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Most cardiac arrhythmias can be classified as atrial flutter, focal atrial tachycardia, or atrial fibrillation. They have been usually
treated using drugs, but catheter ablation has proven more effective. This is an invasive method devised to destroy the heart tissue
that disturbs correct heart rhythm. In order to accurately localise the focus of this disturbance, the acquisition and processing of
atrial electrograms form the usual mapping technique. They can be single potentials, double potentials, or complex fractionated
atrial electrogram (CFAE) potentials, and last ones are the most effective targets for ablation. The electrophysiological substrate is
then localised by a suitable signal processingmethod. Sample Entropy is a statistic scarcely applied to electrograms but can arguably
become a powerful tool to analyse these time series, supported by its results in other similar biomedical applications. However, the
lack of an analysis of its dependence on the perturbations usually found in electrogram data, such as missing samples or spikes, is
even more marked. This paper applied SampEn to the segmentation between non-CFAE and CFAE records and assessed its class
segmentation power loss at different levels of these perturbations. The results confirmed that SampEn was able to significantly
distinguish between non-CFAE and CFAE records, even under very unfavourable conditions, such as 50% of missing data or 10%
of spikes.

1. Introduction

Arrhythmia is an abnormal too fast, too slow, or irregular pat-
tern heart rate. Most cardiac arrhythmias can be classified as
atrial flutter, focal atrial tachycardia, or atrial fibrillation (AF)
[1], themost prevalent arrhythmia. Causes of arrhythmia vary
and are diverse: coronary heart disease, smoking, diabetes,
obesity, age, some medications, hypertension, etc. They have
been usually treated using drugs, but catheter ablation has
proven more effective, especially in patients with persistent
arrhythmia. This is an invasive method devised to cauterise
the heart tissue that disturbs correct heart rhythm [2].

Radiofrequency or laser catheters have to be accurately
guided by 3D anatomical navigation systems to this sub-
strate. The acquisition and processing of atrial electrograms

(AEGM) form the usual mapping technique [3], with a
vast disparity of models and algorithms used in practice.
Specifically, the assessment of AEGM complexity plays an
increasingly important role in research as it can help physi-
cians to minimise the inconvenience of Radiofrequency
Ablation (RFA) procedures. Mapping complex fractionated
AEGM (CFAE) as target sites for AF ablation is promising.
CFAE areas represent critical sites for AF perpetuation and
can serve as target sites for AF ablation [3].

The Dominant Frequency (DF) of AEGM signals is one
of the most widely used common tools in this context.
Algorithms to extract DF for AF ablation have been described
in [4, 5]. A new strategy has also been reprogrammed
and implemented in [6]. This strategy uses the complexity
evaluation of CFAE, which was first introduced in [7] plus the
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semiautomatic implementation of the CARTO� (Biosense
Webster, Diamond Bar, CA, US) CFAE algorithm [6]. The
CARTO-XP� mapping system [8] has also been reimple-
mented in [6]. Two separate AEGM complexity measures
have been extracted, the ICL (Interval Confidence Level) and
SCI (Shortest Complex Interval) indices [9]. Both indices
have also been described in [7] and used in [6, 8]. Ameasure-
ment of intervals between the discrete peaks of AEGMsignals
has also been described. These methods contribute valuable
information about the level of AEGM complexity which is
extracted from CFAE by the unsupervised method [6], but
it is still necessary to improve the level of the autonomous
classification of AEGM complexity to further help the RFA of
AF navigation procedures.

Since it is a highly invasive and complex technique,
AEGM signal recording can be affected by many artifacts
in the acquisition stage. For example, sensor failure or
movement can introduce spikes during signal recording [10,
11], where spikes are sharp impulses of linearly rising and
falling edges. Given the way experts classify CFAE signals,
these artifacts can bias their interpretation by assigning
CFAE records to an incorrect fractionation level. Although
many signal processing techniques are available to reduce
artifacts such as spikes [12], sometimes this is not possible
because of their striking similarity to signal features [13],
and the original signal cannot be completely reconstructed
[14]. The influence of spikes on complexity measures has
been previously characterised for electrocardiograph and
electroencephalograph records [11, 15]. In [10], a comparative
study of ApEn and SampEn robustness to spikes was carried
out in stochastic processes and with simulated and real RR
and ECG signals.

AEGM are also prone to having gaps in their time
series. Unstable positioning, poor contact, or other problems
related to catheters may lead to incomplete or incorrect data
[16]. Previous studies have considered random and uniform
sample loss in biomedical records and can be found in [17,
18]. These studies have assessed the influence of missing
data on the complexity of electroencephalograph signals.
In [19], a brief study about infant heart rate signals with
random sample loss is presented. Similarly, in [20], Heart
Rate Variability (HRV) signals have been considered but
applied a uniform sample loss to beat to beat intervals (R-R
intervals) from which HRV records were extracted. No study
has analysed the influence of sample loss, or spikes, onAEGM
records.

This work addresses the study of the influence of possible
artifacts on the separability of AEGM records using entropy
estimators. The metric SampEn [21] has proven successful
in this task [22] using signals from different databases, but
without the artifacts stated above. In this case, we included
quantitative characterisation against spikes and sample loss to
assess SampEn robustness against possible unfavourable real
conditions for AEGM time series. Significant performance
degradationwould render SampEnunusable despite the good
results obtained in [22]. SampEnperformance and robustness
have been evaluated in statistical test and correlation coeffi-
cient terms.

The remaining sections of the paper are arranged as
follows: the next Section 2 describes the SampEn algorithm
in detail, the experimental dataset, the synthetic artifacts to
be included in the time series, and the employed statistical
assessment. Section 3 presents the study results graphically
and numerically. Discussion of these results takes place
in Section 4. Finally, conclusions about the influence of
perturbations on AEGM records in SampEn are drawn in
Section 5.

2. Materials and Methods

2.1. Entropy Metrics. SampEn was first proposed by Richman
et al. in [21]. It was devised as a solution to reduce the bias
in ApEn and to, therefore, yield a more robust statistic. This
new approach was based on avoiding template self-matches
computing.

SampEn estimates the regularity of a time series by com-
puting the negative logarithm of the conditional probability
that two sequences, which are similar (template match[21])
for𝑚 points, remain similar for𝑚+1 points at a dissimilarity
level under a certain threshold 𝑟[19, 21]. It is largely inde-
pendent of record length and exhibits relative consistency
in circumstances in which ApEn does not. SampEn agrees
much better than ApEn statistics with the theory for random
numbers over wide-ranging operating conditions [21].

Given an input time series x = {𝑥1, 𝑥2, . . . , 𝑥𝑁} of size𝑁,
sequences to compare are obtained by splitting x into epochs
of length 𝑚, x𝑖 = {𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥𝑖+𝑚−1}, 𝑖 = 1, . . . , 𝑁 − 𝑚 + 1.
The dissimilarity measure between two of these sequences is
defined as 𝑑𝑖𝑗 = max(|𝑥𝑖+𝑘 −𝑥𝑗+𝑘|), 0 ≤ 𝑘 ≤ 𝑚−1, 𝑗 ̸= 𝑖. Two
additional parameters are required to compute SampEn: the
number of matches (number of sequences 𝑥𝑗 so that 𝑑𝑖𝑗 ≤ 𝑟)
for sequences of length 𝑚, 𝐵𝑖(𝑟), and the number of matches
for sequences of length𝑚 ← 𝑚 + 1, 𝐴 𝑖(𝑟). These parameters
can then be averaged as

𝐵𝑚𝑖 (𝑟) = 1
𝑁 − 𝑚 − 1𝐵𝑖 (𝑟)

𝐴𝑚𝑖 (𝑟) = 1
𝑁 − 𝑚 − 1𝐴 𝑖 (𝑟)

(1)

and expressed as probabilities:

𝐵𝑚 (𝑟) = 1
𝑁 − 𝑚

𝑁−𝑚

∑
𝑖=1

𝐵𝑚𝑖 (𝑟)

𝐴𝑚 (𝑟) = 1
𝑁 − 𝑚

𝑁−𝑚

∑
𝑖=1

𝐴𝑚𝑖 (𝑟)
(2)

SampEn can then be computed as the natural logarithmof the
likelihood ratio:

SampEn (𝑚, 𝑟) = lim
𝑁→∞

(− ln [𝐴𝑚 (𝑟)𝐵𝑚 (𝑟) ]) (3)

or for finite time series:

SampEn (𝑚, 𝑟,𝑁) = −ln [𝐴𝑚 (𝑟)𝐵𝑚 (𝑟) ] (4)
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The number of matches can be increased by decreasing
𝑚 or increasing 𝑟, but it may impact the ability of SampEn
to discern between classes [22]. Both parameters represent
a trade-off criterion between accuracy and discrimination
capability, and there are no guidelines to optimally choose
them. In this case, and according to [21], 𝑚 was set to 2 and
𝑟 = 0.2.
2.2. Experimental Dataset. A final database containing 113
AEGM records from 12 different patients, nine of whomwere
males, was used in the experiments. AEGM were preselected
by an expert from a larger database recorded in a single study
in the Czech Republic [6, 22], after ruling out any noisy,
unstable, or artifacted records. The selection criteria were as
follows:

(i) Good endocardial contact.
(ii) Not close to the mitral annulus to avoid possible

interferences from ventricular signals.
(iii) No visually apparent redundancies.
(iv) Featuring all forms: very organised, very fractionated,

or intermediate.

AEGM signals were acquired in the AF mapping pro-
cedures performed on the patients indicated for RFA of
AF [23]. Signals were sampled at 977 Hz and recorded by
CardioLab 7000, Prucka Inc., and then resampled to 1 KHz.
Each preselected AEGM signal in this dataset was 1,500 ms
long. It would have been preferable to have longer records, but
the expert signal selection was driven by the aim to achieve
good stability and a high signal-to-noise ratio for later AEGM
fractionation degree assessment by an expert. Relatively short
records are a limitation of this study, but they guarantee more
stability. Data were preprocessed for baseline wander and
high frequency noise removal purposes.

According to [7, 24], AEGM were classified into two
main classes: non-CFAE (NC) and CFAE (C). The first class,
NC, included the AEGM recorded in regions where three
independent experts (who perform AF ablation on a regular
basis) would not recommend an ablative procedure to be
performed (64 records, organised activity, or mild degree of
fractionation). The C class contained the signals recorded in
the areas where experts would ablate (49 records, interme-
diate or high degree of fractionation). The final classification
corresponded to the average of the three experts’ rankings [6].
This classification was based on the subjective perception of
signals by the three experts, helped by a specific software tool
that displays the AEGM grouped according to their aspect
ratio [6]. Figure 1 shows a representative signal of each class
considered in the database.

2.3. Synthetic Artifacts

2.3.1. Spikes. Spikes are considered nonstationarities which
may arise from external conditions that have little to do
with the intrinsic dynamics of the system [10], this being the
fundamental basis of the spike generation algorithm.

The presence of a spike in a train is defined by a binomial
random process: 𝛽(𝑁, 𝑝𝑠), where 𝑝𝑠 is the probability of a

0 500 1000 1500
−0.2

0

0.2

ms

0 500 1000 1500
−0.2

0

0.2

ms

no
n–

CF
A

E 
(

V
)

CF
A

E 
(

V
)

Figure 1: AEGM signals of each group of the database: noncomplex
fractionated atrial electrogram (NC AEGM) and complex fraction-
ated atrial electrogram (C AEGM).
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Figure 2: An NC signal in blue with a superimposed spike train
(𝑝𝑠 = 0.05) in red.

spike occurring in a time series of length𝑁. Spike amplitude
was defined as a uniform random variableΩ(−3𝜆, 3𝜆), where
𝜆 accounts for the peak-to-peak amplitude of the original
AEGM signal. All the spikes were considered to have a fixed
length of one sample [15].

Mathematically speaking, spike train 𝑠(𝑡) is defined as

𝑠 (𝑡) = ∑
𝑖

𝑎𝑖𝛿 (𝑡 − 𝑡𝑖) (5)

where 𝑎𝑖 is the spike amplitude obtained from Ω and
𝑡𝑖 is the spike temporal location, generated by means
of 𝛽. Fifty realisations of independent random spike
trains were added to the AEGM original signals in
the experimental data set, with probabilities 𝑝𝑠 =
[0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 0.15, 0.20, 0.30, 0.40, 0.50].
For illustrative purposes, Figure 2 shows one of these
realisations, where a spike train was superimposed to an NC
record.

2.3.2. Sample Loss. Two algorithms to generate sample losses
were considered according to the realistic situations that can
take place during catheter recording of theAEGMtime series:
distributed and consecutive sample losses. Once again, 50
realisations per signal were considered to preserve statistical
properties. In both experiments, the number of samples to
be removed from each signal was set at a percentage 𝜂 of
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Figure 3: Boxplot distribution of C and NCAEGM SampEn values,
with no artifact added to the experimental dataset.

total signal length 𝑁. Given the similarity to the previous
spike experiment, the same percentages were considered,
𝜂(%) = [1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50]. Due to this sample
removal process, records were shortened by 𝜂𝑁 samples.
More specifically,

(i) distributed random sample loss was based on remov-
ing the isolated samples at the random locations given
by 𝛽, until the total number of samples to be removed
𝜂𝑁 was achieved.

(ii) consecutive random sample loss was based on remov-
ing a segment of 𝜂𝑁 consecutive samples. Random-
ness was introduced into the initial sample that was
removed. This sample was selected according to 𝛽 to
ensure that it would be different in all 50 realisations
of each experiment.

2.4. Statistical Assessment. The segmentation results were
assessed using a Mann–Whitney U test [25]. Specifically, this
test was used to quantify the probability of the two groups,
C and NC, having the same median value. The significance
threshold was set at 𝛼 = 0.01. There was no need to check
the normality of the results with this test. The performance
deviation from the baseline case of no artifacts was quantified
using a correlation coefficient 𝜌𝑥𝑦.
3. Results

3.1. No Artifacts. By taking the value of SampEn(2, 0.2) as
the distinguishing characteristic, it was possible to segment
between the C and NCAEGM records significantly, with a 𝑝-
value< 0.001. As shown in Figure 3, the interquartile ranges
(featured by the blue box) do not overlap and the median
values (red line) are far enough to be statistically different,
according to the Mann–Whitney U test results.

Even though distributions were not statistically normal,
the 95% confidence intervals given by [𝜇 ± 2𝜎], where 𝜇 is
SampEnmean and 𝜎 is its standard deviation, do not overlap:
[0.193, 0.199] for neither NC nor [0.216, 0.223] C AEGM.
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Figure 4: SampEn behaviour NC AEGM signals (box) and C
AEGM signals (circle) when a spike train of probability 𝑝𝑠 was
superimposed to the signal. The red dashed line indicates the spike
train entropy in terms of 𝑝𝑠. Boxplots fall inside the boxes or circles,
respectively, due to the low variance of the SampEn values.

3.2. Spikes Influence on SampEn. Figure 4 depicts the influ-
ence that the inclusion of random spikes in AEGM signals
had on SampEn values. When spikes were not present (𝑝𝑠 =0) or found only in a small proportion (𝑝𝑠 < 0.1), both groups
C and NC AEGMwere statistically separated. Figure 5 shows
the corresponding ROC curve for the case𝑝𝑠 = 0.1. For larger
𝑝𝑠, spikes masked the original AEGM signal entropy, and the
ability to discern between AEGM fractionation was lost.

Table 1 shows, for different 𝑝𝑠, the numerical results
related to the characterisation of the C andNCAEGMsignals
entropy at different spike perturbation levels. The metric
SampEn can be considered robust enough to provide a good
interpretation of the AEGM complexity in the presence of
spikes for𝑝𝑠 ≤ 0.10, with a correlation coefficient of𝜌𝑥𝑦 > 0.8.

According to previous results, see Figure 4, the entropy of
the spikes dominates the complexity of the artifacted signal
for 𝑝𝑠 above 0.10. The complexity of this signal exhibits the
same behaviour as the regularity of the spike trains. Table 1
shows that, above this percentage, the measure should not be
considered robust enough (𝜌𝑥𝑦(15%) < 0.8) [26].

3.3. Sample Loss Influence on SampEn

3.3.1. Distributed Random Sample Loss. Figure 6 shows the
behaviour of SampEn when AEGM undergo distributed ran-
dom sample loss. It shows that AEGM complexity increases
proportionally to the number of lost samples. Figure 7 depicts
the corresponding ROC curve for 𝜂 = 10%. The relationship
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Table 1: SampEn statistical characteristics for both classes NC AEGM and C AEGM when a spike train of probability 𝑝𝑠 is added. For each𝑝𝑠, the statistical probability related to the separability between classes (𝑝-value), the confidence intervals (CI) at 95% (𝜇 ± 2𝜎), and the cross
correlation coefficient 𝜌𝑥𝑦 between the SampEn values of the initial signal and the signal corrupted with spikes are given.

𝑝𝑠 0.01 0.05 0.10 0.15
𝑝-value 0.01 0.001 0.001 0.001
CI NC 0.196 ± 0.003 0.158 ± 0.001 0.171 ± 0.001 0.258 ± 0.001
CI C 0.371 ± 0.005 0.215 ± 0.002 0.223 ± 0.002 0.291 ± 0.001
𝜌𝑥𝑦 1 0.887 0.863 0.705

Table 2: SampEn statistical characteristics for both classes NC AEGM and C AEGM when distributed random sample loss occurs. For each
𝜂, the statistical probability related to the separability between classes (𝑝-value), the confidence intervals (CI) at 95% (𝜇 ± 2𝜎), and the cross
correlation coefficient 𝜌𝑥𝑦 between the SampEn values of the initial signal and the signal with sample loss are given.

𝜂(%) 0 10 30 50
𝑝-value 0.001 0.001 0.001 0.001
CI NC 0.196 ± 0.003 0.211 ± 0.003 0.252 ± 0.004 0.315 ± 0.005
CI C 0.371 ± 0.005 0.402 ± 0.005 0.482 ± 0.006 0.602 ± 0.007
𝜌𝑥𝑦 1 0.999 0.996 0.987

Figure 5: Influence of spikes on AEGM signals classification. ROC
curve for 𝑝𝑠 = 0.1.

between SampEn and the sample loss ratio can be accurately
modelled linearly, 𝑓(𝜂) = 0.002𝜂 + 0.19 for NC records, and
𝑓(𝜂) = 0.004𝜂 + 0.36 for the C AEGM records, with an
adjustment of 0.981 and 0.985, respectively, and a standard
error less than 1% in both cases.

Finally, in Table 2, a statistical characterisation of each
class for some considered sample loss ratios is given. Mean
values are different enough to obtain a significant segmenta-
tion probability (𝑝-value< 0.001) and the measure is robust
enough to characterise these signals, even though half of the
signal was removed (𝜌𝑥𝑦 > 0.80, 𝑝-value< 0.001).

Table 2 shows, for the different 𝜂 values, the numerical
results related to the characterisation of the C andNCAEGM
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Figure 6: SampEn behaviour in terms of the percentage of random
sample loss for NC (box) and C (circle) AEGM signals. Boxplots fall
inside the boxes or circles respectively due to the narrow variance of
the SampEn values.

signals entropy at different distributed random loss levels.The
metric SampEn can be considered robust enough to provide
a good interpretation of the AEGM complexity, even with
missing epochs for 𝜂 ≤ 50%, at a correlation coefficient of
𝜌𝑥𝑦 > 0.9.
3.3.2. Consecutive Random Sample Loss. Figure 8 shows
the evolution of SampEn values for NC and C AEGM
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Table 3: SampEn statistical characteristics for both classes NC AEGM and C AEGM when consecutive sample loss was applied. For each 𝜂,
the statistical probability related to the separability between classes (𝑝-value), the confidence intervals (CI) at 95% (𝜇 ± 2𝜎), and the cross
correlation coefficient 𝜌𝑥𝑦 between the SampEn values of the initial signal and the signal with sample loss are given.

𝜂(%) 0 10 30 50
𝑝-value 0.001 0.001 0.001 0.001
CI NC 0.196 ± 0.003 0.197 ± 0.003 0.198 ± 0.003 0.200 ± 0.003
CI C 0.371 ± 0.005 0.371 ± 0.005 0.367 ± 0.005 0.359 ± 0.005
𝜌𝑥𝑦 1(0.001) 0.996(0.001) 0.981(0.001) 0.953(0.001)

Figure 7: Influence of random sample loss on AEGM signals
classification. ROC curve for 𝜂 = 10%.

when consecutive sample loss takes place. Unlike distributed
random sample loss (Figure 6), this time SampEn remains
more or less constant for a wide range of percentages. A slow
and small SampEn decrease beyond 15% of sample loss is
found in C signals, which is not observed for the NC signals.
SampEn can be characterised as constant within a given range
with consecutive random sample loss. Figure 9 depicts the
corresponding ROC curve for 𝜂 = 10%.

Table 3 provides the statistical characterisation of Sam-
pEn for some analysed percentages. Similar results to the
distributed sample loss were found. Classes can be separated
with statistical validity (𝑝-value< 0.001). SampEn remained
robust (𝜌𝑥𝑦 > 0.9) and unchanged, even though samples were
removed.

4. Discussion

All the experiments in this paper used a standard parameter
configuration for SampEn, as suggested by [27] for ApEn.
Otherworks have also used similar parameter configurations.
In [28], the authors used 𝑚 = 2 and 𝑟 = 0.25 to
compute SampEn complexity on paroxysmal AF. This work
characterised both paroxysmal and persistent AF with no
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Figure 8: SampEn behaviour when consecutive sample loss occurs
in the NC (square) and C (circle) AEGM signals. Boxplots fall inside
the boxes or circles due to the narrow variance of the SampEn values.

further consideration. In [29], the region inside 1 ≤ 𝑚 ≤ 5
and 0.1 ≤ 𝑟 ≤ 0.6 was considered appropriate for the same
purpose. Therefore, it can be arguably reasonable to use the
parameter configuration proposed herein.

In the baseline experiment, without external perturba-
tions, SampEnwas able to discern between classes.The results
in Figure 3 show that the median values for C and NC clearly
differ and can be statistically separated (𝑝-value< 0.001).Thus
SampEn is an appropriate measure to quantify the system
complexity of AEGM signals, even with a short record length
of 1.5s only.This length is a study limitation, and performance
is arguably likely to improve with longer records, provided
they are sufficiently stable.

The influence of spikes on the entropy of AEGM signals
was characterised and quantified using synthetic spike trains
added to the original signals. The results shown in Figure 4
and Table 1 account for SampEn performance under these
conditions. For 𝑝𝑠 > 0.10, it would be necessary to apply a
signal processing technique to minimise the spike influence
since its entropy supersedes that of the underlying record,
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Figure 9: Influence of consecutive sample loss on AEGM signals
classification. ROC curve for 𝜂 = 10%.

and the measure loses its interpretability [26]. The results
depicted in Figure 4 are similar to those obtained in [10] for
the simulated ECG and RR signals. Firstly, SampEn abruptly
drops to reach a minimum, from which it begins to increase.
The drop is associated with an increase in the number of
matches of length𝑚 + 1 because the randomness introduced
by the spike tends to regularise the signal, but when spike
probability increased, the number of matches of length 𝑚 +
1 lowered. Thus complexity increased [19, 27]. In this case,
SampEn did not measure the entropy of AEGM, but the
entropy of the spike train.

Finally, the influence of distributed or contiguous sample
loss was assessed. Previous works dealing with EEG signals
have shown good performance for SampEn in this context
[17]. The changes in performance observed for distributed
sample loss are coherent with those presented in [17, 18, 20],
where complexity increased due to a rise in randomness that
removing samples introduced.

The expected behaviour in consecutive sample loss
implied that complexity should be kept more or less con-
stant as removing a segment of a signal implies removing
approximately the same number of matches of length 𝑚 and
of length 𝑚 + 1, so the ratio in (4) should be similar to the
case before removal. However, this might render the record
too short for an accurate SampEn estimation and, therefore,
this prior assumption has to be validated. Figure 8 and Table 3
confirmed this expected behaviour, but with complexity of C
signals slightly decreasing for the sample loss ratios higher
than 15%,which is the same ratio as in [20], andwith the same
SampEn parameters, despite dealing with AEGM signals
instead. In [20], signal epochs were removed from heart rate
signals, and heart rate variability was analysed. This could
be due to the bias that both ApEn and SampEn showed for
short signal records [21] but could also be associated with the

remaining correlation between the vectors that 𝑑𝑖𝑗 compared
[30].

5. Conclusions

This study addressed the regularity characterisation of the
AEGM signals recorded in RFA procedures of AF and
their associated SampEn. It assessed the metric capability to
distinguish between C and NC AEGM and provided insight
into the influence of spikes or sample loss.

From the results, we conclude that

(i) SampEn is an appropriate regularity measure for
AEGM signals as it enables the robust segmentation
between C and NC regions. Hence this measure can
be used in future clinical studies to prove that some
RFA regions can be located by SampEn much more
quickly and accurately. Furthermore, the method can
be used in a real-time application as it provides
reliable results, even on short records (1,500 ms)
and exhibits a lower computational cost than other
regularity measures such as ApEn or DFA;

(ii) when analysing the AEGM signals corrupted with
spikes, if their frequency of occurrence is relatively
low (10%), SampEn can be used without having to
apply any prior processing as SampEn proved able to
separate between classes NC and C. If more spikes
are present, it is advisable to filter spikes out as much
as possible because their influence may blur class
separability;

(iii) SampEn is very robust to any type of sample loss and
is able to separate between classes, even if the 50% of
the samples are lost.
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