
Framework for DNA Quantification and Outlier Detection Using
Multidimensional Standard Curves
Ahmad Moniri,†,∥ Jesus Rodriguez-Manzano,*,†,∥ Kenny Malpartida-Cardenas,† Ling-Shan Yu,†

Xavier Didelot,‡ Alison Holmes,§ and Pantelis Georgiou†

†Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7
2AZ, U.K.
‡School of Life Sciences and Department of Statistics, University of Warwick, Coventry CV4 7AL, U.K.
§NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College
London, Hammersmith Hospital Campus, London W12 0NN, U.K.

*S Supporting Information

ABSTRACT: Real-time PCR is a highly sensitive and
powerful technology for the quantification of DNA and has
become the method of choice in microbiology, bioengineer-
ing, and molecular biology. Currently, the analysis of real-time
PCR data is hampered by only considering a single feature of
the amplification profile to generate a standard curve. The
current “gold standard” is the cycle-threshold (Ct) method
which is known to provide poor quantification under
inconsistent reaction efficiencies. Multiple single-feature
methods have been developed to overcome the limitations
of the Ct method; however, there is an unexplored area of
combining multiple features in order to benefit from their
joint information. Here, we propose a novel framework that combines existing standard curve methods into a multidimensional
standard curve. This is achieved by considering multiple features together such that each amplification curve is viewed as a point
in a multidimensional space. Contrary to only considering a single-feature, in the multidimensional space, data points do not fall
exactly on the standard curve, which enables a similarity measure between amplification curves based on distances between data
points. We show that this framework expands the capabilities of standard curves in order to optimize quantification
performance, provide a measure of how suitable an amplification curve is for a standard, and thus automatically detect outliers
and increase the reliability of quantification. Our aim is to provide an affordable solution to enhance existing diagnostic settings
through maximizing the amount of information extracted from conventional instruments.

The real-time polymerase chain reaction (qPCR) has
become a routine technique in microbiology, bioengin-

eering, and molecular biology for detecting and quantifying
nucleic acids.1−3 This is predominantly due to its large
dynamic range (7−8 magnitudes), desirable sensitivity (5−10
molecules per reaction), and reproducible quantification
results.4−6 New methods to improve the analysis of qPCR
data are invaluable to a number of application fields, including
environmental monitoring and clinical diagnostics.7−10

The current “gold standard” for absolute quantification of
DNA (or RNA if preceded by a reverse transcription step)
using standard curves is the cycle-threshold (Ct) method.11−13

The Ct value is a feature of the amplification curve defined as
the cycle number in the exponential region from which there is
a detectable increase in fluorescence. However, this method is
known to provide inaccurate quantification under inconsistent
reaction efficiencies.14

Since the Ct method was proposed, several alternative
methods have been developed to improve absolute quantifi-
cation in terms of accuracy, precision, and robustness. The

focus of current research is based on the computation of single
features, for example, Cy0 or −log10(F0), that are linearly
related to initial concentration, as in Ct.

15,16 The Cy0 approach,
proposed by Guescini et al., fits a sigmoid to the amplification
curve and takes Cy0 as the intersection between the abscissa
axis and the tangent of the inflection point.15 On the other
hand, F0, proposed by Rutledge,

16
fits the sigmoid up to a “cut-

off cycle” and takes F0 as the fluorescence at cycle 0.16 Note
that, −log10(F0) is used instead of F0 since it is linearly related
to initial template concentration.
The three aforementioned features correspond to an

underlying assumption, for example, the Ct approach assumes
the PCR efficiency to be constant between reactions and
cycles.11 The Cy0 approach allows for different efficiency
between reactions but assumes a constant efficiency between
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cycles.15 The third feature, −log10(F0), allows for different
efficiency between reactions but additionally assumes that it
decreases from cycle to cycle.16 These single-feature methods
provide a simple approach for absolute quantification;
however, the degrees of freedom to implement more complex
data analysis techniques is limited, and the use of multiple
features together has been unexplored.
Inspired by the field of Machine Learning, this paper takes a

multidimensional view, combining multiple features in order to
take advantage of the information and principles behind all of
the current standard curve methods developed. Here, we
provide a novel framework that combines existing standard
curve methods into a multidimensional standard curve (MSC).
This is achieved by considering multiple features together such
that each amplification curve is viewed as a point in a
multidimensional space. Therefore, the standard curve in the
multidimensional space should theoretically form a 1D line.
Contrary to only considering a single-feature, in the multi-
dimensional space, data points do not fall exactly on the
standard curve and thus enables a similarity measure between
amplification curves based on distances between data points.
We show that this framework expands the capabilities of

standard curves in order to optimize quantification perform-
ance, provide a measure of how suitable an amplification curve
is for a standard, and thus automatically detect outliers and
increase the reliability of quantification. Here, outlier refers to
abnormal amplification data, due to nonspecific target
amplification or inconsistencies in amplification efficiency
and reaction conditions (e.g., annealing temperature).
This has been demonstrated through constructing an MSC

for phage lambda DNA and evaluating the quantification
performance using a figure of merit combining accuracy,
precision, and overall predictive power. Following this, we
evaluated the framework for outlier detection using nonspecific
DNA targets where we explored the notion of distance in the
multidimensional space to understand if it can be used as a
similarity measure between amplification curves. Finally, we
used annealing temperature variation as a proxy for
amplification efficiency in order to investigate whether the
MSC can be used to disregard specific outliers and enhance
quantification.

In Rodriguez-Manzano et al., it was shown that, using the
MSC methodology described in the present manuscript, it is
possible to simultaneously perform single-channel quantifica-
tion and multiplexing of the four most prominent carbapenem-
resistant genes.17 We hope that by sharing this framework,
others will be able to adapt and build upon this work to meet
their objectives and explore new capabilities enabled by MSCs.

■ EXPERIMENTAL SECTION

Proposed Framework. In order to understand the
proposed framework, it is useful to have an overall picture of
how standard curves are used for quantification. Here, two
terms, namely training and testing are borrowed from Machine
Learning to describe the construction of a standard curve and
quantify unknown samples, respectively. Within the conven-
tional single-feature approach, training is typically achieved
through four stages: preprocessing, curve fitting, feature
extraction, and line fitting (linear regression). This is illustrated
in Figure 1 (top branch and solid line). Testing is
accomplished by extracting the same feature as when training
and using the generated standard curve to quantify the
concentration in unknown samples.
The proposed framework extends the conventional approach

by increasing the dimensionality of the standard curve in order
to explore and take advantage of using multiple features
together. This new framework is presented in Figure 1 (bottom
branch and dotted line). For training, there are six stages:
preprocessing, curve fitting, multifeature extraction, high
dimensional line fitting, multidimensional analysis, and
dimensionality reduction. Within this framework, testing can
be achieved through dimensionality reduction, and multi-
dimensional analysis using the MSC can be used to detect
outliers and support quantification.
In contrast with conventional training, instead of extracting a

single linear feature, multiple features are extracted from the
processed amplification curves, for example, denoted using the
dummy labels X, Y, and Z. Therefore, each amplification curve
has been reduced to 3 values (e.g., X1, Y1, and Z1) and,
consequently, can be viewed as a point in three-dimensional
(3D) space. It is important to stress that any number of
features could be used as long as they are linearly related to the
initial target concentration. Therefore, the training data should

Figure 1. Block diagram showing the conventional method (top branch and solid line) compared to the proposed framework (bottom branch and
dotted line) for target quantification. In both cases, raw amplification data for several known concentrations of the target are typically preprocessed
and fitted with an appropriate curve. In the conventional case, a single feature such as the cycle threshold, Ct, is extracted from each curve.
Subsequently, the extracted features are graphed as a function of concentration and a line is fit to the data in order to generate a standard curve and
quantify unknown samples. In the proposed framework, multiple features are extracted and thus a 1D line in high dimensional space (called the
feature space) is fitted in order to construct a multidimensional standard curve. Through dimensionality reduction, enhanced quantification can be
achieved and performing multidimensional analysis in the feature space allows for outlier detection. The quantification can be further assisted by
disregarding outliers.
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theoretically form a one-dimensional (1D) line in 3D space.
This line is approximated using high-dimensional line fitting
and generates what is called the multidimensional standard
curve. Although, the training data forms a line, it is important
to understand that data points do not lie exactly on the line.
Consequently, there is considerable room for exploring this
multidimensional space, referred to as the feature space, which
will be also reported in this paper.
For quantification purposes, the MSC needs to be mapped

into a single dimension, denoted as M0, linearly related to the
initial concentration of the target. In order to distinguish this
curve from conventional standard curves, it is referred to here
as the quantification curve. This can be achieved using
dimensionality reduction techniques (DRT).18 Mathemati-
cally, this means that DRTs are multivariate functions of the
form: M0 = ϕ(X,Y,Z) where ϕ · →( ): 3 . In fact, given that
scaling features do not affect linearity, M0 can be mathemati-
cally expressed as M0 = ϕ(α1X,α2Y,α3Z) where αi for i ∈
{1,2,3} are scalar constants. These weights provide a simple
method for choosing the contribution of each individual
feature in order to improve quantification. Furthermore,
regardless of the weightings, all features will be considered
for the multidimensional analysis.
Multidimensional Standard Curves. In this section, we

provide the specific instance of framework used to construct
the MSC in this study. The code is available from the authors
upon request. (i) Preprocessing: the first step in data analysis is
to perform background subtraction. This is accomplished by
subtracting the average of the fluorescent readings in the first
five cycles from every amplification curve. More advanced
methods could be considered to improve performance such as
the taking-difference linear regression method.19 (ii) Curve
Fitting: in this study, the model used to fit the amplification
curves is the 5-parameter sigmoid (Richards Curve) given by

= +
+ − −F x F

F

e
( )

(1 )x c b db
max

( )/ (1)

where x is the cycle number, F(x) is the fluorescence at cycle x,
Fb is the background fluorescence, Fmax is the maximum
fluorescence, c is the fractional cycle of the inflection point, b is
related to the slope of the curve, and d allows for an
asymmetric shape (Richard’s coefficient). The optimization
algorithm used to fit the five parameters of this model to the
data is the trust-region method and is based on the interior-
reflective Newton method.20,21 Here, the trust-region method
is chosen over the Levenberg−Marquardt algorithm since
bounds for the 5 parameters can be chosen in order to
encourage a unique and realistic solution.22,23 The lower and
upper bounds for the 5 parameters, [Fb, Fmax, c, b, d], are given
as [−0.5, −0.5, 0, 0, 0.7] and [0.5, 0.5, 50, 100, 10],
respectively. (iii) Feature Extraction: three features were used
to construct the multidimensional standard curve in this study:
Ct, Cy0, and −log10(F0). Therefore, each amplification curve
can be represented as a point in 3D space, i.e. p = [Ct,Cy0,−
log10(F0)]

T where [·]T denotes the transpose operator. Note
that by convention, for the formulas in this paper, vectors are
denoted using bold lowercase letters.
The cycle-threshold, Ct, is computed by fitting the

amplification curve with the 5-parameter sigmoid in eq 1,
normalizing the fitted function F(x) with respect to Fmax, and
then taking Ct as the time where F(x) exceeds 0.2 (i.e., 20% of
its maximum fluorescence). The Cy0 approach also uses the 5-

parameter sigmoidal curve-fitting and takes Cy0 as the
intersection between the abscissa axis and the tangent of the
inflection point in the fitted F(x). The third feature, −log10(F0)
fits the sigmoid up to a “cut-off cycle” and takes F0 as the
fluorescence at cycle 0. (iv) Line Fitting: in this work, to fit a
1D line to the training data in multidimensional space, i.e.
construct the MSC, the method of least-squares is used. Or,
equivalently, by using the first principal direction in principal
component analysis (PCA).24,25 If sufficient data exists, other
methods such as random sample consensus (RANSAC) which
are robust to outliers could be used.26 (v) Similarity Measure:
there are two similarity measures used in this study: Euclidean
and Mahalanobis distance. The Euclidean distance between a
point, p, and the MSC can be calculated by orthogonally
projecting the point onto the MSC and then using simple
geometry to calculate the Euclidean distance, e, given by

= Φ =
− −
− −

P p q q
p q q q

q q q q
( , , )

( ) ( )

( ) ( )

T

T1 2
1 2 1

2 1 2 1 (2)

= | − − + · − |e Pp q q q q( ) ( ( ))1 1 2 1 (3)

where Φ computes the projection of the point ∈p n onto
the multidimensional standard curve, the points ∈q q, n

1 2
are any two distinct points that lie on the standard curve, and
|·| denotes the absolute value operator.
The Mahalanobis distance is defined as the distance between

a point, p, and a distribution, , in multidimensional space.27

Similar to the Euclidean distance, the point is first projected
onto the MSC and the following formula is applied to compute
the Mahalanobis distance, d,

Σ= − − − −−d P Pp q q p q q( ( )) ( ( ))T
2 1

1
2 1 (4)

where p, P, q1, and q2 are given in eq 2 and Σ is the covariance
matrix of the training data used to approximate the distribution
.
It can be shown that if the data is approximately normally

distributed then the Mahalanobis distance squared, d2, follows
a χ2-distribution.28 Therefore, a χ2-distribution table can be
used to translate a specific p-value into a distance threshold.
For instance, for a χ2-distribution with 2 degrees of freedom, a
p-value of 0.001 corresponds to a Mahalanobis distance of
3.72.
(vi) Feature Weights: as mentioned previously, in order to

maximize quantification performance, different weights, α, can
be assigned to each feature. This can be accomplished by
minimizing an error measure on the training data, where
quantities of template are known, using an optimization
algorithm. The specific error measure used in this study is
described in the following subsection. The optimization
algorithm is the Nelder−Mead simplex algorithm with weights
initialized to unity, i.e. beginning with no assumption on the
quantification performance of individual features.29,30 This is a
standard algorithm and only 20 iterations are used to find the
weights so that there is little computational overhead. (vii)
Dimensionality Reduction: in this study, every point of the
MSC is mapped into an estimated concentration using
principal component regression, i.e. M0 = P from eq 2. This
is compared with projecting the MSC onto all three
dimensions, i.e. Ct, Cy0, and −log10(F0).

Evaluating Standard Curves. In consistency with the
current literature on evaluating standard curves, relative error
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(RE) and coefficient of variation (CV) are used to measure
accuracy and precision, respectively. The CV for each
concentration is calculated after normalizing the standard
curves such that a fair comparison across standard curves is
achieved. The formula for RE is given by

= ×
̂

−
x
x

RE 100 1i
i

i (5)

where i is the index of a given training point, xi is the true
template concentration of the ith training data, and x̂i is the
estimate of xi using the standard curve. The CV for a given
concentration is computed as

= × ̂
̂

x
x

CV 100
std( )

mean( )i

i

i (6)

where i is the index of a given training point and x̂j is a vector
of estimated concentrations for all training points with the
same concentration as xi. The sample standard deviation and
sample mean are denoted by std(·) and mean(·), respectively.
This paper also uses the leave-one-out cross validation
(LOOCV) error as a measure for stability and overall
predictive performance.24 Stability refers to the predictive
performance when points are removed from the training
process. The LOOCV is given as

= ×
̂

−
z
x

LOOCV 100 1i
i

i (7)

where i is the index of a given training point, xi is the true
concentration of the ith training data and zî is the estimate of xi
using a standard curve generated without the ith training point.
In this study, the LOOCV is specified as a percentage in order
to compare across different template concentrations, as shown
in eq 7.

In order for the optimization algorithm to compute α and
simultaneously minimize the three aforementioned measures,
it is convenient to introduce a figure of merit, Q, to capture all
of the desired properties. For a given training point, the
product between all three errors, Qi, can be used to
heuristically measure the quantification performance. There-
fore, Q can be defined as the average over all Qi, as shown in eq
8, and is the error measure that the optimization algorithm will
minimize.

∑= × ×
=N

N
Q

1
RE CV LOOCV

i
i i i

1 (8)

Statistical Analysis. The p-values used for assessing the
significance between methods in absolute quantification were
calculated using a paired, two-sided Wilcoxon signed rank test.
Statistical significance was considered as *p-value < 0.05, **p-
value < 0.01, ***p-value < 0.001, and ****p-value < 0.0001.
Outliers using multidimensional standard curves were
determined using a χ2-distribution with 2 degrees of freedom,
and statistical significance was assumed for a p-value < 0.001.
The Henze-Zirkler test is used to determine multivariate
normality with a p-value significance level of 0.05.31

Fluorescence Data Sets. DNA targets used for qPCR
experiments in this study are as follows. (i) Standard curves
were constructed using synthetic double-stranded DNA
(gblocks fragments genes) containing phage lambda DNA
sequence (DNA concentration ranging from 102 to 108 copies
per reaction). Reactions were performed at an annealing
temperature of 62 °C. See Table S1 for primer/sequence
information. (ii) Nonspecific outlier detection experiments
were performed using synthetic double-stranded DNA carrying
blaOXA−48, blaNDM, and blaKPC genes, in this work referred to as
outliers 1, 2, and 3, respectively. Reactions were performed at
annealing temperature of 68 °C. See Table S2−S4 for primer/

Figure 2. Evaluating quantification through the multidimensional standard curve and single-feature methods. (a) A multidimensional standard
curve is constructed using Ct, Cy0, and −log10(F0) for lambda DNA with concentration values ranging from 102 to 108 (top right to bottom left).
(b) The constructed standard curves using single-feature methods along with M0. (c) The average figure of merit combining accuracy, precision,
and overall predictive power for all methods. A paired two-sided Wilcoxon signed rank test was performed between M0 and the other methods (*p-
value < 0.05 and ****p-value < 0.0001).
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sequence information. (iii) Specific outlier detection experi-
ments were performed using synthetic double-stranded DNA
containing lambda DNA sequence at 105 copies per reaction.
Reactions were performed at annealing temperatures ranging
from 54.0 to 73.6 °C. See Table S1 for primer and sequence
information.
All oligonucleotides were synthesized by IDT (Integrated

DNA Technologies, Germany) with no additional purification.
The specific PCR primers for lambda phage were designed in-
house using Primer3 (http://biotools.umassmed.edu/bioapps/
primer3_www.cgi), whereas the primer pairs used for the
outlier detection were taken from Monteiro et al.32 Real-time
PCR amplifications were conducted using FastStart Essential
DNA Green Master kit (Roche Diagnostics, Germany)
according to manufacturer’s instructions. Each reaction
consisted of 2.5 μL FastStart Essential DNA Green Master
2× concentrated, 1 μL of PCR grade water, 0.5 μL of 10×
primer mixture at 5μM and 1 μL of DNA at variable amounts,
in a 5 μL final reaction volume. Thermocycling was performed
using a LightCycler 96 (Roche) initiated by a 10 min
incubation at 95 °C, followed by 40 cycles: 95 °C for 20 s;
62 °C (for lambda), or 68 °C (for nonspecific outliers) for 45
s; and 72 °C for 30 s, with a single fluorescence reading taken
at the end of each cycle. Each reaction combination was
conducted in quintuplicates/octuplicates. All the runs were
completed with a melting curve analysis performed at 95 °C
for 10 s, 65 °C for 60 s, and 97 °C for 1 s (continuous reading
from 65 to 97 °C) to confirm the specificity of amplification
and lack of primer dimer. Appropriate positive and negative
controls were included in each experiment.

■ RESULTS AND DISCUSSION
In this study, a new framework is presented to construct
multidimensional standard curves in order to (i) optimize the
quantification performance; (ii) detect outliers; and (iii)
provide a heuristic measure for the similarity between an
amplification curve and the MSC.
Optimising Quantification Performance. Synthetic

phage lambda DNA was used to construct an MSC and
evaluate its quantification performance relative to single feature
methods. The resulting MSC, constructed using the features
Ct, Cy0, and −log10(F0), is visualized in Figure 2a. The
computed features and curve-fitting parameters for each
amplification curve grouped by concentration, ranging from
102 to 108 copies per reaction, is presented in Table S5. For
comparison, Figure 2b shows the quantification curves for each
single-feature method plus the multifeature method M0 which
is obtained after dimensionality reduction through principal
component regression.
The proposed framework enables the user to optimize

quantification performance (through weighting each feature)
in terms of a figure of merit, Q. The Q chosen in this work
combines RE, CV, and LOOCV. After 20 iterations of the
optimization algorithm, the weights α converged to
[−0.0741,1.1185,1.6574] corresponding to Ct, Cy0, and
−log10(F0), respectively. It is important to stress that although
the optimization algorithm suggests different performance
across the selected features, there is value in keeping all of
them as it can assist outlier detection, as shown in the
subsequent sections.
The average Q (±standard deviation) for M0 against the

single-feature methods is visualized in Figure 2c, where for Ct,
Cy0, −log10(F0), and M0 it is 4587 ± 12799, 3327 ± 10357,

13384 ± 19966, and 2547 ± 8058, respectively. Therefore, in
terms of average Q,M0 enhances quantification by 17.44% (p <
0.05), 10.65% (p < 0.05), and 99.3% (p < 0.0001) compared to
Ct, Cy0, and −log10(F0), respectively. A summary and
breakdown of each calculated error for all methods grouped
by concentration are provided in Tables S6−S9.

Outlier Detection. In this section, the concept of distance
in the feature space is explored in order to demonstrate the
capability of the framework for outlier detection. The term
outlier refers to abnormal amplification curves with respect to
the lambda DNA training data. This can be caused by
nonspecific amplification or inconsistent amplification efficien-
cies and reaction conditions; both of which are investigated in
this report.
First, three nonspecific DNA targets with respect to the

phage lambda MSC, referred to as outliers 1, 2, and 3, were
amplified. Subsequently, features were extracted from each
amplification curve following the same procedure as the
training data for the phage lambda MSC. Finally, the outliers
were plotted in the feature space, as shown in Figure 3. It is

visually clear that the outliers do not lie on the MSC, and
therefore, this suggests that sufficient information is captured
from the three features extracted from the amplification curves
in order to distinguish the different targets from phage lambda
DNA. Notice that without any secondary confirmation, e.g.
from melting curves or agarose gels, the test data itself suggests
it is not “similar” to the training data. Furthermore, it is
important to note that single feature methods are unable to
distinguish these outliers (e.g., a given Ct value will always fall
on a conventional standard curve).
In order to fully capture the position of the outliers in the

feature space, it is convenient to remove the effect of
concentration and view the feature space along the axis of
the multidimensional standard curve. This is achieved by
projecting all the data points in the feature space onto the
plane perpendicular to the standard curve as illustrated in
Figure 4a. The resulting projected points are shown in Figure
4b. It is clear that all three outliers can be clustered and clearly
distinguished from the training data. Furthermore, the
Euclidean distance, e, from the MSC to the mean of the
outliers is given by e1 = 1.44, e2 = 0.99, and e3 = 1.66. Given
that the furthest training point from the MSC in terms of
Euclidean distance is 0.36, the ratios between e1, e2, and e3 and
the furthest training point are 4.00, 2.75, and 4.61, respectively.

Figure 3. Multidimensional standard curve for lambda DNA along
with three nonspecific outliers. The right panel shows a zoomed
region of the feature space with the mean of the replicates and the
projection of the outliers onto the standard curve. The computed
features/curve-fitting parameters of the three outliers and melting
curve analysis are presented in Table S10 and Figure S1−S2,
respectively.
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In other words, the mean of outlier 1 is 4 times further than
the furthest training point. Therefore, this ratio can be used as
a similarity measure and the three clusters could be classified as
outliers using a threshold. However, this similarity measure has
two limitations. (i) There is an assumption that distances in
different directions are equally likely, which is intuitively
untrue in the feature space because a change in one direction,
e.g. Ct, does not impact the amplification curve as much as
another, e.g. −log10(F0). (ii) There is no probabilistic measure
that captures the distribution of the data, and therefore, the
threshold for determining outliers must be chosen arbitrarily.
In order to tackle the two aforementioned limitations, the

Mahalanobis distance, d, can be used. Clearly, by observing
Figure 4b, the training data predominantly varies in a given
direction. In order to visualize the Mahalanobis distance, the
orthogonal view of the feature space (Figure 4b) can be
transformed into a new space (Figure 4c) where the Euclidean
distance is equivalent to the Mahalanobis distance in the
original space. This is achieved by normalizing the principal
components of the training data.
The Mahalanobis distance from the multidimensional

standard curve to the mean of the outliers is d1 = 14.25, d2
= 13.65, and d3 = 16.93, respectively. In contrast with the
Euclidean distances, it is observed that when considering the

distribution of the data, the position of the outliers change. A
useful property of d is that its squared value, d2, follows a χ2-
distribution if the data is approximately normally distributed.
The hypothesis that the data is normally distributed is
confirmed using the Henze-Zirkler test with a significance
level of 0.05. Therefore, the distance can be converted into a
probability in order to determine if a data point is an outlier.
On the basis of the χ2-distribution table with 2 degrees of
freedom, any point further than 3.717 is 99.9% (p-value
<0.001) likely to be an outlier. Since all the outliers have a
Mahalanobis distance significantly greater than 3.717, they are
confidently classified as outliers.
Aside from nonspecific DNA amplification, another cause of

outliers, especially in resource-limited settings, is due to
inconsistent reaction efficiency’s between the training and test
data. In the following study, we use the annealing temperature
as a proxy for varying the efficiency of lambda DNA
amplification. Figure 5a shows the amplification curves for
lambda DNA at 105 copies/reaction for temperatures ranging
from 54.0 to 73.6 °C. From observing the change in Ct, it can
be observed that, even though the product is specific (see
Figure S3 for melting analysis), the quantification performance
can be drastically affected. Current standard curve approaches
have no heuristic measure to indicate whether any of these

Figure 4. Multidimensional analysis using the feature space for detecting nonspecific outliers. (a) MSC using Ct, Cy0, and −log10(F0) for lambda
DNA along with three nonspecific outliers. An arbitrary hyperplane orthogonal to the MSC is shown in gray. (b) Euclidean space: the view of the
feature space when all the data points have been projected onto the aforementioned hyperplane. The Euclidean distance between the mean of the
training data and the outliers (e1, e2, and e3). (c) Mahalanobis space: a transformed space where the Euclidean distance is equivalent to the
Mahalanobis distance, d, in the Euclidean space. The black circle corresponds to a p-value of 0.001 using a χ2-distribution with 2 degrees of
freedom.

Figure 5. Effect of changing annealing temperature on detecting outliers using multidimensional standard curves. (a) Fluorescent amplification
curves for lambda DNA (105 copies per reaction) at temperatures ranging from 54.0−73.6 °C. (b) The MSC constructed at 62 °C using the
features Ct, Cy0, and −log10(F0) along with data points obtained from the aforementioned fluorescent amplification curves. (c) The lambda
standard and temperature variation data points in the Mahalanobis space. The black circle corresponds to a p-value of 0.001 using a χ2-distribution
with 2 degrees of freedom.
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curves will be quantified poorly. However, when the data is
viewed in the feature space (Figure 5b) and the Mahalanobis
space (Figure 5c), it can be observed that when the
amplification shape diverges from the curves belonging to
the MSC (especially for low efficiencies), the Mahalanobis
distance between the test data and the MSC increases.
Therefore, this raises the question: can d be used to disregard
specific outliers and therefore support quantification?
Merging Quantification and Outlier Detection. In

order to investigate the use of the MSC and Mahalanobis
distance for supporting quantification, we can compare the
effect of removing outliers on the estimated quantification.
Figure 6a shows the average quantification as a function of the
temperature for Ct, Cy0, −log10(F0), and M0 (bar plots) and

visualizes the temperatures at which the amplification curves
are considered as outliers (shaded in red).
There are two key observations that can be made: (i) the

quantification performance begins to deteriorate at temper-
atures above 65.2 °C for all methods; (ii) amplification curves
at temperatures above 65.2 °C are considered as outliers based
on a χ2-distribution with p < 0.001. These two observations
coincide and, therefore, support the claim that the selected
features extracted from the amplification curves contain
sufficient information to disregard outliers and improve
quantification performance. Figure 6b shows the average
relative error in estimated quantification for all the considered
methods when using all data points and also disregarding
outliers. It can be observed that quantification is improved by
59.9%, 53.9%, 93.9%, and 44.6% for Ct, Cy0, −log10(F0), and
M0, respectively. Notice that the benefits of multidimensional
analysis using all of the features extends to enhancing
quantification performance of any method, including single-
feature methods.

■ CONCLUSION
Absolute quantification of nucleic acids in real-time PCR using
standard curves is exceedingly important in several fields of
biomedicine, although research in these fields has saturated in
recent years. This is partially due to the simplicity of standard
curves and the movement of research toward digital PCR
(dPCR) because of the advantages it holds over qPCR, such as
removing the need for a standard curves. However, dPCR is
currently not suitable for many applications given the cost and
complexity of instruments.33−35 This paper presents a
framework that shows that the benefits of standard curves
extend beyond absolute quantification when observed in a
multidimensional environment. Consequently, this work opens
the possibility for researchers from different fields to explore
mathematical methods and applications that are enabled by the
proposed framework.
The focus of current researchers is on the computation of a

single value, referred to here as a feature, that is linearly related
to template concentration. Therefore, there has been a gap in
the literature in taking advantage of multiple features together.
The potential reason for a lack of research in this area is
because of the nontrivial benefits of combining linear features.
The only intuitive interpretation of using several features is in
the reliability of quantification. For example, instead of trusting
a single feature, e.g., Ct, other features such as Cy0 and
−log10(F0) can be used to check if the quantification result is
similar. This unidimensional way of thinking prevents several
degrees of freedom and advantages that our proposed
framework enables.
Three main capabilities are enabled by the framework

proposed in this paper: (i) to optimize quantification
performance based on a figure of merit; (ii) to detect outliers;
and (iii) to measure how suitable an amplification curve is for
the constructed MSC. The first capability provides a lower
bound on the quantification performance of the framework to
single best feature since this is a special case (e.g., M0 = Ct
when when α1 = 1, α2 = 0, and α3 = 0). The second and third
capabilities are an application of the MSC that was enabled
through exploring the information gain captured by the
elements of the feature space (e.g., Mahalanobis distance),
which are typically meaningless or not considered in the
unidimensional approach. In fact, applications of the MSC
have already been developed. For example, in Rodriguez-

Figure 6. Merging quantification and outlier detection. (a) Average
estimated quantification for lambda DNA at 105 copies per reaction
for annealing temperatures ranging from 54.0−73.6 °C using Ct, Cy0,
−log10(F0), and M0. The shaded region indicate outliers according to
the MSC with p-value < 0.001 based on a χ2-distribution with 2
degrees of freedom. Details for the quantification and outlier
detection are provided in Tables S11 and S12. (b) Average relative
error for estimated quantification of lambda DNA at 105 copies/
reaction across all annealing temperatures for every method. The solid
bars represent the average relative error for all data points (including
outliers and inliers), whereas the dashed bars only consider inliers. A
paired two-sided Wilcoxon signed rank test was performed between
M0 and the other methods with a confirmed significance (p-value <
0.0001).
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Manzano et al., it was shown that multiple MSCs can be
constructed in a shared feature space in order to simulta-
neously enhance quantification and multiplex 4 targets.17

The multidimensional approach is not completely unfamiliar
in absolute quantification. The shape based outlier detection
(SOD) takes a multidimensional approach in order to define a
similarity measure between amplification curves.36 However,
there are two fundamental differences with the work of this
paper. The first is that SOD relies on using a specific model for
amplification, namely the 5-parameter sigmoid, and is therefore
not a general framework. The second difference is that the
pattern between the features in SOD and initial target
concentration is unknown, therefore the SOD cannot be
naturally integrated into the quantification process and is
typically used as an add-on.37 In other words, the multidimen-
sional approach is only considered for outlier detection and
quantification is still considered as unidimensional.
The contribution of this work can be accredited to the

framework as a whole and the feature space which incorporates
the multidimensional standard curve. Currently, the framework
is limited to considering features that are linearly related to
initial target concentration. This limitation is in fact a design
choice given that there is a lack of other types of features
available in the literature with nonlinear relationships and in
order to reduce the complexity of the analysis. The second
limitation is related to the feature space. The question arises as
to whether sufficient information is captured between
amplification curves in order to distinguish them in the feature
space. For example, if two unrelated PCR reactions exhibit a
perfectly symmetric sigmoidal amplification curve, their
position in the feature space may potentially overlap. This
limitation can be tackled from a molecular perspective by
tuning the chemistry (e.g., amplicon length, primer location,
GC content, etc.) in order to sufficiently change amplification
curves without compromising the performance of the reaction
(e.g., speed, sensitivity, specificity, etc.).
In terms of future directions, there are many research paths

that can be explored. Both the theory of the framework and its
applications can be investigated. The results presented in this
paper raise a number of questions: Can the proposed
framework be used for emerging isothermal amplification
chemistries? Is there any benefit of using more than 3 features?
How many MSCs can the feature space accommodate for
multiplex assays? How could the framework accommodate
features with a nonlinear relationship to initial template
concentrations? Can the MSC approach reduce the number of
required technical replicates for quantifying unknown samples
given the increased confidence provided by the distance
measure?
In conclusion, this paper presents a framework, multidimen-

sional standard curve, and the feature space, which presents
many opportunities for researchers to explore new techniques
and ideas. This methodology will also have huge potential for
emerging diagnostic technologies with high-throughput such as
ISFET arrays, where each reaction can have thousands of
amplification curves and detecting outliers manually is
infeasible.38−40 We hope that by sharing these concepts,
others will be able to adapt and enhance this work to meet
their objectives and advance the field of nucleic acid research.
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Calgua, B.; de Abreu Correâ, A.; Hundesa, A.; Carratala, A.; Bofill-
Mas, S. Water Res. 2010, 44, 4325−4339.

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.9b01466
Anal. Chem. 2019, 91, 7426−7434

7433

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.analchem.9b01466
http://pubs.acs.org/doi/abs/10.1021/acs.analchem.9b01466
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.9b01466/suppl_file/ac9b01466_si_001.pdf
mailto:j.rodriguez-manzano@imperial.ac.uk
http://orcid.org/0000-0002-2583-8366
http://orcid.org/0000-0002-3874-8810
http://dx.doi.org/10.1021/acs.analchem.9b01466


(8) Caliendo, A. M.; et al. Clin. Infect. Dis. 2013, 57, S139−S170.
(9) Ghani, A. C.; Burgess, D. H.; Reynolds, A.; Rousseau, C. Nature
2015, 528, S50−S52.
(10) Misyura, M.; Sukhai, M. A.; Kulasignam, V.; Zhang, T.; Kamel-
Reid, S.; Stockley, T. L. J. Clin. Pathol. 2018, 71, 117−124.
(11) Wittwer, C. T.; Herrmann, M. G.; Moss, A. A.; Rasmussen, R.
P. BioTechniques 1997, 22, 130−139.
(12) Wittwer, C.; Ririe, K.; Rasmussen, R.Fluorescence monitoring
of rapid cycle PCR for quantification. In Gene Quantification; Ferre,́ F.,
Ed.; Advanced Biomedical Technologies; Birkhaüser Boston, 1998;
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