842 4194.0
Iowa 0.00545 4605.7 North Carolina 0.00870 24248.3 Wisconsin 0.01727 29278.2
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postpones the peak by 6 days. A two-week delay further cuts peak numbers by 71.59% and pushes the peak back by 13 days. In
the simulation for states of US, intra-regional humanmobility led to an average increase of 72.04% in the number of cases. The
performance of the evaluation metrics in both the simulation results for China during the Spring Festival and the simulation
results for the US during the Christmas demonstrates the efficacy of the constructed scheme. Our study also provides a
summary of the primary triggers and transmission routes of epidemics during holiday seasons. The results indicate that intra-
regional human mobility plays a significant role in the epidemiological modeling of COVID-19. Given that the spread of
COVID-19 is significantly dependent on the dynamics of humanmobility, the majority of preventative measures can manifest
as changes in human mobility patterns. While intra-regional human mobility determines the response time for the spread of
infections within regions, inter-regional human mobility primarily reflects the inflow time of external sources of infection
from other regions. This study investigates the connection between human mobility and epidemic spread, supplementing
existing research, and it also provides a basis for early warnings and insights for disease prevention and control.
5. Discussion

The model constructed in this study can effectively simulate the spread of epidemics using human mobility data. Despite
the fact that the model incorporates control measures based on changes in humanmobility, it has limitations due to potential
biases in the COVID-19 dataset resulting from disparities in regional reporting schemes. And the study did not account for
transnational city and country transmissions, which may exhibit distinct spatial patterns and necessitate further investiga-
tion. In addition, our model may overestimate infections in regions with high human mobility and underestimate infections
in regions with lower human mobility, highlighting the need for additional research on the spatial variations of epidemic
transmission due to human mobility. In this study, we only considered the impact of human mobility on the spread of in-
fectious diseases. Other influencing factors, such as economic andmedical standards, vary significantly across regions and can
also affect the transmission patterns of diseases in different areas. Future research needs to consider these various factors
comprehensively. Aspects such as indirect transmission processes during human mobility and environmental factors
affecting the spread of the disease also require further consideration. Furthermore, epidemic models have developed greatly
in recent years, the majority of these models still only capture the time-dynamic growth of the number of cases and do not
adequately capture the two-dimensional epidemic and diffusion processes of infectious diseases. Further research and dis-
cussion are needed on the spatio-temporal diffusion of the impact of human mobility on infectious diseases in the future.
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