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Abstract

Background: Comparative genomics has provided valuable insights into the nature of gene
sequence variation and chromosomal organization of closely related bacterial species. However,
questions about the biological significance of gene order conservation, or synteny, remain open.
Moreover, few comprehensive studies have been reported for rhizobial genomes.

Results: We analyzed the genomic sequences of four fast growing Rhizobiales (Sinorhizobium
meliloti, Agrobacterium tumefaciens, Mesorhizobium loti and Brucella melitensis). We made a
comprehensive gene classification to define chromosomal orthologs, genes with homologs in other
replicons such as plasmids, and those which were species-specific. About two thousand genes were
predicted to be orthologs in each chromosome and about 80% of these were syntenic. A striking
gene colinearity was found in pairs of organisms and a large fraction of the microsyntenic regions
and operons were similar. Syntenic products showed higher identity levels than non-syntenic ones,
suggesting a resistance to sequence variation due to functional constraints; also, an unusually high
fraction of syntenic products contained membranal segments. Syntenic genes encode a high
proportion of essential cell functions, presented a high level of functional relationships and a very
low horizontal gene transfer rate. The sequence variability of the proteins can be considered the
species signature in response to specific niche adaptation. Comparatively, an analysis with genomes
of Enterobacteriales showed a different gene organization but gave similar results in the synteny
conservation, essential role of syntenic genes and higher functional linkage among the genes of the
microsyntenic regions.

Conclusion: Syntenic bacterial genes represent a commonly evolved group. They not only reveal
the core chromosomal segments present in the last common ancestor and determine the
metabolic characteristics shared by these microorganisms, but also show resistance to sequence
variation and rearrangement, possibly due to their essential character. In Rhizobiales and
Enterobacteriales, syntenic genes encode a high proportion of essential cell functions and
presented a high level of functional relationships.
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Background

A huge amount of information has been obtained from
sequencing projects. More than two hundred complete
microbial genomes are available to date in public data-
bases and sequencing of a similar number is in progress
[1]. Many questions remain unsolved. For example, what
is the biological meaning, if any, of gene arrangement in
the bacterial chromosome?

Changes in gene sequence and chromosomal rearrange-
ments constitute the main sources of genomic variability.
Nonsynonymous substitutions in the first or second
nucleotides of the codon change the encoded residue and
are thus a driving force of natural selection. Genomic
studies in bacteria regarding synonymous and nonsynon-
ymous substitution rates have been published elsewhere
[2,3]. Chromosomes show constraints on rearrangement
and works dealing with that aspect were recently reviewed
by Rocha [4]; he suggested that there is a balance between
conservation and change in the organization of the chro-
mosome.

The operon represents the first level of the gene organiza-
tion. Neighboring genes, especially those in co-directional
and in divergent orientation, represent a second organiza-
tion level because they show a certain functional associa-
tion revealed by genomic context analysis [5]. Regarding
comparisons among closely related species, the gene order
conservation, or synteny, represents a third level of organ-
ization. Synteny depends on shared ancestry and inter-
and intrachromosomal exchanges, and represents a
higher relationship between taxa. It was suggested that
physiologically important gene clusters could be posi-
tively selected, and synteny perhaps reveals the functional
constraints of these genes [6]. For the detection of synteny
it is necessary first to determine the set of orthologous
genes in pairs of organisms and recently an inverse
method has proven useful for this [7].

Recombination/transposition events can easily disrupt
synteny. Species of Buchnera and Corynebacterium have
low levels of chromosomal rearrangements and lack recA
and recBCD orthologs, respectively [8,9], thus suggesting
that recombination is an important factor for loss of syn-
teny. Synteny studies have focused in short gene clusters
in eukaryotes [10,11] while whole chromosome compar-
ative analysis has been done in bacteria and archaea [12-
18]. For example, there is a striking conservation between
the chromosomes of Escherichia coli and Salmonella typh-
imurium [19], and also between those of Brucella meliten-
sis, B. suis and Mesorhizobium loti [20]. However, the
synteny analyses for alpha proteobacteria such as those
reported in the genome sequence determinations of Bru-
cella melitensis, Sinorhizobium meliloti and Agrobacterium
tumefaciens are highly schematic [20-22]. A thorough
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analysis of Rhizobiales genomes would determine if the
key set of genes covering the most important metabolic
functions in these organisms are syntenic.

Another factor affecting chromosomal rearrangement is
horizontal gene transfer (HGT) which occurs in bacteria
[23,24], but estimating its impact on genome organiza-
tion has proved a daunting task for two reasons. First, the
reliability of compositional methods to detect HGT events
has been questioned [25,26]. Second, phylogenetic meth-
ods, albeit more reliable, are not always applicable and
can easily be misleading without proper care. The results
of a recently published analysis suggest that codon usage
compatibility between alien genes and recipient genomes
[27] is a prerequisite for successful HGT events. This
premise has been supported by other evidence [28,29].

Among the most accepted methods to deduce functional
relationships of proteins are phylogenetic profile [30],
gene neighboring [31], and the Rossetta stone method
[32]. These methods can give additive information about
metabolic networks existing in organisms [33]. ProLinks
is a program based on these methods with an extensive
library of predicted functional interactions from 83
genomes [34]. Von Mering et al. [35], also applying these
approaches with the STRING program, found global mod-
ularities in functional protein networks. A question
remains about whether functional linkage differences
exist in syntenic and non-syntenic gene clusters.

Rhizobiales is a prokaryotic order belonging to the alpha
proteobacteria subdivision; some rhizobial species are
intensively studied for their nitrogen-fixing ability when
in symbiosis with leguminous plants. The order com-
prises both plant symbionts and plant and animal patho-
gens such as Rhizobium, Agrobacterium and Brucella,
respectively. In rhizobia, genes responsible for the symbi-
otic interaction are commonly found on large plasmids or
incorporated in a particular stretch of the chromosome
called the symbiotic island [36-38]. The physiological
potential of the rhizobial chromosome allows cell sur-
vival under different conditions. For example, an A. tume-
faciens strain containing the symbiotic plasmid from
Rhizobium etli induced nodules on legume plants [39,40],
and conversely, an S. meliloti derivative strain with Ri, the
rhizogenic induction plasmid, formed root mats on
alfalfa plants [41]. Additionally, there are similarities in
the parasitic/symbiotic strategies employed by species of
the Rhizobiales [20]. Also, it is possible to find diverse
life-styles among the members of Enterobacteriales order
(gamma proteobacteria): for example, Buchnera is an obli-
gate aphid symbiont; E. coli and S. typhimurium are com-
mon gut inhabitants in mammals; and Shigella flexneri,
Yersinia pestis and Erwinia carotovora are pathogens, either
for animals or plants [42].
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Table I: Gene classification of Rhizobiales.
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In comparison with the Sinorhizobium meliloti chromosome

At-C At Mi Bm-I Bm-ll Bm
Genes in chromosome (length in Mb) 2721(2.84) 1833(2.07) 4554(4.92) 6750(7.04) 2059(2.12) 1139(1.18) 3198(3.30)
Chromosomal orthologs (% of chr. genes) 1737(63.8) 478(26.1)  2215(48.6) 2279(33.8) 1310(63.6) 415(36.4)  1725(53.9)
Syntenic genes (% of chr. orthologs) 1480(85.2) 357(74.7) 1837(82.9) 1624(71.3) 1039(79.3) 272(65.5) 1311(76.0)
Nonsyntenic genes (% of chr. orthologs) 257(14.8) 121(25.3)  378(17.1)  655(28.7)  271(20.7) 143(34.5)  414(24.0)
Microsyntenic regions 160 45 205 227 132 41 173
Syntenic genes in regions (% of synt. genes) 1394(94.2) 325(91.0) 1719(93.6) 1428(87.9) 965(92.9) 230(84.6) 1195(91.1)
Plasmidic homologs (% of chr. genes) 159(5.8) 490(26.7)  649(14.2)  924(13.7) 70(3.4) 134(11.8)  204(6.4)
Homologs in rest of Rhizobiales (% of chr. genes) 459(16.9)  523(28.5)  982(21.6) 1724(25.5) 349(16.9)  368(32.3) 717(22.4)
Species specific genes (% of chr. genes) 366(13.4)  342(18.7)  708(15.5) 1823(27.0) 330(16.0)  222(19.5)  552(17.3)
Operons (except homologs in rest of Rhizobiales) 527 336 863 1140 353 192 545
Syntenic operons (% of operons) 282(53.5)  68(20.2) 350(40.6)  259(22.7) 168(47.6)  43(22.4) 211(38.7)
Nonsyntenic operons (% of operons) 7(1.3) 0 7(0.8) 12(1.0) 8(2.3) 3(1.6) 11(2.0)
Plasmidic operons (% of operons) 15(2.8) 47(14.0) 62(7.2) 88(7.7) 1(0.3) 9(4.7) 10(1.8)
Species specific operons (% of operons) 26(4.9) 27(8.0) 53(6.1) 150(13.2)  20(5.7) 14(7.3) 34(6.2)
Mixed operons (% of operons) 197(37.4) 194(57.7)  391(45.3)  631(55.3) 156(44.2) 123(64.1)  279(51.2)

Chr., chromosomal. Synt., syntenic. At-C, A. tumefaciens circular chromosome. At-L, A. tumefaciens linear chromosome. At, A. tumefaciens
chromosomes. MI, M. loti chromosome. Bm-l, B. melitensis chromosome |. Bm-Il, B. melitensis chromosome |l. Bm, B. melitensis chromosomes.

The complete genome sequences of seven species of
Rhizobiales were available by 2004, namely S. meliloti
[21], Mesorhizobium loti [43], Bradyrhizobium japonicum
[44], A. tumefaciens [22,45], B. melitensis [46], B. suis [20]
and Rhodopseudomonas palustris [47]. Although their
genomes show a certain degree of conservation, variability
corresponding to their evolutionary divergence points,
microbial life styles and ecological niches was also found.
Comparative genomics has captured the attention of
researchers as a way of achieving a better understanding of
the molecular basis underlying phenomena such as sym-
biosis and pathogenesis.

We classified the genes of several rhizobial species in
order to gain a comprehensive insight into chromosomal
conservation and genome rearrangement. Conserved
genes among these species can reveal phylogenetic rela-
tionships, but also show metabolic strategies useful in
understanding the niche diversity in which these organ-
isms usually grow. In particular, syntenic/non-syntenic
genes among these species were analyzed in terms of their
sequence identity/similarity, physical characteristics of
the encoded products and functional relationships among
them. Additionally, in order to find more general trends,
we compared these results with an analysis performed on
genomes belonging to the Enterobacteriales.

Results

Approach, strategy and outline

Our main objective was to enhance our understanding of
the functional meaning of the gene arrangement on the

bacterial chromosome, taking as examples some genomes
from the Rhizobiales and Enterobacteriales. We consider
that gene neighboring is not a random trait and gives an
adaptive advantage to the cell because the proteins pro-
duced are likely to perform related functions. Our belief is
that the coordinated expression of genes, organized on
the chromosome either as operons or clusters, permits the
correct integration of metabolic functions.

Our approaches were: i) to obtain a comprehensive gene
classification, applicable to each of the species analyzed
and suitable to make comparisons among them, and ii) to
detect specific gene characteristics (if any) of each of the
classes. In the first approach we identified orthologs
among chromosomes, defined those that were syntenic,
those in a different replicon, and those that were species-
specific. For the second approach, we analyzed gene/pro-
tein sequences for identity, calculated the horizontal gene
transfer rate for each class and the predicted molecular
weight and isoelectric point of the peptides, and inferred
the functional relationship in syntenic or non-conserved
chromosomal regions. The results are presented in the fol-
lowing order: 1) Synteny in Rhizobiales (gene classifica-
tion of Rhizobiales; gene organization and microsyntenic
region formation; synteny and insertion sequences, hori-
zontal gene transfer and codon usage), 2) Synteny in
Enterobacteriales, 3) Sequence analysis of the chromo-
somal predicted orthologs, 4) Physical characteristics of
the translated products of syntenic genes, and 5) Func-
tional roles and linkage of chromosomal predicted
orthologs. S. meliloti was taken as reference organism for
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Schematic representation of the S. meliloti chromosome
(compared with A. tumefaciens) according to the classification
of predicted orthologs and homologs. Striped bars in red,
from the bottom to the top: genes syntenic with the A. tume-
faciens circular chromosome (denoted with C); syntenic with
the A. tumefaciens linear chromosome (L); syntenic with the
rest of Rhizobiales (rest). Striped bars in blue, from the bot-
tom to the top: genes non-syntenic with the A. tumefaciens
circular chromosome (C); non-syntenic with A. tumefaciens
linear chromosome (L); non-syntenic with the rest of Rhizo-
biales (rest). White bar, homologs in other Rhizobiales chro-
mosomes matched with unidirectional best hits (other).
Green bar, homologs in plasmids (plasmid). Gray bar, spe-
cies-specific genes (sp). Numbers indicate genes in each of
the categories.

the comparisons with each A. tumefaciens, M. loti, B.
melitensis and E. coli. E. coli was used as base to compare
with S. typhimurium, E. carotovora and S. meliloti.

I) Synteny in Rhizobiales

Gene classification of Rhizobiales

The selection criteria mentioned in Methods were applied
to the chromosomes of S. meliloti (Sm), A. tumefaciens
(At), M. loti (M1), and B. melitensis (Bm). As compared to
the chromosome of S. meliloti, we found that more than
60% of genes were chromosomal predicted orthologs in
the At circular chromosome (At-C) and Bm chromosome
I (Bm-I), one third in MI! chromosome and Bm chromo-
some II (Bm-II) and one quarter in the At linear chromo-

http://www.biomedcentral.com/1471-2148/5/55

some (At-L); however, the number of chromosomal
predicted orthologs in each organism was similar, about
two thousand (Table 1). The Sm chromosome presents
3341 genes in 3.65 Mb.

We assessed the chromosomal genes with conserved order
or synteny (see Methods). Syntenic genes represented
about 70-80% of chromosomal predicted orthologs (see
Table 1). That is, the conserved chromosomal order of
these genes seems favored. The remarkable synteny level is
highlighted by a group of 1038 common syntenic genes in
all these species. Non-syntenic genes represented from
17% to 35% of the chromosomal predicted orthologs in
these organisms. Only 98 non-syntenic genes were com-
mon in the four Rhizobiales.

The remaining categories obtained in this analysis were:
homologs present in plasmids, homologs with the rest of
rhizobial chromosomes, and those with no orthologs in
the public databases (species-specific genes, also known
as orphan). Homologs in plasmids were more abundant
in the At-L,MI and Bm-II chromosomes (Table 1). These
replicons have special features as commented below and
in Discussion. Aside from the two organisms being com-
pared, some genes also matched with other rhizobial
chromosomes (including B. japonicum USDA110) and
comprised about a quarter of the chromosomal genes in
these species (Table 1). Some of them only matched with
unidirectional best hits (homologs). In this context, in an
additional analysis between S. meliloti and A. tumefaciens,
we found that 129 genes matched with unidirectional best
hit (white fraction, Figure 1), but the rest were predicted
orthologs with bidirectional best hits, either syntenic or
non-syntenic, and are represented in the red and blue
striped bars (denoted as rest, Figure 1), respectively. Spe-
cies-specific genes were especially abundant in the M. loti
chromosome, while in the other replicons this class cov-
ered at most 20%. One half of these species-specific genes
were not present in the COG database [48] and the rest
were denoted as hypothetical (data not shown).

In this way, all chromosomal genes were assigned to the
categories mentioned, as shown in Figure 1 for the com-
parison of S. meliloti with A. tumefaciens. This approach
gives a panoramic view about shared and unshared genes
with other rhizobial species. Additional file 1 shows the
categories for the other comparisons.

A schematic representation of rhizobial chromosomes
was obtained relative to the classification of the genes. A
high proportion of chromosomal predicted orthologs of
the analyzed species were syntenic; however, in the A.
tumefaciens linear, M. loti and B. melitensis | chromosomes,
plasmidic homologs and species-specific genes were par-
ticularly abundant.
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Figure 2

microsyntenic regions with the A. tumefaciens (At) circular chromosome. Framed with light green

boxes, microsyntenic regions with the At linear chromosome. Microsyntenic regions are denoted by letters (and numbers) in

Framed with yellow boxes,
progressive order. Dark blue bars

syntenic genes

non-syntenic genes with the At circular chromosome. Light blue bars, non-

i

species-specific genes. White bars, homologs

’

homologs in plasmids. Gray bars

with the At linear chromosome. Green bars,

with other Rhizobiales chromosomes. Direction of transcription is denoted by upper (plus) or lower (minus) positions in

respect to the central line. Predicted operons are denoted by red arrows. Scale in bp.
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(a)

(b)

Bm-l

Figure 3

Schematic rearrangement of microsyntenic regions among S.
meliloti, A. tumefaciens, M. loti and B. melitensis chromosomes.
Panels: (a), S. meliloti chromosome (middle line) compared
with A. tumefaciens circular (bottom line) and linear (upper
line) chromosomes. (b), S. meliloti chromosome (lower line)
compared with M. loti (upper line) chromosome. The M. loti
chromosome was segmented in two fragments to maximize
colinearity (see Methods). (c), S. meliloti chromosome (mid-
dle line) compared with B. melitensis chromosome | (bottom
line), and Il (upper line). oriC of Bm | was inverted to obtain
maximal colinearity (see Methods). Red lines (orange for At-
L and Bm-Il chromosomes) represent the initial positions of
the microsyntenic regions in each of the species analyzed.

Gene organization in operons and microsyntenic regions in
Rhizobiales

A relationship between predicted orthologs and operons
was also explored. For S. meliloti (in comparison with A.
tumefaciens), one half of the syntenic genes was found
organized in 303 syntenic operons, a half of the total pre-
dicted operons (606); similar proportions were found for
the A. tumefaciens circular and B. melitensis 1 chromo-
somes. In the A. tumefaciens linear, B. melitensis 11 and M.
loti chromosomes, the proportion was about 21% (Table
1). The first two can be considered as accessory chromo-
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somes and the last is the largest chromosome of the ana-
lyzed species. Non-syntenic genes were found organized
in operons in a very small proportion in all analyzed
Rhizobiales (Table 1).

A relevant level of operon conservation was found. In the
comparison of S. meliloti with A. tumefaciens, 50% of the
syntenic genes organized in operons were in identical
operons, and taken together with those in similar operons
(differing by one or two genes), 82% of total syntenic
genes were in conserved operons. Similar proportions
were found for the other comparisons (data not shown).

The operons formed with plasmidic homologs consti-
tuted a small fraction of the predicted operons (Table 1).
Also, a reduced proportion was found for species-specific
operons, except for MI. Finally, mixed operons were
present in a higher amount and ranged from 37 to 64% of
the predicted operons (Table 1). This category revealed
the highest rate of chromosomal rearrangements in these
organisms. The mixed operons contained 17% of the syn-
tenic genes, on average.

Syntenic genes were found in clusters and were assigned
to microsyntenic regions (see Methods). When compar-
ing S. meliloti with both A. tumefaciens chromosomes, 205
regions were common. In particular, At-C regions in com-
mon with Sm chromosome were found along all the chro-
mosome, except in the third quarter (Figure 2). The third
quarter had colinearity with At-L (Figure 2, see also Figure
3 panel a). In the other comparisons, a similar amount of
common regions were observed (Table 1, see also Addi-
tional files 2 and 3). 146 regions were shared in Sm, At,
and MI and 94 regions were common to the four Rhizobi-
ales. About 90% of syntenic genes were located in the
microsyntenic regions (Table 1).

When At-C syntenic genes were compared with Sm chro-
mosome, a high level of colinearity was found (see Addi-
tional file 4 panel a). In the case of MI, the synteny was
disrupted possibly due to a conflicting annotation; for
Bm-1, an inverse colinearity was obtained, possibly by oriC
inversion relative to Sm (see Additional file 4 panels b and
¢, respectively). In regard to the rearrangement of
microsyntenic regions, an extensive chromosomal coline-
arity was observed in long tracts. For example, in the com-
parison of Sm and At circular chromosomes, 93
microsyntenic regions were colinear, 24 almost colinear,
18 with drastic changes, and 13 inverted. The schematic
representation is shown in Figure 3 panel a, lower part. In
the comparison with the At linear and Bm-II chromo-
somes, highly rearranged structures were found (Figure 3
panel a, upper part and panel ¢, upper part). Rearrange-
ment of microsyntenic regions on the chromosomes of M.
loti (Figure 3 panel b) and B. melitensis I (Figure 3 panel c,
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Table 2: Horizontal gene transfer prediction for Rhizobiales.

http://www.biomedcentral.com/1471-2148/5/55

A. Gene class HGT events* S. meliloti genes HGT ratio
Syntenic 5 1837 0.0027
Non-syntenic 8 378 0.0212
Plasmidic 3 129 0.0233
B. Gene class A. tumefaciens genes

Syntenic | 1837 0.0005
Non-syntenic | 378 0.0026
Plasmidic 0 649 0.0000
C. Gene class M. loti genes

Syntenic 7 1624 0.0043
Non-syntenic 6 655 0.0092
Plasmidic I 924 0.0119
D. Gene class B. melitensis genes

Syntenic 6 1311 0.0046
Non-syntenic 3 414 0.0072
Plasmidic 5 204 0.0245

*Calculated by using the method described in Medrano-Soto et al. [27].

lower part), showed a high level of colinearity when the
conflicting annotation and the oriC inversion, respec-
tively, were modified (see Methods).

Syntenic genes were organized mainly at two levels: oper-
ons and microsyntenic regions. Syntenic operons were as
abundant as mixed operons. Extensive blocks of chromo-
somal colinearity were found, despite rearrangements.

Synteny and insertion sequences, horizontal gene transfer and codon
usage

The mobile elements play an important role in chromo-
somal rearrangement. To determine how these elements
were dispersed among microsyntenic regions, insertion
sequence (IS) and transposase locations were analyzed.
The S. meliloti chromosome contains 51 IS and 68 trans-
posases belonging to diverse families [21]. Of the total
transposases, 40 were found with homologs in plasmids,
20 were common with other rhizobial chromosomes, 6
were denoted as species-specific and 2 were common with
the A. tumefaciens linear chromosome. Only 14 pairs of IS/
transposases (27% of the total) were found inside
microsyntenic regions.

We assessed the influence of horizontal gene transfer
(HGT) on the genomic structure of rhizobial genomes
(see Methods). Table 2 shows calculated HGT events for
each of the classes syntenic, non-syntenic and plasmid
homologs. Even though syntenic genes were in the largest
class analyzed, they displayed the lowest number of HGT
events (Table 2). Predicted HGT rates of non-syntenic
genes were 2 to 8 times higher than those of syntenic
genes. On the other hand, unlike any other gene class, spe-
cies-specific genes had the strongest bias toward a low

codon richness index in the four Rhizobiales (denoted
with crosses, Figure 4 panels a to d). No significant differ-
ences were found for syntenic or non-syntenic genes in
each organism.

2) Synteny in Enterobacteriales (gamma proteobacteria)

To assess the adequacy of applying our synteny analysis to
another bacterial clade, we chose two members from the
Enterobacteriales (gamma proteobacteria), the closely
related E. coli and S. typhimurium genomes and defined
their orthologous genes. These organisms contained 3092
predicted orthologs and 95% of them (2943) were syn-
tenic. An extensive chromosomal colinearity with few
rearrangements was found (data not shown).

Also, we chose a more phylogenetically distant species,
Erwinia carotovora subsp. atroseptica to compare with E.
coli. Their genomes comprise 4254 and 4477 genes,
respectively. They shared 2477 orthologous genes and
these represented about half the total genes in each chro-
mosome. In the detection of synteny between these organ-
isms, 1993 genes (80.4% of the orhologs) fulfilled our
requirement and the rest, 484, were classified as non-syn-
tenic. When the genes were assigned to microsyntenic
regions, 230 regions were found and contained 92.8%
(1849) of total syntenic genes and the rest, 7.2% (144
genes), were detected in the non-conserved tracts (see
Additional file 5). 172 non-orthologous genes also
formed part of microsyntenic regions. The 230 non-con-
served regions contained 2233 genes.

To define the conservation of orthology and synteny of
Enterobacteriales genomes in comparison with the Rhizo-
biales, we compared the S. meliloti and E. coli chromo-

Page 7 of 19

(page number not for citation purposes)



BMC Evolutionary Biology 2005, 5:55 http://www.biomedcentral.com/1471-2148/5/55

0 0
(] (]
= =
o ©
> >
[ [
O O
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 3500 4000
S. meliloti genes A. tumefaciens genes

(c) (d)

0.4 .

0.35
n 03 ]
(] (]
= =
S o025 Y
o o
O o2 @)

0.15

0.1 0.12 ' ' ' '

0 1000 2000 3000 4000 5000 6000 0 500 1000 1500 2000 2500
M. loti genes B. melitensis genes
® Syntenic + Non-syntenic = Plasmidic % Species specific

Figure 4

Codon richness index (CRI) for rhizobial genomes. All gene classifications were based on comparisons against S. meliloti, unless
explicitly stated otherwise. Panels: (a), S. meliloti (compared with A. tumefaciens). (b), A. tumefaciens. (c), M. loti. (d), B. melitensis.
CRlIs were calculated according to the method described by Medrano-Soto et al. [27]. Symbols: red circles, syntenic genes.
Blue plus signs, non-syntenic. Green squares, homologs in plasmids. Gray crosses, species-specific genes. Horizontal lines
denote the species-specific thresholds for low and high CRI.

somes. We found 777 predicted orthologs between them,  tion curves of their translation products were obtained.
a proportion that represents only a third of the genes  Two different types of curves were found. By comparing S.

shared in the Rhizobiales. By visual examination no syn-  meliloti with both A. tumefaciens chromosomes, the syn-
teny was apparent between the Sm and E. coli chromo-  tenic products presented a Gaussian distribution, with a
somes (see Additional file 4 panel d). With an algorithm,  tendency to high identity levels (asymmetry coefficient g1
only 198 syntenic genes were assigned to 65 microsyn- = -0.48, significant at P < 0.001) (Figure 5 panel a) and a

mean value of 71.3%. The non-syntenic products showed
a non- asymmetric distribution (g1 = -0.09) with a lower
3) Sequence andlysis of the chromosomal predicted orthologs mean value (61.9%) (Figure 5 panel a). Similar curves
To determine the level of sequence identity among chro-  were found for the chromosomal predicted orthologs of
mosomal predicted orthologs of the Rhizobiales, distribu- ~ the other comparisons (Additional file 6 panels a and b,

tenic regions.
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Figure 5

Sequence identity distribution of chromosomal predicted
orthologs. Panels: (a), syntenic and non-syntenic products
from the S. meliloti-A. tumefaciens (both chromosomes) com-
parison. Y-axis, relative proportions. (b), syntenic and non-
syntenic products from the E. coli-S. typhimurium comparison.
Y-axis, number of proteins in each range. (c), syntenic and
non-syntenic products from the S. meliloti-E. coli comparison.
Y-axis, relative proportions. Red bars, syntenic products.
Blue bars, non-syntenic products.

for Sm-MI and Sm-Bm comparisons, respectively). When
At replicons were separately compared with Sm, syntenic
products of both At-C or At-L showed a similar bias
toward high identity levels; in contrast, non-syntenic
products of At-L showed a strongly deviated distribution
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to low identity values (data not shown). The tendency of
syntenic products to higher identity levels reflects not only
restriction to change but also functional constraints, pos-
sibly due to an essential character. Conversely, the lower
identity levels of non-syntenic products represent lower
restrictions to change and higher functional versatility.

A comparison of E. coli and S. typhimurium genomes
(belonging to the Enterobacteriales) was performed. A
very asymmetric distribution curve with a tendency to
high identity levels for syntenic products was obtained
(Figure 5 panel b); it remarkably resembled that obtained
in the comparisons of syntenic products of the Rhizobi-
ales. Interestingly, in the comparison of S. meliloti with E.
coli both chromosomal non-syntenic and syntenic prod-
ucts had asymmetric curves with strong tendency to low
identity levels (Figure 5, panel c).

To obtain a complete view of sequence variation of chro-
mosomal predicted orthologs in the four Rhizobiales,
either syntenic or non-syntenic genes were graphed in
relation to their identity levels in comparison with S.
meliloti. Figure 6 panel a shows the sequence identity of
1038 common syntenic genes in the four Rhizobiales, for
Sm-At, Sm-MI and Sm-Bm comparisons. We referred the
comparison to the identity of Sm-MI genes ordered pro-
gressively. We found that each comparison showed a par-
ticular clustering, probably related to the phylogenetic
distances between these organisms. The Pearson correla-
tion coefficients werer = 0.81 and r = 0.88 for Sm-Bm and
Sm-At comparisons, respectively. In the clustering of 98
non-syntenic genes common to the four Rhizobiales (data
not shown), lower correlation coefficients were obtained
(r=0.71and r = 0.79, for Sm-Bm and Sm-At comparisons,
respectively). In Figure 6 panel b the sequence identity of
140 common syntenic genes in the Rhizobiales and
Enterobacteriales are shown. While the comparison for
Rhizobiales follows a similar tendency to the previously
observed, for E. coli and Salmonella there is a higher relat-
edness level. However, when comparing S. meliloti and E.
coli a different tendency with very low identity level is
observed. A high level of clustering among closely related
species belonging to the same subdivision is visible and
also, a tendency to reduced relatedness in members of dif-
ferent subdivisions; that is, synteny is a common trait for
members of each subdivision.

To determine the meaning of sequence differences we
analyzed the translated syntenic product ArgC, which par-
ticipates in the arginine biosynthetic pathway. The align-
ment presented in Additional file 7 panel a shows 111
positions with identical residues and a range from 33 to
113 different residues, particular for each of the species
compared. However, sequences from Brucella melitensis
and Brucella suis showed only one difference between
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Figure 6

Sequence identity analysis of common syntenic genes. Panels: (a), in the four Rhizobiales. Comparisons: Red dots, S. meliloti-A
tumefaciens. Green dots, S. meliloti-B. melitensis. (b), in Rhizobiales and Enterobacteriales. Comparisons: Red dots, S. meliloti-A
tumefaciens. Green dots, S. meliloti-B. melitensis. Magenta dots, E. coli-S. meliloti. Blue dots, E coli-S. typhimurium. Reference line (in
black) is the identity percentage of S. meliloti-M. loti syntenic genes in progressive order.

them (not shown). Synteny is almost absolute in these
organisms (Additional file 4 panel e). Changing residues
(possibly species signatures) were dispersed along the
sequences and varied according to the identity level.

To determine more comprehensively sequence differences
and similarities in Rhizobiales (alpha proteobacteria) and
Enterobacteriales (gamma proteobacteria), we selected
five organisms from each: S. meliloti, A. tumefaciens, M.
loti, B. melitensis and R. palustris for the first and E. coli, S.
typhimurium, S. flexneri, Buchnera sp. and E. carotovora for
the last. We chose some syntenic products from the
arginine biosynthetic pathway, namely ArgB, ArgC, ArgD,
ArgF, ArgG, and ArgH. The alignment belonging to ArgC
is shown in Additional file 7 panel b. As can be observed,
there are sequence identities and differences among spe-
cies from the same order ("species signatures"), but also
similarities between species of different orders, albeit at
smaller level. Additionally, we found an interesting pat-
tern: proteins from Enterobacteriales showed an almost
uniform level of sequence identity and similarity (about
50 and 70%, on average, respectively), however,
sequences from Rhizobiales showed a clear increasing ten-
dency, from 25 to 62% in identity, and from 44 to 81% in
similarity (see Additional file 7 panel c). These different
profiles possibly are related with the particular conditions
of the niches occupied by these organisms.

4) Physical characteristics of the translated syntenic genes

Molecular weight (MW) and isoelectric point (plI) are the
main traits for proteomic comparisons. To determine
whether syntenic and non-syntenic genes could present
differential protein characteristics, we graphed pairs of
translated predicted orthologs for both MW and pI
parameters. In all comparisons, MW graphs showed lower
dispersion than pl ones. Figure 7 shows the pl graph for
the S. meliloti-A. tumefaciens comparison (Sm-M. loti and
Sm-B. melitensis comparisons are in Additional file 8 pan-
els a and b, respectively). A large group of proteins (82%
in each comparison) was located on the diagonal. The cor-
relation coefficient for this group was r = 0.96 in all com-
parisons. However, the rest of the predicted proteins
showed differential pI's and were assigned to sectors (Fig-
ure 7). Sector I had acidic proteins in S. meliloti and basic
proteins in the organism compared with it. Sector II had
basic proteins in S. meliloti and acidic in organism com-
pared to it. In sector III were neutral proteins in S. meliloti
and covered all pI range in each of the organisms com-
pared. Proteins in sector IV were neutral in the comparing
organism and covered all pI ranges in S. meliloti. In Addi-
tional file 9 there is a summary of pl variability of com-
mon syntenic products from comparisons with the
chromosomes of S. meliloti, A. tumefaciens and M. loti.
About 75% of products showed similar pI and 14% and
8% presented high and low variation, respectively. High
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Figure 7

Theoretical isoelectric points (pl) of the S. meliloti-A. tume-
faciens syntenic products. Dots represent translated prod-
ucts. Red dots, products on the diagonal. Yellow, dots,
sector |. Brown dots, sector Il. Green dots, sector lll. Blue
dots, sector IV (see Results). Scales in pH units.

level is defined as pl variation from acid in one or two
organisms and basic in the other, and viceversa. Low level
is defined as plI variation from neutral to acid or basic
(Additional file 9). Proteins of the sectors mainly corre-
sponded to the functional categories of energy generation,
post-translational modification, and transport. In the case
of non-syntenic products, a pattern similar to that
described above was found (see Additional file 10). Pro-
teins in the diagonal were the most conserved group with
subtle pI changes possibly responding to species adapta-
tion, whereas those with deviated pl's may represent a
group with higher functional versatility.

Since the functional categories mentioned above for sec-
tors are known to often interact with the cell membrane,
a membrane prediction for all syntenic products from the
S. meliloti-A. tumefaciens circular chromosomes compari-
son was assessed. Strikingly, 790 syntenic products were
predicted to contain membranal segments. This amount
represents almost all membranal proteins coded in the S.
meliloti chromosome, considering that bacterial genomes
have 18-28% membranal proteins [49-51]. About 70% of
predicted membranal proteins with assigned function
belonged to transport, energy generation, post-transla-
tional modification, cofactor synthesis, amino acid
metabolism and central intermediary metabolism catego-
ries (Additional file 11). There are reports about mem-
brane-interacting proteins with functions such as amino
acid and cofactor biosynthesis and central intermediary
metabolism [52-56].

To determine whether the charged amino acid residues
were clustered in proteins from the sectors described
above, we selected several proteins from each. The resi-
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dues determining radical changes in pl were observed
scattered along the sequences (data not shown).

5) Functional roles and linkage of the chromosomal predicted
orthologs

To define the metabolic participation of the chromosomal
predicted orthologs, a functional classification was made
with chromosomal syntenic and non-syntenic genes. As
shown in Figure 8, syntenic genes of S. meliloti-A. tume-
faciens chromosomes contained a high proportion of the
most important house-keeping functions. The relative
proportion of non-syntenic genes grew with decreasing
functional essentiality, for example transport and binding
proteins, cellular processes and regulatory functions (Fig-
ure 8). Furthermore, the syntenic products covered 85%
of the main metabolic pathways as defined in MetaCyc for
S. meliloti (see Additional file 12). Similar results in func-
tional coverage were obtained with the other comparisons
(see Additional file 13 panels a and b). Common syntenic
genes in the four Rhizobiales also included a large fraction
of the house-keeping functions (lower segment of the red
bars, Figure 8). In the case of the comparison between E.
coli and E. carotovora, syntenic genes also covered a high
proportion of essential functions, however, the first two
positions were occupied by cofactor and nucleotide syn-
thesis (see Additional file 13 panel c). In this regard, it is
important to note that E. coli and E. carotovora possess no
large plasmids.

When functional classes of genes in the microsyntenic
regions were divided into Informational, Operational and
Cellular processes superclasses and graphed for the S.
meliloti chromosome with a 100 Kb window, an interest-
ing pattern was observed (Figure 9), with the majority of
the peaks belonging to a superclass matching with valleys
of the other(s). This could represent functionally special-
ized blocks of chromosomal tracts, which were part of the
ancestral rhizobial chromosome. For instance, the exist-
ence of genomic domains is accepted in eukaryotes [57].

The ProLinks program was used to determine how the
chromosomal predicted orthologs are functionally
related. Functional links were calculated for all genes in
the S. meliloti and E. coli chromosomes and then corre-
lated to their neighbors. For the S. meliloti-A.tumefaciens
comparison, the microsyntenic regions presented, on
average, 3.68 connections per node (a protein in a net-
work), almost twice the value obtained in the non-con-
served regions (2.06). From 205 microsyntenic regions,
104 had functional networks; in the case of non-con-
served regions, only 35 presented networks. Networks
with less than 6 connections were omitted. The networks
of microsyntenic regions presented 1057 syntenic genes
and from these 795 (75.2%) were organized in operons.
99 non-syntenic genes were in the networks of the non-
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Figure 8

Coverage of fuctional classes with syntenic and non-syntenic
genes in the S. meliloti-A. tumefaciens comparison. X-axis,
functional classes: |) Transcription, 2) Translation, 3) Fatty
acid and phospholipid metabolism, 4) Cell envelope, 5) Bio-
synthesis of cofactors, prosthetic groups and carriers, 6)
Purine, pyrimidine, nucleoside and nucleotide metabolism, 7)
DNA metabolism, 8) Amino acid metabolism, 9) Cellular
processes, 10) Energy metabolism, | I) Transport and ATP
binding proteins, 12) Regulatory functions, 13) Central inter-
mediary metabolism. Red bars, lower fraction: syntenic genes
in the four Rhizobiales; upper fraction, syntenic genes in the
S. meliloti-A. tumefaciens comparison. Blue bars, lower frac-
tion: non-syntenic genes in the four Rhizobiales; upper frac-
tion: non-syntenic genes in the Sm-At comparison. Y-axis, %
of coverage.

conserved tracts, and only 56 (56.5%) were in operons. In
the case of the synteny comparison between E. carotovora-
E. coli (Enterobacteriales), 230 microsyntenic regions
were obtained and from these, 161 presented functional
networks, with a connectivity average of 5.33 connec-
tions/node. The non conserved regions with networks
were 71 with a connectivity average of 2.04 connections/
node. From 1497 syntenic genes in the networks, 1106
(73.8%) formed part of operons. Network connectivity
obtained in S. meliloti and E. coli is shown in the graph of
Additional file 14 (panels a and b, respectively). There is a
striking difference in connectivity level in the networks
from syntenic (gray bars) or non-conserved regions (black
bars). The connectivity levels in syntenic vs non-con-
served regions in both organisms were similar using the
STRING program (data not shown).

Discussion

The comparative genomic analysis reported here was use-
ful in finding interesting gene properties. Orthologs with
conserved replicon and neighborhood were the principal
component of the chromosomes. Compared with non-
syntenic genes, syntenic ones had higher identity levels,
lower horizontal gene transfer (HGT) rates, showed
strongly organized structures as operons and microsyn-
tenic regions and a relative absence of mobile elements.
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Thus, the syntenic genes can be considered as the chromo-
somal backbone of the order. Plasmidic homologs were
scattered on the chromosomes, and higher HGT rate and
linkage to transposases support their extrachromosomal
origin. Species-specific genes had the lowest codon rich-
ness index, and possibly were acquired in the evolution-
ary history of each of the species.

In this way, a rhizobial chromosomal origin can be envi-
sioned. The chromosomal orthologs were the gene set
derived from the common cenancestor. From these, syn-
tenic genes conserved a relative chromosomal order (and
operonic organization) and encode the essential func-
tions of the cell; non-syntenic genes lost the clustering and
possibly some came from HGT events. The plasmidic
homologs were obtained possibly by mobilization
throughout replicons, a nonrare process in the rhizobial
phylogenetic branch. The species-specific genes represent
the particular gene set of the species and are the most
intriguing group due to their unknown functional roles
and origin. Work with members of the last group will help
to define traits not shared with other species.

The Rhizobiales species analyzed showed a striking pro-
portion of orthologous genes, mainly chromosomal syn-
tenic; non-syntenic genes were found in lower proportion.
A large fraction of the first class was common in the four
organisms. Syntenic genes had a strong tendency to form
operons and almost all were clustered in microsyntenic
regions. Additionally, these operons were conserved in
pairs of organisms. Therefore, a strong restriction for chro-
mosomal rearrangement is visible. Given that these
organisms cover a wide spectrum of environmental distri-
butions, from plant rhizosphere to animal host, the con-
served chromosomal tracts may be important to
determine the metabolic properties common to the order.
Similar results were observed in the Enterobacteriales
comparison. In a recent report, using computational infer-
ence, Boussau et al. [58] proposed a common ancestral set
of about 3000 genes for proteobacterial genomes.

Although rhizobial genomes shared common traits,
important differences were also observed. For example,
abundance of plasmidic homologs and species-specific
genes in A. tumefaciens (linear), B. melitensis Il and M. loti
chromosomes confirmed their complex evolutionary his-
tories [20,22,59,60]. The M. loti chromosome presents
intensive incorporation of foreign genes by horizontal
transfer, such as those belonging to the symbiotic island
[59]. In regard to species-specific genes, a large number
presented low codon richness index. This category will be
reduced with incorporation of other rhizobial genomes
into the databases. For example, R. leguminosarum biovar
viciae 3841, R. tropici PRF81, R. sp. ANU265 and R. etli
CFN42 genomes soon will be available [1]. Mobilization
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Figure 9

Distribution of syntenic genes (in regions) by functional
superclasses in the S. meliloti chromosome. Blue squares,
informational processes. Red triangles, cellular processes.
Green diamonds, operational functions. For distribution only
microsyntenic regions (from the S. meliloti-A. tumefaciens
comparison) with at least two genes belonging to a given
class were considered.

elements participate in chromosomal rearrangement and
are abundant in Rhizobiales. These elements can decom-
pose the microsyntenic regions where they are. In this
way, all synteny approaches consist of snapshots in chro-
mosomal evolution.

From the comparison of sequence identities among chro-
mosomal predicted orthologs in the rhizobial species ana-
lyzed, an interesting characteristic was the differential
distribution curves obtained. The asymmetric curves of
syntenic products, deviated to high identity levels (with
peaks at 70-75%, Figure 5 panel a and Additional file 6
panels a and b), possibly reveal their essentiality and can
be compared with those from gamma proteobacteria with
high identity (with peak at 95%, Figure 5 panel b). Con-
versely, non-syntenic genes had curves with lower
sequence identity levels reflecting a higher functional ver-
satility. In the case of S. meliloti-E. coli comparison, the
identical curves for syntenic and non-syntenic genes with
the majority at very low identity values (35%, Figure 5
panel ¢) reflect their greater phylogenetic distances.

The high identity of syntenic genes indirectly reveals their
essential character; for the non-syntenic genes the low
identity could represent adaptability to the ecological
niche of the species. The identity relatedness in the syn-
tenic genes among rhizobial species (Figure 6 panel a)
revealed a cohesively evolved group; additionally the
sequence differences were reflected in the theoretical pl
plots of the proteins encoded by these genes, with a
majority in the diagonal and the rest in sectors with strong
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pl deviation. Species signatures of the sequences (see
Additional file 7) showed a differential level of changed
residues and these could represent functional adaptation
to a niche; this proposal is supported with the almost
identical sequences of B. melitensis and B. suis. On the
other hand, invariant peptides perhaps contribute to
structural conformation [61]. Experiments in progress in
our lab will determine the validity of our proposal.
Recently, a conservative change which altered the function
of the transcriptional regulator BosR [62], and pathogenic
differences in enteric bacteria due to the expression of
PmrD regulators with divergent sequences [63] were
reported.

A typical trait of Enterobacteriales is its pathogenic charac-
ter, and this means a very intimate, frequent contact with
their hosts and almost constant, homogeneous condi-
tions: the extreme case is that of Buchnera sp., an aphid-
obligate symbiont. In contrast, Rhizobiales are commonly
found in the soil in saprophytic living style, and occasion-
ally they associate with hosts, and therefore face more het-
erogeneous, variable environments. These features were
reflected in the sequence comparisons of proteins from
the arginine biosynthetic pathway (see Additional file 7).
The syntenic gene organization was different in the Rhizo-
biales compared with Enterobacteriales, however it is
important to note the high orthology and synteny degrees
between members of each clade, the essentiality of func-
tions covered by the syntenic genes and the high func-
tional linkage in the microsyntenic regions in each
chromosome (see below). From the previous observa-
tions we can obtain a general trend: bacterial clades
present a particular chromosomal gene arrangement and
such plasticity possibly was selected in relation to the
niches occupied by these organisms.

As have others, some time ago we found a proteomic
bimodal distribution when MW and pI were plotted for
rhizobial gene products. The main fraction was located at
acid and basic pl's, in a shape resembling butterfly's wings
and the body, at neutral pl, presenting a low number of
proteins. Recently Knight et al. [64], in a vast genomic
study, reported similar results and additionally, related
proteome similarities to shared metabolic features. In this
respect, we plotted pl of syntenic products from pair com-
parisons of studied species in order to detect proteomic
similarities in these organisms. It was possible to analyze
the pl variability in each of the common syntenic prod-
ucts; however, it is necessary to carry out experimentation
to determine the biological role of pl variation. The over-
represented membranal fraction in the syntenic products
must be further explored to determine whether they
respond to different extracellular/intracellular signals. A
rapid evolution for the membranal proteomic fraction
was suggested in the same study [64].
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The high proportion of syntenic operons in the microsyn-
tenic regions and the duplicated connections per gene in
the network-forming regions (in regard to non-conserved
regions), in Rhizobiales but also in Enterobacteriales, sup-
ported the functional linkage and interaction of these
genes in the conserved tracts (see Additional file 14), and
this is a factor which could help to define the role of selec-
tive pressure in maintaining the gene order.

Functional characterization of the predicted orthologs
deepened our understanding of their cellular roles. In
both Rhizobiales and Enterobacteriales, a clear essential-
ity was observed for chromosomal syntenic genes, agree-
ing with their sequence restrictions for change. Non-
syntenic genes, on the other hand, appeared abundant in
functions granting metabolic versatility to the cell. By cal-
culating nonsynonymous/synonymous substitution rates,
other authors have shown that in bacteria most conserved
genes cover the essential functions of the cell [65].

Conclusion

Our synteny analysis defined a multi-level gene organiza-
tion in the bacterial chromosome. Restriction of sequence
variation in these genes, with clear essential functional
roles, appeared extended to the conservation of chromo-
somal arrangement. In this way, synteny possibly has an
important biological significance in these organisms.

Methods

Identification of orthologs

Available genome sequences of the fast growing Rhizobi-
ales, S. meliloti 1021 [accession number GenBank:
NC 003047], A. tumefaciens C58 (Cereon) [GenBank:
NC 003062 and NC 003063], M. loti MAFF303099
[GenBank: NC_002678] and B. melitensis 16 M [GenBank:
NC 003317 and NC_003318] were obtained from the
Genome division of the NCBI Entrez system [66].
Genomes of E. coli K12, S. typhimurium LT2 and Erwinia
carotovora subsp. atroseptica SCRI1043 [accession num-
bers GenBank: NC 00913NC 003197, and NC 004547],
were used for synteny and functional analysis. The
genome of B. suis 1330 [accession numbers GenBank:
NC_004310 and NC 004311 for chromosomes I and 1,
respectively] was used for synteny and sequence identity
analysis. Genomes of Bradyrhizobium japonicum USDA110
[accession number GenBank: NC_004463] and Rhodop-
seudomonas palustris CGA009, also belonging to the alpha
proteobacteria, were not considered in the main analysis
because of their more distant phylogenetic relationship
with the fast-growing rhizobia. To obtain a comprehen-
sive view of shared genes among Rhizobiales, we differen-
tiated genes by orthology and their presence in the same
or different replicons in the analyzed species. Chromo-
somal orthologs were assigned by the best bidirectional
hit between pairs of organisms, using the Fasta34 program
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[67]. Unidirectional best hits (homologs) were consid-
ered to cover complete chromosomal gene number (see
Results) and for detection of chromosomal genes with
plasmidic homologs. Parameters were: an identity of at
least 50%, overlapping by at least in 150 nt and an expect-
ance (E) score of <10-3. The base organism for compari-
sons was S. meliloti 1021. GenBank accession numbers of
proteins used for alignments in the order ArgB, ArgC,
ArgD, ArgF, ArgG and ArgH, were as follows. Rhizobiales.
R. palustris: NP_945982.1, NP_947833.1, NP_950107.1,
NP_950106.1, NP_945745.1, NP_950077.1; B. melitensis:

NP 541250.1, NP_540088.1, NP _540538.1,
NP _540537.1, NP _540787.1, NP_539004.1; M. loti:
NP 105609.1, NP 108547.1, NP 106269.1,
NP _106270.1, NP_105253.1, NP _104594.1; A. tume-
faciens: NP _353412.1, NP 354256.1, NP_353456.1,
NP 353457.1, NP_355604.1, NP_357013.1; S. meliloti:
NP _384545.1, NP _385346.1, NP 384623.1,

NP 384624.1, NP _387315.1, NP _386753.1. Enterobac-

teriales. Buchnera sp.. NP_239886.1, NP_239885.1,
NP_240341.1, NP_240186.1, NP_239887.1,
NP _239888.1; E. coli: NP _418394.1, NP_418393.1,
NP_417818.1, NP_414807.1, NP_417640.1,
NP_418395.1; E. carotovora: YP_048320.1, YP_048319.1,
YP 052152.1, YP 048510.1, YP 048232.1,
YP _048321.1S. typhimurium: NP 457937.1,
NP 457938.1, NP _458434.1, NP _458882.1,
NP_457671.1, NP_457936.1; S. flexneri: NP_838925.1,
NP_838926.1, NP_839526.1, NP_839629.1,

NP 838682.1, NP_838924.1. All data sets are available
on request.

Procedures for detection of syntenic genes, microsyntenic

region formation and operon similarity

To consider chromosomal orthologs as syntenic among
pairs of organisms, at least two genes must remain contig-
uous in both chromosomes. Microsyntenic region forma-
tion and extension fulfilled the following criterion: a pair
of predicted orthologs separated from at least one other
by no more than three genes (from the rest of categories).
The minimal region was formed by a stretch containing
three syntenic genes. Operon prediction was performed as
reported by Moreno-Hagelsieb and Collado-Vides [68].
Rearrangements were graphed using initial positions of
the microsyntenic regions in each chromosome. The syn-
tenic regions of M. loti and B. melitensis | chromosomes
were graphed so as to increase the colinearity in these rep-
licons. The M. loti chromosome was segmented into two
halves at 3.5 Mb position and the fragment covering from
3.5 to 7.0 Mb was located in the first position and then
both halves were aligned with microsyntenic regions of S.
meliloti. In the case of Brucella chromosome I, the origin
was inverted. Graphs were obtained using the GenVision
program (DNAStar Inc., Madison, WI). For operon simi-
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larity calculation, a limit of three different genes in each
operon was allowed. All data sets are available on request.

Detection of horizontal gene transfer

Prediction of horizontally transferred genes in the Rhizo-
biales genomes was performed using the method
described by Medrano-Soto et al. [27]. Briefly, it on based
in similar gene length, maximum global protein identity,
conflicting phylogenies and codon usage of xenologous
genes. In the case of A. tumefaciens, this rate was calculated
using sequences and annotation obtained from the U. of
Washington Sequencing Project [45]. Species-specific (or
orphan) genes were not considered by two reasons: (1)
the lack of orthologs in other genomes precluded phylo-
genetic analysis, and (2) impossibility of correlating these
genes to a synteny.

Sequence comparison of chromosomal orthologs in
Rhizobiales

The identity of peptidic sequences of chromosomal pre-
dicted orthologs were used to graph the distribution
curves. The asymmetry of distribution curves, or skewness,
was calculated by the asymmetry coefficient of Pearson
(g1) as described elsewhere [69]. To correlate nucleotide
sequence identities of the chromosomal predicted
orthologs in the four rhizobial genomes, the gene identity
of the predicted orthologs from the S. meliloti-M. loti com-
parison was graphed in progressive order. Then, corre-
sponding predicted orthologs of the other comparisons
were located at their corresponding identity percentages.
Correlation coefficient values were calculated by the Pear-
son method. Plasmidic homologs and species-specific
genes were not graphed because they have no counter-
parts in the pairs of analyzed genomes.

Theoretical proteome and transmembranal protein
prediction

Theoretical proteomes were obtained by calculating
molecular weight and isoelectric point for each translated
chromosomal predicted ortholog. Both parameters were
estimated with the pI/MW prediction tool of the Laquip
Proteomic Team page [70]. To determine the set of
orthologs coding proteins predicted to interact with the
cell membrane, we used the TMAP program, version 46
[71], available in the EMBOSS package (European Molec-
ular Biology Open Software Suite, [72]). Correlation coef-
ficient values were obtained with the Pearson method.
Alignments were performed with ClustalW [73].

Functional classification of chromosomal predicted
orthologs

Chromosomal predicted orthologs were assigned to the
functional classes used for Agrobacterium tumefaciens C58
in the U. of Washington genome report [45]. For the dis-
tribution of functions coded in the microsyntenic regions
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along the S. meliloti chromosome, classes were assigned
into Operational (including amino acid, fatty acid, carbo-
hydrate and nucleotide metabolism, energy generation,
central intermediary metabolism, transport and cofactor
synthesis), Informational (DNA metabolism, transcrip-
tion, translation and regulatory functions), and Cellular
processes (cell envelope, cell division, secretion and
chemotaxis) superclasses. This grouping, except for Cellu-
lar processes, is similar to that of Rivera et al. [74]. For
functional relationship inference, the ProLinks [34] and
STRING databases [35] were used with permission. The
confidence levels used were 0.6 and 0.9, respectively.
Resulting networks with ProLinks with less than 6 links
were omitted from the count. Networks were constructed
with the Pajek Program (written by A. Vlado), version
1.02, available in the web [75]. Assignment of metabolic
pathways was performed using the MetaCyc database
[76], with permission.
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Additional material

Additional File 1

Schematic representation of the Rhizobiales chromosomes in comparison
with S. meliloti, according to the gene classification of predicted orthologs
and homologs. Panels: (a), S. meliloti-A. tumefaciens comparison. (b),
S. meliloti-M. loti comparison. (c), S. meliloti-B. melitensis compari-
son. Red striped bars, syntenic genes with the organism in comparison.
Blue striped bars, non-syntenic genes with the organism in comparison.
White bars, homologs with other Rhizobiales chromosomes (for S.
meliloti, compare with Fig. 1, white fraction). Green bars, homologs in
plasmids. Gray bars, species-specific genes. In panels a and c, the S.
meliloti chromosome shows syntenic and non-syntenic genes with both
replicons of the organisms under comparison. Red striped bars, syntenic
genes, lower fraction: with (a) At-C and (c) Bm-I chromosomes; upper
fraction: with (a) At-L and (c) Bm-II chromosomes. Blue striped bars,
non-syntenic genes, lower fraction: with (a) At-C and (c) Bm-I chromo-
somes; upper fraction: with (a) At-L and (c) Bm-II chromosomes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-5-55-S1.jpeg]
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Additional File 2

Synteny histogram of S. meliloti in comparison with M. loti chromosome.
Red bars, syntenic genes. Surrounded with yellow boxes, microsyntenic
regions. Microsyntenic regions are denoted by letters (and numbers) in
progressive order. Blue bars, non-syntenic genes. Green bars, homologs in
plasmids. Gray bars, species-specific genes. White bars, homologs with
other Rhizobiales chromosomes. Direction of transcription is denoted by
upper (plus) or lower (minus) positions in respect to central line. Pre-
dicted operons are denoted by red arrows. Scale in bp.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-5-55-S2.eps]|

Additional File 3

Synteny histogram of S. meliloti in comparison with B. melitensis chro-
mosomes. Red bars, syntenic genes. Surrounded with yellow boxes,
microsyntenic regions with B. melitensis chromosome I (Bm-I). Sur-
rounded with light green boxes, microsyntenic regions with B. melitensis
chromosome II (Bm-II). Microsyntenic regions are denoted by letters (and
numbers) in progressive order. Dark blue bars, non-syntenic genes with
Bm-I. Light blue bars, nonsyntenic genes with Bm-II. Green bars,
homologs in plasmids. Gray bars, species-specific genes. White bars,
homologs with other Rhizobiales chromosomes. Direction of transcription
is denoted by upper (plus) or lower (minus) positions in respect to central
line. Predicted operons are denoted by red arrows. Scale in bp.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-5-55-S3.eps]

Additional File 4

Synteny of Rhizobiales and Enterobacteriales. Panels: (a), S. meliloti-A.
tumefaciens circular chromosomes comparison. (b), S. meliloti-M. loti
comparison. (c), S. meliloti-B. melitensis chromosome I comparison.
(d), S. meliloti-E. coli comparison. (e), B. suis-B. melitensis chromo-
somes I comparison. Red dots, syntenic genes. Blue dots, non-syntenic
genes. Scales in bp.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-5-55-S4.ppt]

Additional File 5

Synteny histogram of E. coli in comparison with E. carotovora chromo-
some. Red bars, syntenic genes. Surrounded with yellow boxes, microsyn-
tenic regions with E. carotovora chromosome Microsyntenic regions are
denoted by letters (and numbers) in progressive order. Blue bars, non-syn-
tenic genes. Gray bars, non-orthologous genes. Scale in bp.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-5-55-S5.eps]|

Additional File 6

Sequence identity distribution of chromosomal translated orthologs. Pan-
els: (a), syntenic and non-syntenic products from the S. meliloti-M. loti
comparison. (b), syntenic and non-syntenic products from the S. meliloti-
B. melitensis (chromosomes I and 1) comparison. Y-axis, relative pro-
portions. Red bars, syntenic genes. Blue bars, non-syntenic genes. Y-axis,
relative proportions.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-5-55-S6.ppt]

Additional File 7

Sequence alignments and data from the alignments of proteins from the
arginine biosynthetic pathway in Rhizobiales and Enterobacteriales. Pan-
els: (a), ArgC in Rhizobiales. Identical residues for aech position are
marked with yellow. Least abundant residues for a given position are
denoted with an specific color for each of the species: dark blue, differences
in R. palustris; green, differences in B. melitensis; red, differences in M.
loti; gray, differences in A. tumefaciens; violet, S. meliloti. (b), ArgC
in Rhizobiales and Enterobacteriales. Identical residues for aech position
are marked with yellow. Least abundant residues for a given position are
denoted with an specific color for each of the species: Rhizobiales, same
code of panel (a). Enterobacteriales: brown, Buchnera; pink, E. caro-
tovora; blue, S. typhimurium. E. coli and S. flexneri, none. (c), data
of the identity (*) and similarity (:*) in residues and in percentage (bold)
of the alignments of the proteins in Rhizobiales and Enterobacteriales.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-5-55-S7.pdf]

Additional File 8

Theoretical isoelectric points (pl) of syntenic products. Panels: (a), S.
meliloti-M. loti comparison. (b), S. meliloti-B. melitensis (chromo-
somes I and II) comparison. Dots represent translated products. Scales in
pH units.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-5-55-S8.ppt]

Additional File 9

Summary of proteins with differential pI's from comparisons with chromo-
somes of S. meliloti, A. tumefaciens (circular) and M. loti.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-5-55-89.doc]

Additional File 10

Theoretical isoelectric points (pl) of nonsyntenic products. Panels: (a), S.
meliloti-A. tumefaciens (both chromosomes) comparison. (b), S.
meliloti-M. loti comparison. (c), S. meliloti-B. melitensis (both chro-
mosomes) comparison. Dots represent translated products. Scales in pH
units.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-5-55-S10.ppt]

Additional File 11

Functional categories of syntenic products of the membranal prediction of
S. meliloti- A. tumefaciens (circular chromosome) comparison.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-5-55-S11.doc]

Additional File 12

Metabolic pathways covered by syntenic products of the S. meliloti-A.
tumefaciens comparison. Scheme belongs to the MetaCyc pathways for S.
meliloti chromosome, used with permission. Highlighted with green,
reactions covered with syntenic products.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-5-55-S12.eps]
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Additional File 13

Coverage of functional classes with syntenic and non-syntenic genes. Pan-
els: (a), S. meliloti-M. loti comparison. Classes: 1) Translation, 2)
Transcription, 3) Purine, pyrimidine, nucleoside and nucleotide metabo-
lism, 4) Cellular processes, 5) Energy metabolism, 6) Cell envelope, 7)
Fatty acid and phospholipid metabolism, 8) Biosynthesis of cofactors, pros-
thetic groups and carriers, 9) Transport and ATP binding proteins, 10)
Amino acid metabolism, 11) DNA metabolism, 12) Regulatory functions,
13) Central intermediary metabolism. (b), S. meliloti-B. melitensis
comparison. Classes: 1) Transcription, 2) Translation, 3) Cellular proc-
esses, 4) Biosynthesis of cofactors, prosthetic groups and carriers, 5) Cell
envelope, 6) Energy metabolism, 7) Fatty acid and phospholipid metabo-
lism, 8) Purine, pyrimidine, nucleoside and nucleotide metabolism, 9)
Amino acid metabolism, 10) Transport and ATP binding proteins, 11)
DNA metabolism, 12) Regulatory functions, 13) Central intermediary
metabolism. (c), E. coli-E. carotovora comparison. Classes: 1) Biosyn-
thesis of cofactors, prosthetic groups and carriers, 2) Purine, pyrimidine,
nucleoside and nucleotide metabolism, 3) Translation, 4) Fatty acid and
phospholipid metabolism, 5) Transcription, 6) Cellular processes, 7)
DNA metabolism, 8) Energy metabolism, 9) Amino acid metabolism. 10)
Cell envelope, 11) Regulatory functions, 12) Transport and ATP binding
proteins, 13) Central intermediary metabolism. Note that order of classes
is different to that in Fig. 8. Red bars, syntenic genes. Blue bars, non-syn-
tenic genes.

Click here for file
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Additional File 14

Connectivity values from networks formed by microsyntenic and non-con-
served regions in (a) S. meliloti (in comparison with A. tumefaciens)
and (b) E. coli (in comparison with E. carotovora). Y-axis, connections
per network. First syntenic networks, with 1060 (S. meliloti) and 810
(E. coli) connections, were omitted for clarity. Arranged in decrecent con-
nectivity order. Gray bars, microsyntenic regions. Black bars, non-con-
served regions. Successive networks, with connectivity values lower than 6,
were omitted.

Click here for file
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