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Abstract
Theoretical models of disease dynamics on networks can aid our understanding of how in-

fectious diseases spread through a population. Models that incorporate decision-making

mechanisms can furthermore capture how behaviour-driven aspects of transmission such

as vaccination choices and the use of non-pharmaceutical interventions (NPIs) interact with

disease dynamics. However, these two interventions are usually modelled separately.

Here, we construct a simulation model of influenza transmission through a contact network,

where individuals can choose whether to become vaccinated and/or practice NPIs. These

decisions are based on previous experience with the disease, the current state of infection

amongst one's contacts, and the personal and social impacts of the choices they make. We

find that the interventions interfere with one another: because of negative feedback between

intervention uptake and infection prevalence, it is difficult to simultaneously increase uptake

of all interventions by changing utilities or perceived risks. However, on account of vaccine

efficacy being higher than NPI efficacy, measures to expand NPI practice have only a small

net impact on influenza incidence due to strongly mitigating feedback from vaccinating be-

haviour, whereas expanding vaccine uptake causes a significant net reduction in influenza

incidence, despite the reduction of NPI practice in response. As a result, measures that sup-

port expansion of only vaccination (such as reducing vaccine cost), or measures that simul-

taneously support vaccination and NPIs (such as emphasizing harms of influenza infection,

or satisfaction from preventing infection in others through both interventions) can significant-

ly reduce influenza incidence, whereas measures that only support expansion of NPI prac-

tice (such as making hand sanitizers more available) have little net impact on influenza

incidence. (However, measures that improve NPI efficacy may fare better.) We conclude

that the impact of interference on programs relying on multiple interventions should be more

carefully studied, for both influenza and other infectious diseases.
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Author Summary

The spread of infectious diseases can be inhibited by both vaccines and non-pharmaceuti-
cal interventions (NPIs) such as hand-washing, respiratory etiquette, and social distancing.
Theoretical models of disease spread have incorporated how individuals make decisions
concerning these interventions in the face of disease risks and intervention costs. However,
most previous models have considered these two interventions separately from one anoth-
er. Here we combine decision-making processes for both interventions in a single model
that simulates influenza spread through a network. Individuals choose interventions based
on their past and present experiences with influenza, and the personal and social impacts
of their choices. Our model indicates that, due to feedback loops between the interventions
via their mutual impact on disease levels, efforts to reduce influenza spread by expanding
NPI practice are almost completely mitigated by the resulting drop in vaccine coverage,
whereas efforts to expand vaccine coverage are only weakly affected by the response of
NPI practice. Furthermore, strategies such as making vaccines more available, stressing
the harms of being infected, or stressing the social benefits of preventing infection through
both interventions will prevent more disease than only expanding NPI practice through
making hand sanitizers more widely available, for example.

Introduction
Infectious diseases continue to threaten human health throughout the world [1, 2]. In order to
help alleviate these impacts, researchers have utilized mathematical models to improve our un-
derstanding of infectious disease dynamics [3]. In many cases, these models assume that
human behaviour does not change over time or respond to disease dynamics in epidemiologi-
cally relevant ways. However, individual behaviour often does both influence–and evolve in re-
sponse to–disease dynamics. For example, when vaccination is not mandatory, the prevalence
of an infectious disease can depend on individual decisions of whether or not to vaccinate [4,
5]. Other behavioural practices that impact the spread of a disease include non-pharmaceutical
interventions (NPIs) [6–10]. For susceptible individuals, NPIs can include hand washing or
general avoidance of infectious individuals. For infectious individuals, these can include reduc-
ing contact with susceptible contacts, hand washing, or strict respiratory etiquette.

Mathematical models of the behavioral epidemiology of infectious diseases capture inter-
play between disease dynamics and individual behaviour [11] (we will refer to these as “dis-
ease-behaviour”models hereafter). These and similar types of models have focussed on
vaccinating decisions where individual decision-making occurs according to a strategic envi-
ronment or is determined by some other utility-based or rule-based mechanism [12–20].
Using such frameworks, Bauch [13], Fu et al. [15], Salathé and Bonhoeffer [20], and Reluga
et al. [19] use models with imitation dynamics to predict potential vaccine uptake in popula-
tions. Similarly, Xia and Liu [21] base vaccination decisions not only on minimization of the
associated costs, but also the impact that social influence has on each individual. d’Onofrio
et al. [22] use an information dependent model where vaccination decisions are based on pri-
vate and public information gathered about a disease. Further approaches by Vardavas et al.
[23] incorporate memory of past disease prevalence, and Wells and Bauch [24] include memo-
ry of previous infections to study the effect of these factors on vaccinating behaviour. Other re-
search has explored the impact of increased individual sexual risk behaviour on disease
incidence, in response to the introduction of a hypothetical HIV/AIDS vaccine [25, 26], or how
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risk perception, HIV prevalence and sexual behaviour interact with one another in a core
group population [27].

Other disease-behaviour models incorporate social distancing and other NPI-related behav-
iours. For example, Reluga [28] analyzes a differential game in which individuals choose a daily
investment in social distancing in order to reduce the risk of infection. Funk et al. [29] allow in-
formation of a disease to spread over a network, and individuals protect themselves according
to the quality of information they possess. Gross et al. [30] and Shaw and Schwartz [31, 32]
study adaptive networks, where susceptible nodes rewire their connections from infectious to
non-infectious nodes at a certain rate. Along the same vein, Zanette and Risau-Gusman [33]
allow susceptible nodes to either permanently sever a connection with an infectious node, or
rewire to another randomly chosen (and possibly infectious) node. Del Valle et al. [8] assume
some individuals lower their contact rates once an epidemic is detected, whereas Glass et al.
[34] and Kelso et al. [9] use complex contact networks which include families, schools, and
workplaces to test differing social distancing methods such as school closures and the effects of
staying at home while infectious.

Hence, disease-behaviour models studying either vaccinating behaviour or NPI behaviour
separately from one another are relatively abundant, but models incorporating both types be-
haviour are rare, to our knowledge. However, for many infectious diseases (such as influenza)
both NPIs and vaccines are part of infection control strategies, and both also respond to disease
dynamics [4, 35]. Under these circumstances, it becomes important to study disease-behaviour
interactions in populations where both vaccinating behaviour and NPI behaviour respond to
disease dynamics. The effectiveness of one type of intervention may interfere with the effective-
ness of the other intervention, through the mediator of disease dynamics. The objective of our
research is to explore the interplay between individual decision-making (which is driven by
methods from decision field theory [36]), regarding vaccines, NPIs, and disease dynamics in
the context of influenza transmission and control, and to study the implications for disease
mitigation strategies.

Model

Vaccination
Wemodel the vaccination decision process using random walk subjective expected utility
(SEU) theory, an intermediate stage in the mathematical derivation of decision field theory
[36]. This approach allows us to capture the decision-making process of individuals in an un-
certain environment. In the case of vaccination, the uncertainty lies in the chance of becoming
infected in a given influenza season, depending on whether or not the individual is vaccinated
and how effective the vaccine is.

For the vaccinating decision, each susceptible individual compares the possible outcomes
stemming from the “Yes” branch versus the possible outcomes stemming from the “No”
branch (Fig 1a). The difference in these expected utilities, or ‘valence’ (VY(t)−VN(t)), updates
an individual’s preference, P(t), towards choosing one of these actions. The preference state of
each individual is updated daily according to the rule:

PðtÞ ¼ Pðt � 1Þ þ ½VYðtÞ � VNðtÞ�: ð1Þ

If P(t) reaches a specified threshold, θ, then an individual decides to become vaccinated in
that influenza season. Conversely, if P(t) reaches −θ, the individual decides not to become vac-
cinated that season. Intermediate values −θ< P(t)< θ can be interpreted as an individual
being undecided regarding whether or not to vaccinate. If a choice is made, an individual’s
preference state remains constant at P(t) = θ or P(t) = −θ until the beginning of the next season,

Disease Interventions Can Interfere with One Another

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004291 June 5, 2015 3 / 23



when it then resets towards (1−s)Pend where Pend is the preference at the end of the last influen-
za season, and s is a memory decay factor.

Let us now define the social utility parameters associated with the vaccinating decision. The
quantity EI < 0 is the negative utility received (cost incurred) when an individual gets infected;
EV < 0 is the negative utility received (cost incurred) when an individual vaccinates; ES> 0 is
the positive utility received when an individual takes actions that they perceive will inhibit the
spread of infection and therefore saves others from becoming infected; and EH < 0 is the nega-
tive utility received (cost incurred) when an individual believes they are responsible for harm-
ing a neighbour by infecting them [37]. The baseline values for these and other parameters can
be found in Table 1. If an individual chooses to not vaccinate during a season, they may be-
come infected that season. If an individual instead chooses to vaccinate, the vaccine is effective

Fig 1. Vaccination and NPI decisions. (a) Diagram representing the vaccination choice problem. (b) Diagram representing the infectious NPI choice
problem. (c) Diagram representing the susceptible NPI choice problem.

doi:10.1371/journal.pcbi.1004291.g001
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for that season with probability �V (the vaccine efficacy) and otherwise the individual remains
susceptible for the remainder of the season. The wi parameters (0� wi � 1) represent the ‘sub-
jective probability weights’ that determine the possible outcomes that are considered on a
given day. In the case of vaccination, w1 is the probability an individual perceives of being in-
fected if they do not vaccinate in a particular season. We assume w1 depends on how many of
an individual’s neighbours have been infected in the current season, as well as their memory of
the cumulative incidence from previous seasons:

w1 ¼ sMHðXnÞ þ ð1� sÞxn�1; ð2Þ

where σ controls the relative importance of incidence from current versus past seasons, Xn is
the cumulative number of neighbours who have become infected in the current influenza sea-
son n,MH(x) = 1−e−κH x where κH is a proportionality constant controlling the perceived
chance of becoming infected in a season, and ξn−1 is an individual’s memory of incidence from
past seasons:

xn ¼ sMHðYnÞ þ ð1� sÞxn�1; ð3Þ

where Yn is the cumulative number of an individual’s neighbours, including themselves, that
have been infected by the end of season n. In this way, the memory of past influenza incidence
declines with time according to σ.

Individuals may vaccinate during certain days of the year 280< t or t< 40 (Fig 2), where
t = 0 is January 1st, and the influenza season from the previous year is considered to end on
day t = 285. We use this constraint because it reflects the typical timing of public influenza vac-
cination programs in fall and winter in many northern hemisphere countries, such as the

Table 1. Model parameters with baseline values and sources.

Parameter Description Value Source

NPop Number of Individuals in Network 10,000 [38–40]

θV Preference state threshold for vaccinating 0.1 Calibrated

θD Preference state threshold for distancing 0.1 Calibrated

s Memory decay rate, per season 0.97 Calibrated

σ Weight assigned to present state of infection in neighbours 0.5 Calibrated

κH Proportionality constant of perceived seasonal infection risk 0.3 Calibrated

κC Proportionality constant of perceived daily infection risk 0.05 Calibrated

β0 Average transmission rate 0.045 Calibrated

Δβ Change in seasonality amplitude 0.2 [41]; Calibrated

EI Cost incurred from becoming infected −0.0055 [24]

EV Cost incurred from vaccination −0.0015 [24]

ED Cost incurred from distancing a neighbour −6 × 10−6 Calibrated

ES Payoff for saving a neighbour from infection 6.5 × 10−4 Calibrated

EH Cost incurred for infecting a neighbour(s) −9 × 10−4 Calibrated

�V Vaccine efficacy 0.7 [42, 43]

�NPI NPI efficacy 0.4 [44, 45]

ρ Probability of moving from state R to State S, per season 0.25 [46–48]

ω Probability of moving from state V to State S, per season 0.5 [49]

λ Average number of days to move from state I to state R 5 [46, 50–52]

η Total number of exogenous infections per season 20 Calibrated

doi:10.1371/journal.pcbi.1004291.t001
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United States and Canada. At the end of an influenza season, we set Yn = Xn and then incorpo-
rate Yn into the individual’s memory.

The second subjective probability weight is

w5 ¼ MCðNsusc þ ð1� �VÞNvacÞ; ð4Þ

whereMC(x) = 1−e−κC x, Nvac and Nsusc are the number of currently vaccinated and susceptible
neighbours, respectively, and κC controls the perceived probability of infection. We interpret
w5 as an individual’s perceived probability of infecting one or more neighbours, and the term
w5 EH captures the future outcome of an individual potentially infecting his/her neighbours
that season after becoming infectious themselves, ultimately leading to a negative utility. To
complete the outcomes of this branch, we note that the perceived probability of not becoming
infected when choosing to not vaccinate is simply w2 = 1−w1. This outcome leads to a utility
of 0.

On the ‘Yes’ branch, we define w3 = �V as the perceived probability that an individual is effi-
caciously vaccinated, thus w4 = 1−�V. In both cases, an individual knows that they must absorb
the vaccine cost, EV. In the case of efficacious vaccinating, a positive utility ES is also gained by
protecting their neighbours for the remainder of the influenza season, which serves a similar
function to the w5 EH term stemming from the ‘No’ branch where an individual is considering
future outcomes. In the case of inefficacious vaccination, an individual assumes that they may
still become infected with a probability that increases with past and current disease incidence.
This is represented by the term VN(t), the valence of the ‘No’ branch.

Fig 2. Seasonal time series. Example time series of vaccination (blue) and incidence (green) over a season. When a vaccine becomes available in early
October, uptake increases in anticipation of the upcoming influenza season. Confidence intervals represent two standard deviations of outputs for the 100
parameter sets (see Model Calibration section).

doi:10.1371/journal.pcbi.1004291.g002
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Non-pharmaceutical Interventions
Wemodel the NPI decision process using sequential SEU theory, a method similar to random
walk SEU theory, but excludes the possibility that the preference state may start from a non-
neutral initial value [36]. We use sequential SEU theory because we assume individuals make
social distancing decisions on a day-to-day basis, dependent only on the current state of infec-
tion amongst their respective neighbours, whereas in the case of vaccination, the tendency to
vaccinate or not can be carried over from one season to the next. Each infectious individual de-
cides whether or not to practice NPIs to protect their neighbours for the duration of their ill-
ness (Fig 1b), and each susceptible individual decides whether to practice NPIs to protect
themselves from their infectious neighbours that day (Fig 1c).

On the ‘Yes’ branch for the infectious NPI decision (Fig 1b), we have the probability of effi-
caciously using NPIs, w7 = �NPI, or inefficaciously using them, w8 = 1−�NPI. If NPIs are effica-
cious, they receive a positive utility ES for saving susceptible neighbours from infection.
However, if NPIs are inefficacious, they receive the valence VN(t) of the ‘No’ decision, on the
branch associated with w8, representing that the outcome is the same as if they had never prac-
ticed NPIs to begin with. An individual believes that their use of interventions during their ill-
ness will be either fully effective or ineffective on all of their neighbours. Regardless of whether
NPIs work or not, the infectious individual who practices NPIs pays a cost (ED)(NTot) for hav-
ing to utilize NPIs to protect their NTot neighbours, where ED< 0 is the negative utility received
(cost incurred) per neighbour. For the ‘No’ branch where the individuals decides not to prac-
tice NPIs, they may infect a neighbour with probability w5, receiving a negative utility (cost in-
curred) of EH < 0 due to feeling responsible for spreading the infection. On the other hand,
they infect no neighbours with probability w6 = 1−w5, thereby receiving a utility of zero.

NPI decisions are made by susceptible individuals who seek to protect themselves from
their infectious neighbours in a similar way (Fig 1c). On the ‘Yes’ branch, an individual believes
their NPIs will be efficacious with probability w7, receiving utility zero. If the NPIs are not effi-
cacious, they receive the valence VN(t) from the ‘No’ branch. In either case, they pay a cost ED
in order to practice NPIs. On the ‘No’ branch, an individual who does not practice NPIs that
day becomes infected with probability w9 =MC(NInf), and receive a negative infection utility EI.
With probability 1−w9, they believe they will not become infected and receive utility zero. We
do not apply social utilities EH and ES in the susceptible NPI decision process because we as-
sume as a first-order approximation that their decision focuses on short term outcomes (NPIs
are only effective for the duration of infection, and may have to be repeated several times in the
season, whereas a one-time vaccination decision will protect their neighbours from infection
for the duration of the season). Also, if an individual is vaccinated, their perceived probability
of becoming infected that day is reduced by 1−�V. This reflects the fact that these individuals
will believe themselves to have less chance of becoming infected than those who have not vacci-
nated. We note that infectious individuals practice NPIs on all of their neighbours, whereas
susceptible individuals only practice them on their infectious neighbours. Infectious persons
may stay home from work, and their hand washing benefits all susceptible persons with whom
they come in contact with. In contrast, susceptible persons can be selective about avoiding in-
fectious persons, or hand-washing after contact with infectious persons.

In our model, individuals are not aware of their own or their neighbours’ true susceptibility
statuses. That is, they will make their intervention decisions based only on their own acquired
knowledge which assumes everyone is susceptible at the beginning of each influenza season.
This is in contrast to the true state of the system, which incorporates factors such as waning im-
munity. Moreover, the data we present on susceptible NPI rates only reports for those who are
truly susceptible.
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Transmission Dynamics
The vaccination and NPI decision-making processes are embedded in an agent-based simula-
tion model of influenza transmission through a static contact network. The contact network
consists of 10,000 nodes through which influenza is transmitted, and was constructed by sam-
pling a subnetwork from a larger contact network derived from census data from Portland, Or-
egon [38–40]. Previous research has confirmed that the subnetwork is a good approximation
to the full network [24].

We assume a Susceptible-Infectious-Recovered-Vaccinated-Susceptible (SIRVS) natural
history. Individuals move from the susceptible state S to the infectious state I with probability

Prðt;Ninf Þ ¼ 1� ð1� bðtÞÞNinf per day, where Ninf is the number of infectious neighbours

around the susceptible person on day t, and β is the transmission probability which varies sea-
sonally according to bðtÞ ¼ b0ð1þ Dbcosð2pt

365
ÞÞ [41]. If either the susceptible person or the in-

fected person has opted to practice NPIs that day, then NPIs are effective with probability �NPI,
and that infected neighbour is not included in Ninf for the purposes of computing Pr(t, Ninf).
Infectious individuals recover (move from state I to state R) in a number of days sampled from
a Poisson distribution with mean λ days. Individuals who have been efficaciously vaccinated
with probability �V are moved to the V state, 14 days after being vaccinated [53]. Both recov-
ered and vaccinated individuals become susceptible again at the beginning of each new season
(day 285 of each year) with probabilities ρ and ω, respectively. In order to capture seasonal case
importation, 5 randomly chosen susceptible individuals are made infectious every 10 days,
from day 330 to 360.

Each day, the following sequence of events occurs: (1) each susceptible individual decides
whether or not to practice NPIs on that day; (2) the following occur in a random order for each
randomly chosen individual in the population: (i) If an individual is susceptible, they update
their vaccination preference, (ii) if an individual is susceptible, they may become infected and
make an infectious NPI decision, (iii) if an individual is infectious, they may recover.

Model Calibration
To construct a baseline scenario, we calibrated the transmission probability β, amplitude of sea-
sonality Δβ, and case importation rate η to the targets: (1) a cumulative seasonal incidence of
approximately 15% to 20% in the absence of vaccination, and (2) infection prevalence that
peaked, on average, between December and January of each year [24, 42, 54, 55]. These esti-
mates come from North American (primarily, United States) populations. The calibrated value
of Δβ was constrained on the interval (0.15, 0.3) [41].

We also calibrated the preference state threshold for vaccinating θV, per season memory
decay rate s, and proportionality constant for the perceived chance of becoming infected in an
influenza season κH to the targets: (1) vaccine coverage of 30% to 40% per season, with (2) the
majority of vaccinations occurring in October and November. These targets provide disease
dynamics very similar to seasonal influenza. The utilities EI and EV were set according to
Ref. [24], based in turn on Ref. [42, 50, 55–59]. Finally, the social utilities ED, ES, and EH were
calibrated to the targets: (1) an infectious individual practices NPIs with 87% probability, and
(2) a susceptible individual practices NPIs with a 66% probability [60].

After obtaining this baseline scenario, we conducted three-point estimation Monte Carlo
probabilistic sampling using triangular distributions to obtain sets of parameter values that
yielded outputs within acceptable ranges. The triangular distributions were defined around the
most uncertain baseline parameter values. Very broad ranges were used for the most uncertain
parameters, to reduce model fitting issues due to having more parameters than calibration
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targets (generally, for each set of calibrated parameter values described above, there was one
less target data point than the number of parameters to be calibrated) (Table 2). We repeatedly
sampled parameter values from these distributions, and ran simulations using the sampled pa-
rameter sets. We discarded any parameter sets that yielded outcomes outside of a feasible range
for vaccine uptake and NPI practice rates (Table 3). We accepted a larger range of NPI practice
rates than for vaccine uptake, due to the greater uncertainties about the frequency of NPI prac-
tice for seasonal influenza [60]. In total, 2250 simulations were tested, providing a target num-
ber of 100 parameter sets yielding feasible outcomes. All simulations ran for 50 seasons with an
initial population of susceptible individuals having no preference towards vaccinating and no
perceived probabilities of becoming infected. For our results, the first 20 seasons of each simu-
lation were discarded to remove transient effects.

The data shows the average value per season over all 100 parameter sets, for vaccine cover-
age, infection incidence, probability of susceptible individuals practicing NPIs given that they
encounter one or more infectious individuals on a given day (“susceptible NPI practice”), and
probability of infectious individuals practicing NPIs while ill (“infectious NPI practice”).

Results

Baseline Scenario
When vaccination is first introduced to the population, vaccine coverage climbs rapidly and
peaks in the first few years after the vaccine becomes available, as members of the population
adopt vaccination to avoid infection (Fig 3). As a result, seasonal influenza incidence decreases,
which in turn causes a decrease in the probability that susceptible persons practice NPIs if they
have an infected neighbour. This occurs because the reduced infection incidence due to the
vaccine reduces the perceived infection risk among susceptible individuals, and thus makes
them less willing to practice NPIs. After the initial peak in vaccine coverage and the

Table 3. Acceptance ranges for simulation averages across 30 seasons.

Intervention Measure Acceptance Range

Vaccine Uptake [30, 40]

Susceptible NPI Probability [50, 75]

Infectious NPI Probability [70, 90]

doi:10.1371/journal.pcbi.1004291.t003

Table 2. Sampling ranges for parameters used to obtain 100 baseline sets.

Parameter Sampling Limits Sampling Mode

θV [0.01, 0.2] 0.1

θD [0.01, 0.2] 0.1

s [0.8, 0.99] 0.9

σ [0.3, 0.7] 0.5

κH [0.1, 0.4] 0.25

κC [0.036, 0.054] 0.05

ED [0.0, −12 × 10−6] −6 × 10−6

ES [0.0, 13 × 10−4] 6.5 × 10−4

EH [0.0, −18 × 10−4] −9 × 10−4

doi:10.1371/journal.pcbi.1004291.t002
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corresponding dip in NPI practice, the vaccine uptake, infection incidence, and NPI practice
rates equilibrate. In contrast to susceptible NPI practice, the infectious NPI practice rate stays
almost constant during the whole period, due to the relative stability of the utilities found in
the decision branches regarding this decision (Fig 1b). For example, an infectious individual
deciding to use NPIs will always look to protect all of their neighbours, and this does not de-
pend strongly on population-level incidence of infection that season. This is in contrast to a
susceptible individual’s decision whether to use NPIs, which depends on how many of their
neighbours are perceived to be infected.

Interventions Can Interfere with One Another
Next, we conducted a univariate sensitivity analysis, evaluating the impact of changes in base-
line parameter values corresponding to measures that public health might take in order to im-
prove outcomes. Increasing the utility for saving others from infection (ES) causes a significant
reduction in infection incidence (Fig 4a and 4b). It also causes a slight decrease in NPI practice
by susceptible individuals, but this is outweighed by large increases in both vaccine uptake and
NPI practice by infectious persons that are sufficient to cause a net decline in infection inci-
dence. These results illustrate a tradeoff whereby vaccine uptake, NPI practice among infec-
tious individuals, and NPI practice among susceptible individuals cannot be simultaneously
increased by changing ES. A reduced incidence due to expanding any one of these interventions
will reduce the perceived infection risk and make individuals incrementally more complacent
about preventing infection, which in turn reduces the uptake rates for the other interventions.

Fig 3. Impact of vaccine introduction. Example of a baseline scenario of our model where vaccination becomes available in season 10, causing a change
in the vaccine coverage each season (blue), the seasonal infection incidence (green), the probability that a susceptible individual practices NPIs given that
they encounter one or more infectious individuals on a given day (black), and the probability that an infectious individual practices NPIs while ill (red).
Confidence intervals represent two standard deviations of outputs for the 100 parameter sets.

doi:10.1371/journal.pcbi.1004291.g003

Disease Interventions Can Interfere with One Another

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004291 June 5, 2015 10 / 23



Fig 4. The effects of social parameters on interventions. Univariate sensitivity analysis for parameters ES, EH, and ED. The numbers on the horizontal
axes correspond to multiples of the baseline values for ES, EH, and ED, hence 1.0 corresponds to the baseline value of the each parameter. (a), (c), (e)
Average values across 30 seasons for vaccination coverage (blue) and incidence (green). (b), (d), (f) Average values across 30 seasons for NPI usage
amongst susceptible individuals (black) and infectious individuals (red). Confidence intervals represent two standard deviations of the mean of the 100
parameter sets across 30 simulated seasons.

doi:10.1371/journal.pcbi.1004291.g004
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Hence, each intervention tends to interfere with the other. Our focus in the remainder of this
paper is to determine the conditions under which the interference between the two interven-
tion types is strongest, which model parameters are most subject to interference, and how to
bring about the greatest net reductions in infection incidence, despite interference. How inter-
ference plays out over time has already been described (Fig 3).

In contrast to significant reductions in infection incidence caused by increasing ES, increas-
ing the cost for harming others (EH) causes only small net reductions in incidence, because a
large increase in the NPI practice among infectious persons is strongly offset by a modest de-
cline in vaccine uptake, while the rate of NPI practice by susceptible persons remains relatively
constant (Fig 4c and 4d). Similarly, attempting to reduce incidence by decreasing the perceived
cost of practicing NPIs (ED) also causes only a small net reduction in incidence, since the re-
sulting increases in NPI practice among infectious and susceptible persons are again offset by
reductions in vaccine uptake (Fig 4e and 4f).

Decreasing the cost of vaccination (EV)–for instance by making the vaccine more easily ac-
cessible–results in significant reductions in infection incidence, because the significant increase
in vaccine uptake is only partly offset by the resulting decline in NPI practice (Fig 5a and 5b).
Likewise, increasing the perceived cost of infection (EI) causes an increase in both vaccine up-
take and susceptible NPI practice, although infectious NPI practice remains relatively un-
changed. The effect is a significant net decrease in incidence (Fig 5c and 5d). In summary,
increasing the utility for saving others from infection (ES), decreasing the perceived cost of vac-
cination (EV), or increasing the perceived cost of infection (EI), are more effective in reducing
infection incidence than changing perceived harms (EH) or perceived cost of NPI (ED),
despite interference.

Determining Which Interventions Interfere Most Strongly
In order to better understand how NPIs interfere with vaccine uptake, we compute the differ-
ence ΔV in vaccine uptake between the baseline scenario where individuals are free to practice
susceptible and infectious NPIs versus a hypothetical scenario where they cannot practice ei-
ther form of NPI. Similarly, to determine how vaccination interferes with susceptible (and in-
fectious) NPI practice, we compute the difference ΔNS in susceptible NPI practice rates
(similarly, ΔNI for infectious NPI practice rates) between the baseline scenario where individu-
als are free to choose vaccination versus a hypothetical scenario where vaccination is not avail-
able. We also compute the difference in seasonal incidence ΔI between the baseline scenario
and all of these hypothetical scenarios.

Impact of interference on intervention uptake rates. With respect to impacts of interfer-
ence on intervention uptake rates, we observe that in general, across a broad range of utilities
for ES, EH, ED, EV, and EI, NPI practice interferes significantly with vaccine uptake (ΔV usually
ranging from 5% to 15%, Figs 6a, 6c, 6e, 7a and 7c). Vaccination also interferes significantly
with susceptible NPI practice (ΔNS usually ranging from 5% to 15%, Figs 6b, 6d, 6f, 7b, and
7d), but not as much with infectious NPI practice (ΔNI is smaller, Figs 6b, 6d, 6f, 7b, and 7d).
Infectious NPI practice is not as strongly affected because infectious NPI practice depends less
on population prevalence than susceptible NPI practice does.

Interference of NPIs with vaccination is strongest at intermediate values of EV (Fig 7a).
When EV is small, NPIs are not popular in the population and hence NPIs do not interfere
strongly with vaccination. Thus, when NPIs are removed, there is little impact ΔV on vaccina-
tion levels. When EV is large, vaccination becomes too costly for the population to adopt it
widely. Therefore, vaccination levels do not increase by significant amounts when NPIs are
added or removed from the population. When vaccination is not present, we see that for small
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EV, NPIs are interfered with especially strongly. This is because high vaccination coverage seen
in the baseline scenario disappears, and thus individuals choose to practice NPIs more often.
For larger values of EV, NPIs are undermined by decreasing amounts since vaccination levels
in the baseline scenarios are greatly reduced (Fig 7b). Similar reasoning can explain trends in
ΔV, ΔNI and ΔNS as other utilities are varied (Fig 7c and 7d).

Impact of interference on influenza incidence. Overall, when removing either vaccina-
tion or NPIs, we observe an increase in incidence, compared to baseline scenarios where both
interventions are available (ΔI> 0; green lines in Figs 6 and 7). This occurs because having
both interventions as an option is better than just having one of them.

Fig 5. The effects of infection and vaccination costs on interventions. Univariate sensitivity analysis for EV and EI. The numbers on the horizontal axes
correspond to multiples of the baseline values for EV and EI, hence 1.0 corresponds to the baseline value of the each parameter. (a), (c) Average values
across 30 seasons for vaccination coverage (blue) and incidence (green). (b), (d) Average values across 30 seasons for NPI usage amongst susceptible
individuals (black) and infectious individuals (red). Confidence intervals represent two standard deviations of the mean of the 100 parameter sets across 30
simulated seasons.

doi:10.1371/journal.pcbi.1004291.g005
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Fig 6. Interference between vaccination and NPIs. Univariate analysis for social parameters ES, EH, and ED determining the amount that vaccination and
NPIs interfere with each other in each scenario. (a), (c), (e) Average values across 30 seasons for change in vaccination coverage (blue) and change in
incidence (green) between hypothetical scenarios without NPI usage and the baseline scenarios. (b), (d), (f) Average values across 30 seasons for change in
NPI usage amongst susceptible (black) and infectious (red) individuals and change in incidence (green) between hypothetical scenarios without vaccine
usage and the baseline scenarios. Confidence intervals represent two standard deviations of the mean of the 100 parameter sets across 30
simulated seasons.

doi:10.1371/journal.pcbi.1004291.g006

Disease Interventions Can Interfere with One Another

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004291 June 5, 2015 14 / 23



However, the increase in incidence caused by removing vaccination (Figs 6b, 6d, 6f, 7b, and
7d) is much larger than the increase in incidence caused by removing NPIs (� 5–10% versus�
1–2% Figs 6a, 6c, 6e, 7a, and 7c). Hence, vaccination appears to be a much stronger determi-
nant of influenza incidence than NPI practice. When NPIs are introduced to the population,
vaccine uptake declines sufficiently such that the net change in incidence ΔI is small, thus vac-
cination responds to the introduction of NPIs in a way that strongly mitigates the effectiveness
of NPIs in reducing incidence (Figs 6a, 6c, 6e, 7a, and 7c). However, when vaccination is intro-
duced to the population, the resulting decline in NPI practice is not sufficient to prevent signifi-
cant changes in ΔI (Figs 6b, 6d, 6f, 7b, and 7d), thus NPIs do not strongly mitigate the

Fig 7. Interference between vaccination and NPIs. Univariate analysis for EV and EI determining the amount that vaccination and NPIs interfere with each
other in each scenario. (a), (c) Average values across 30 seasons for change in vaccination coverage (blue) and change in incidence (green) between
hypothetical scenarios without NPI usage and the baseline scenarios. (b), (d) Average values across 30 seasons for change in NPI usage amongst
susceptible (black) and infectious (red) individuals and change in incidence (green) between hypothetical scenarios without vaccine usage and the baseline
scenarios. Confidence intervals represent two standard deviations of the mean of the 100 parameter sets across 30 simulated seasons.

doi:10.1371/journal.pcbi.1004291.g007
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effectiveness of vaccination. In other words, vaccination interferes strongly with the effective-
ness of NPI practice, whereas NPI practice interferes weakly with the effectiveness
of vaccination.

As a result of interference, efforts to boost NPI practice should be partially counter-produc-
tive due to the mitigating response of vaccine uptake, whereas efforts to boost vaccine uptake
should be productive because the mitigating responses of NPI practice are not strong enough
to prevent a significant decrease in influenza incidence. This trend is consistent across a broad
range of parameter values.

Fig 8. The effects of NPI efficacy. (a), (b) Univariate sensitivity analysis for NPI efficacy, �NPI. Data shows average values across 30 seasons for
vaccination coverage (blue), incidence (green), NPI usage amongst susceptible individuals (black), and NPI usage amongst infectious individuals (red). (c),
(d) Determining the amount that vaccination and NPIs interfere with each other for various NPI efficacies. Average values across 30 seasons for change in
vaccination coverage (blue), change in incidence (green), and change in NPI usage amongst susceptible (black) and infectious (red) individuals are shown.
Confidence intervals represent two standard deviations of the mean of the 100 parameter sets across 30 simulated seasons.

doi:10.1371/journal.pcbi.1004291.g008
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Understanding What Drives Different Levels of Interference for Different
Interventions
To understand the source of this asymmetry between the two interventions, we vary the NPI ef-
ficacy (�NPI) and the vaccine efficacy (�V) (Figs 8 and 9). As the NPI efficacy increases, the pro-
portion of individuals practicing NPIs increases significantly (Fig 8b) and the vaccine uptake
decreases in response, while the infection incidence also declines (Fig 8a). Similarly, when the
NPI efficacy is very high, removing NPIs has a much larger impact on incidence than removing
vaccination, the latter of which has almost no effect. But when the NPI efficacy is very low, the

Fig 9. The effects of vaccine efficacy. (a), (b) Univariate sensitivity analysis for vaccine efficacy, �V. Data shows average values across 30 seasons for
vaccination coverage (blue), incidence (green), NPI usage amongst susceptible individuals (black), and NPI usage amongst infectious individuals (red). (c),
(d) Determining the amount that vaccination and NPIs interfere with each other for various vaccine efficacies. Average values across 30 seasons for change
in vaccination coverage (blue), change in incidence (green), and change in NPI usage amongst susceptible (black) and infectious (red) individuals are
shown. Confidence intervals represent two standard deviations of the mean of the 100 parameter sets across 30 simulated seasons.

doi:10.1371/journal.pcbi.1004291.g009
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situation is reversed, and removing vaccination has a much bigger impact on incidence than re-
moving NPIs (Fig 8c and 8d). These results show that feedback between interventions operates
such that, if a less efficacious intervention is removed, the resulting increased uptake of the
more efficacious intervention is sufficient to prevent a net increase in incidence. In contrast, if
a more efficacious intervention is removed, the resulting increased uptake of the less efficacious
intervention is not adequate to prevent an increase in incidence. Similar patterns hold when
the vaccine efficacy (�V) is varied, for similar underlying reasons (Fig 9). However, a secondary
factor working in favour of vaccination is that vaccination–if efficacious–protects individuals
throughout the influenza season, whereas NPI practice needs to be efficacious every time there
is an infection in a network neighbour, in order for an individual to avoid infection throughout
the entire season.

The difference in vaccine uptake with and without NPIs is highest for intermediate values of
�V. In general, this occurs because when intervention efficacy is very low, individuals will not
adopt it, regardless of whether there is an alternative or not. Therefore, even if the alternative
intervention is removed, individuals will tend not to increase adoption of the inefficacious in-
tervention (Fig 9c, lowest values of �V). On the other hand, if an intervention is significantly
more effective than the alternative intervention, or not very costly, then it will continue to be
used by a large proportion of the population, and will not experience significant interference
from the less effective alternative intervention which does not significantly change incidence
(Fig 9c, highest values of �V).

In summary, these results show that, the more efficacious an intervention is, the less its ef-
fectiveness will be compromised by the other intervention, but the more it will compromise the
effectiveness of other intervention. The central role of intervention efficacy also explains why
the highest reductions in incidence occur when utilities that support vaccination only are
changed (e.g. the vaccine cost is reduced, Fig 5a and 5b), or when utilities that support both
vaccination and NPI practice are changed (e.g. when the payoff for saving others from infection
is increased, Fig 4a and 4b, or the perceived cost of infection is increased, Fig 5c and 5d). In
contrast, decreasing the perceived cost of social distancing ED has little impact on incidence
(Fig 4e and 4f), since this NPI practice is interfered with by the mitigating response of
vaccine uptake.

Discussion
We have constructed a seasonal influenza transmission model that incorporates how beha-
vioural decisions for both individual vaccinating decisions and individual NPI practice (hand-
washing, social distancing) respond to changes in infection incidence. Our population was dis-
tributed across an empirically-based network, and parameter values were based either on litera-
ture [24, 41–52, 55], or were calibrated to typical influenza seasonal patterns using a
probabilistic sampling approach.

These results illustrate how vaccine uptake and NPI practice interfere with one another. If
vaccine coverage increases, the resulting change in transmission patterns causes a decrease in
the practice of NPIs. This is especially true for susceptible individuals, since susceptible NPI
practice is more sensitive to population incidence. Similarly, if NPI practice expands, vaccine
coverage will decrease by a roughly similar amount.

Although susceptible NPI practice and vaccine coverage have similar impacts on each oth-
er’s uptake, the impact on incidence is highly asymmetrical between the two interventions: the
effectiveness of NPI practice is strongly mitigated by the response of vaccine uptake, whereas
the effectiveness of vaccination is only weakly mitigated by the response of NPI practice. This
asymmetry is driven by the differing efficacies of the two types of interventions: the higher the
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efficacy of the intervention (�V, �NPI), the less its effectiveness in terms of reducing influenza in-
cidence will be mitigated by the other intervention, but the more it will mitigate the effective-
ness of other intervention.

Because influenza vaccine efficacy is generally higher than NPI efficacy, these effects have
potentially important implications for influenza mitigation strategies. Efforts to boost NPI
practice could be strongly counteracted by the resulting declines in vaccine coverage, hence
boosting NPI practice could be counter-productive. However, boosting vaccine coverage can
still be productive since the resulting response of NPI practice will not as strongly mitigate the
effectiveness of expanded vaccine coverage. Because of the role of efficacy, increasing NPI effi-
cacy through fostering better hand-washing techniques or respiratory etiquette might more
useful than only increasing NPI uptake rates.

As a result of this asymmetry, we observed that increasing the utility for saving others from
infection, ES was the most effective way of decreasing incidence because it supports both vacci-
nation and NPI practice. From the standpoint of an advertising campaign, this would mean
highlighting the fact that saving friends and family from becoming ill, both through vaccina-
tion and through NPIs, would be effective. In contrast, attempting to expand NPI practice
without simultaneously encouraging vaccine uptake (for example through making hand saniti-
zer stations more widely available) could be counter-productive since NPI efficacy is not as
high as vaccine efficacy. Similarly, increasing the perceived cost of infection, EI was also found
to be an effective way to reduce incidence, since both vaccination and NPI practice are
thereby supported.

The asymmetry also explains why decreasing the cost of vaccination, EV, was observed to be
effective. The resulting expansion in vaccine uptake suppresses NPI practice to some extent,
but because vaccine efficacy is higher than NPI efficacy, decreasing EV still causes net reduc-
tions incidence. Hence, reducing the perceived cost of the vaccine by expanding availability
(through more seasonal influenza vaccine clinics) or decreasing its price will reduce influenza
incidence, despite interference.

Our model makes several simplifying assumptions with respect to decision making. Firstly,
we group all NPIs into two categories: those utilized by susceptible individuals, and those uti-
lized by infectious individuals. In reality, however, an infectious individual may practice com-
binations, such as choosing to practice strict respiratory etiquette, but not staying home to
isolate themselves. Both forms of NPI likely have differing efficacy, hence our grouping as-
sumption could influence results. Similarly, we used a common cost parameter, ED, for all
NPIs, but different forms of NPI would likely impose varying costs. We also allowed our popu-
lation to have knowledge of both vaccine and NPI efficacies.

Additional factors that could impact the decision making processes are misinterpretations
of influenza-like illnesses (ILIs) as being cases of influenza. Often, individuals may mistake
other respiratory illnesses for influenza, artificially inflating perceived infection numbers and
impacting perceived vaccine efficacy. Similarly, we assume only a single strain of influenza,
when in reality, there are often multiple circulating strains. The model could be improved in fu-
ture research by adding further heterogeneity such as age structure, making perceived efficacy
depend on individual experience with interventions, and introducing a probability of ILI being
mistaken for influenza, or vice versa [24]. The contact network could also be modified to in-
clude family and work structures, which may in turn influence memories of previous infections
and perceived infection risk. For example, individuals may weigh the fact that they have had a
family member who was recently infected more so than if a casual contact like a co-worker re-
cently fell ill. Moreover, individuals may be more inclined to practice NPIs around family
members than their other contacts. Finally, personal infection history may be considered to be
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significantly more important than neighbour infection history when evaluating perceived risks,
which is not accounted for in the model.

Being a highly parametrized model, there are several drawbacks associated with calibrating
the model to empirical targets in order to obtain a baseline parameter set. We took parameter
values directly from estimates in the available literature whenever possible, but (especially for
NPIs) there is a dearth of information regarding intervention behaviour and impact for season-
al influenza [44], necessitating calibration. As a result, we had more calibrated parameters than
calibration targets (see Methods), meaning that alternative baseline parameter sets could have
matched the data almost as well as the baseline set that we used. Our adoption of very broad
sampling intervals for the probabilistic uncertainty sampling partially addresses this since the
broad intervals will include those parameter values, however, the resulting frequency distribu-
tion of outcomes could still vary depending on what baseline parameter set is used as the base-
line for defining the triangular distributions. Future work could explore alternative
parameterization methods, such as Latin hypercube sampling, which might help overcome
this limitation.

In conclusion, interference stemming from feedbacks between interventions and disease dy-
namics can comprise the realized effectiveness of those interventions for reducing influenza in-
cidence, depending on the clinical efficacy of the interventions in individuals. Health
authorities and epidemiologists should further explore the potential for interference between
different interventions for the same infectious disease, and formulate infection control
strategies accordingly.
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