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Abstract: Biomineralization of calcium carbonate has interesting characteristics of intricate
morphology formation with controlled crystal polymorphs. In particular, modification of calcite
morphology with diverse additives has been the focus of many biomimetic and bioinspired studies.
The possible role of strontium ions in enhancing the morphology-modifying ability of macromolecules
was investigated. In the present study, concentrations of strontium ions were comparable to that
in seawater, and anionic poly(acrylic acid) and cationic poly(ethylene imine) were used as model
macromolecules. When strontium ions were combined with anionic poly(acrylic acid), new types
of calcite surfaces, most likely {hk0}, appeared to drastically change the morphology of the crystals,
which was not observed with cationic poly(ethylene imine). This behavior of strontium ions was
quite similar to that of magnesium ions, which is intriguing because both ions are available from
seawater to be utilized during biomineralization.
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1. Introduction

The biological crystallization of calcium carbonate has been intensively studied for the exoskeletons
and endoskeletons of diverse biological species. For example, the calcium carbonate crystals present in
the exoskeletons (shells) of mollusks are distinctively different from the geological counterparts in that
the crystal phases and morphologies are precisely controlled [1] (pp. 88–110). Biological species are
utilizing specific phases of calcium carbonate; some examples in the exoskeletons of mollusks include
vaterite in gastropods, aragonite in nautiluses, and calcite and aragonite in mussels [1] (pp. 88–110).
In addition to the anhydrous crystal phases of calcium carbonate (vaterite, aragonite, and calcite in
increasing order of stability), amorphous calcium carbonate for temporary storage has been reported
in the Florida applesnail (Pomacea paludosa), for example [1] (pp. 88–110).

The morphological diversity of biominerals is perhaps more remarkable in that the characteristic
manifestation of the crystallographically predominant faces is often completely unnoticeable.
For example, mature coccoliths of coccolithophores are constructed with calcite but display complex
shapes with hammer-headed extensions, which are quite different from the rhombohedral morphology
usually present in the geological cases [2]. In addition, each spine of a sea urchin has a complicated
internal structure with overall circular cross-sections divided into sectors connected by spongy septa,
but surprisingly corresponds to a single crystal of calcite [3]. Still, the fractured surface of the spine
shows conchoidal cleavage unrelated to the usual {104} cleavage planes of calcite [3].
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The extraordinary controls observed in the biomineralization of calcium carbonate have been
mainly attributed to organic biomacromolecules. The composite biomacromolecular structure
of β-chitin fibrils, silk-fibroin-like proteins, and acidic macromolecules is the classic model that
instigated various ensuing studies on biomimetic and bioinspired crystallization ([1] (pp. 25–49), [3,4],
and [5] (pp. 51–72)). Another interesting hypothesis is based on protein hydrogels composed
of biomineralization-involved proteins with three distinctive sequences: intrinsically disordered
(structurally extended), amyloid-like (self-aggregating), and folded (enabling protein–protein
interactions) domains [6]. The biological crystallization has been also argued to follow paths different
from classical crystallization, involving mesoscale assembly and amorphous precursors, as a result of
the biomacromolecular control [5] (pp. 73–177). Nanoclusters have been found in echinoderms as
well as mollusk shells, where organic macromolecules undoubtedly play an important role during the
formation process ([5] (pp. 73–177), [7–9]).

Our research group has been interested in the inorganic ions, such as Mg(II), that enhance the
crystallization-regulating ability of organic macromolecules. The enhancing ability of Mg(II) was
confirmed for the prismatic-associated Asprich sequences (from the mollusk Atrina rigida), modulating
the morphology of calcite to generate atypical {hk0} faces [10]. This behavior was also mimicked by the
combination of Mg(II) and the synthetic macromolecules of poly(acrylic acid) and poly(methacrylic
acid) [11]. In the present study, we examined whether such an enhancing effect could be found in
another inorganic ion, specifically Sr(II), which has been recently reported to affect the morphology of
calcite [12].

2. Materials and Methods

All chemicals in the present study were purchased from Sigma-Aldrich (Milwaukee, WI, USA):
calcium chloride (CaCl2, 97%, anhydrous), ammonium carbonate ((NH4)2CO3, ACS Grade), strontium
chloride (SrCl2, 99%, hexahydrate), poly(acrylic acid) (PAA, Mw (weight average molecular weight,
g/mol) 1800), and poly(ethylene imine) (PEI, Mw 1300, 50 wt% aqueous solution). The molecular
structures of PAA and PEI are shown in Figure 1. Deionized water (resistivity >18.2 MΩ·cm) was
purchased from Direct Q3 (Millipore; Burlington, MA, USA).
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Figure 1. Polymeric additives in the present study: (a) poly(acrylic acid) (PAA); (b) poly(ethylene
imine) (PEI).

Crystallization of calcium carbonate was performed by diffusion of carbon dioxide, generated
from ammonium carbonate, into the aqueous solution of calcium chloride [10,11,13]. The solution of
calcium chloride (10 mM, 3 mL) was prepared in a 10 mL glass vial at room temperature by completely
dissolving the calcium chloride (stirring for 1 h with a magnetic stir bar after capping). Note that the
calcium concentration of seawater is also approximately 10 mM [14]. The solution was then moved
to a glass petri dish (5 cm diameter), which was sealed with a paraffin film but with a hole (1–2 mm
diameter) in the middle for the entry of carbon dioxide. The petri dish was placed in a desiccator (3 L
volume), where the ammonium carbonate powder (2.5 g) was placed 5 cm below the dish. After the
desiccator was sealed, it was placed in an incubator (BF-150LI, BioFree, Seoul, Korea) at 25 ◦C. After
48 h, the crystallization was finished by filtering the solution to collect crystals on a polycarbonate
track-etched membrane (13 mm diameter, 1 µm pore size; Whatman, Maidstone, UK) and washing
lightly with deionized water. The crystals were dried for 24 h at room temperature. The glass petri
dish was also lightly washed with deionized water and dried.
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When strontium was present, strontium chloride was added to the calcium chloride solution at
appropriate concentrations (0.10 mM, 0.20 mM, and 0.40 mM) before placing in the desiccator. Note
that the strontium concentration of seawater is about 0.08–0.09 mM [15]. When PAA or PEI was added
to the calcium chloride solution, the polymer concentrations were 1 µM and 5 µM. All other procedures
were the same as without additives.

Crystal morphology was observed via scanning electron microscopy (SEM, GeminiSEM 300, Zeiss,
Oberkochen, Germany). Thin Au coatings were applied using a sputter coater (Q150R S, Quorum,
Lewes, UK) to minimize charging. Shape software (version 6.0; Shape Software, Kingsport, TN, USA)
was used for the morphological simulation with the known crystallographic information of calcite [16].
Also, crystal phases were analyzed based on X-ray diffraction (XRD, D2 PHASER, Bruker AXS, Billerica,
MA, USA) using CuKα radiation (λ = 1.5406 Å) at 30 kV and 10 mA. The 2θ-θ mode was employed to
scan a 2θ range of 20–60◦ at a scanning rate of 1◦/min (0.02◦ increment). A zero-background sample
holder (Bruker AXS, Billerica, MA, USA) was used to minimize background noise.

3. Results and Discussion

The crystals of calcium carbonate obtained in the presence of Sr(II) and PAA are shown in Figures 2
and 3, along with the control experiment (no additive). The crystal morphology with no additive was
rhombohedral, enclosed by {104} faces, characteristic of calcite [7–10]. The molar ratio of Sr/Ca varied
at 1:100, 1:50, and 1:25, where Ca(II) concentration was set as 10 mM and Sr(II) concentration was
varied 0.10 mM, 0.20 mM, and 0.40 mM, respectively. The concentration of PAA was 5 µM (Figure 2)
and 1 µM (Figure 3). In all cases in the present study, the polymorph of calcium carbonate crystals was
determined as calcite based on the XRD patterns (Figure S1).
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Figure 2. Scanning electron microscopy (SEM) images of the calcite crystals formed with: (a) no
additives; (b) 5 µM poly(acrylic acid) (PAA) at Sr/Ca = 1:100; (c) 5 µM PAA at Sr/Ca = 1:50; (d) 5 µM
PAA at Sr/Ca = 1:25.

When Sr(II) coexisted with PAA (5 µM) (Figure 2), the acute sides of the calcite crystals were
rounded, indicating the formation of new faces other than {104} [7,8]. The extent of morphological
alteration was proportional to the amount of Sr(II) (see Figure 2b–d). It was quantified as the ratio of
acute/obtuse edge length, which was intrinsically unity for the rhombohedral shape and increased
as the acute edges became less linear. The span of obtuse edges was set as the length of the linear
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perimeter bordering on adjacent {104} faces. The acute/obtuse ratios were 1.27, 1.29, and 1.37 for
Sr/Ca = 1:100, 1:50, and 1:25 (5 µM PAA), respectively.Materials 2019, 12, x FOR PEER REVIEW 4 of 8 
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Figure 3. SEM images of the calcite crystals formed with: (a) no additives; (b) 1µM PAA at Sr/Ca = 1:100;
(c) 1 µM PAA at Sr/Ca = 1:50; (d) 1 µM PAA at Sr/Ca = 1:25.

When Sr(II) was with 1 µM PAA, the morphology of calcite did not change as much (Figure 3).
The overall rhombohedral shape was preserved in all cases. However, a distinctive surface attribute
appeared: striated features (marked with white arrowheads) nearly parallel to the diagonal of the
{104} surfaces. This feature was not observed unless both additives were present at the same time
as explained in the following paragraphs. This suggests that the diagonally striated features are the
combined effects of Sr(II) and PAA. Still, it is yet to be determined whether this feature is possibly a
nascent form of the more drastic changes observed with Sr(II) and 5 µM PAA.

When either Sr(II) or PAA was present without the other counterpart, the corresponding
morphological alterations could not be observed. The calcite morphologies with the addition of
only Sr(II) are shown in Figure 4. The overall rhombohedral shapes of calcite were preserved at all
concentrations of Sr(II) in the present study. Still, the compartmentalized surface features, whose
extent was proportional to the concentration of Sr(II), clearly attested to the growth-disrupting effects
of Sr(II) [17]. For the case of Sr/Ca = 1:25 (Figure 4c), subtle protrusion of some compartments from the
underlying surfaces was visible (marked with white arrowheads). This observation indicated that Sr(II)
hindered the step propagation to localize the crystal growth, which was in accordance with a study of
in situ atomic force microscopy on the calcite step growth with the addition of Sr(II) [18]. Alternatively,
Sr incorporation in calcite could alter the lattice parameters of the growing crystal layers to induce
lattice strain that may lead to the compartmentalized surface features [19]. In fact, the {104} XRD
peak was shifted down 0.06◦ and 0.08◦ from that of neat calcite for Sr/Ca = 1:100 and 1:25 (Figure S1),
respectively, which corresponded to the 2.9 wt% and 3.8 wt% Sr incorporation based on the analysis
by Hodkin et al. [12]. Still, the disruption did not generate new types of crystal surfaces, preserving
the overall rhombohedral morphology of the crystals. We note here that the crystallization method
(carbon dioxide diffusion at pH 6–9) in the present study is quite different from that in the previous
report on Sr(II) (homogeneous precipitation at pH > 12 with calcite seed crystals; Sr/Ca ratio up to
20 times higher), making direct comparisons implausible [12].
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Figure 4. SEM images of the calcite crystals formed with Sr(II) and without polymeric additives:
(a) Sr/Ca = 1:100; (b) Sr/Ca = 1:50; (c) Sr/Ca = 1:25.

The calcite morphologies with the addition of only PAA are shown in Figure 5. PAA also appeared
to disrupt the growth of calcite but in a less regular way than Sr(II), which is consistent with the
findings in previous studies [11,20]. With 1 µM PAA, the effect was mainly localized on the {104}
surfaces of calcite. As PAA concentration increased to 5 µM, uneven surface features became more
predominant, and the emergence of new types of surfaces along the edges between {104} faces became
more apparent (Figure 5c, marked with a white arrowhead). Still, the overall rhombohedral features
appeared largely preserved. Note that calcite crystals aggregated at the higher PAA concentrations
(Figure 5c) without apparent crystallographic preferences, which makes it difficult to ascertain the
shapes of individual calcite crystals.
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When Sr(II) was combined with PEI, a cationic polymer at the pH condition (pH 7–9) of the
present study, the effects appeared to be additive (Figure 6) compared to the synergistic cooperative
effects observed with anionic PAA (Figure 2). When Sr(II) and PEI coexisted, the overall rhombohedral
morphology of calcite was preserved (Figure 6), which immediately distinguished the influence of
Sr(II)/PEI from that of Sr(II)/PAA. The modification of calcite due to the addition of Sr(II) and PEI
was mostly limited to the {104} surfaces. The compartmentalized features showed up at Sr/Ca = 1:100
(Figure 6b,e) and became intensified at Sr/Ca = 1:25 (Figure 6c,f), which was consistent with the
morphological changes with the addition of Sr(II) only (Figure 4). The effect of PEI on the {104} surfaces
appeared more random without apparent correlation with the crystallographic directions innate to
calcite, which was in accordance with the previous study [11]. The effect of PEI appeared somewhat
intensified with the addition of Sr(II). This could be related to the increase of the surface edges with the
compartmentalized features induced by Sr(II) and/or to the hindered crystal growth by Sr(II), allowing
better chances for the PEI molecules to adsorb onto the calcite surfaces.

Overall, the cooperative modulation of calcite morphology by Sr(II) and anionic PAA was
positively identified. This was the second case of the cooperative effect by inorganic ions and organic
macromolecules (Mg(II) and anionic macromolecules being the first such case [10,11]). The modified
morphology was quite similar between the two cases (Figure 7a,b). Also, only anionic macromolecules
were effective in both cases, indicating the deficient number of oxygens surrounding Ca(II) in new types
of surfaces (Figure 7c,d) played a vital role to enable selective binding of anionic molecules to ultimately
extend the new surfaces and modify the overall calcite morphology [10,11]. It is interesting to note
here that the Sr incorporation, based on the down shift of the {104} XRD peak (Figure S1), was reduced
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with the addition of PAA (5 µM): 2.9 wt% (∆2θ = 0.06◦) to 1.4 wt% (∆2θ = 0.03◦) for Sr/Ca = 1:100 and
3.8 wt% (∆2θ = 0.08◦) to 2.4 wt% (∆2θ = 0.05◦) for Sr/Ca = 1:25 [12]. This could indicate that PAA
molecules were adsorbing on the site rich in Sr(II) and displacing Sr(II) while allowing {hk0} faces to be
expressed. Further studies would be necessary to verify the interplay between the interactions of Sr(II)
and PAA on the surfaces of calcite crystals.
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Sr/Ca = 1:100; (f) 5 µM PEI at Sr/Ca = 1:25.
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Figure 7. SEM images of the calcite crystals formed with: (a) 5 µM PAA at Sr/Ca = 1:100; (b) 1 µM
PAA at Mg/Ca = 1:10 (reproduced from reference [8]; copyright 2016 The Polymer Society of Korea);
(c) simulated morphology of calcite with some {hk0} faces in addition to {104}; (d) deficient number (4)
of oxygen (white arrows) surrounding a calcium on (110) plane (reproduced from reference [7]).

4. Conclusions

In summary, the combined effects of Sr(II) and anionic PAA on the morphology of calcite crystals
were studied in the concentration range of Sr(II) comparable to the natural abundance (0.08–0.09 mM) in
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seawater [15]. When Sr(II) coexisted, anionic PAA was able to transform the rhombohedral morphology
of calcite, surrounded only by {104} surfaces, into an atypical shape enveloped with new types
of surfaces capped with two {104} surfaces when looking down on a {104} face (Figure 7a). This
behavior was nearly identical to the cooperative effects of Mg(II) and anionic macromolecules, such
as PAA stabilizing {hk0} faces (Figure 7c) [10,11]. The Sr(II) with cationic PEI did not show similar
behavior, confirming that the oxygen deficient {hk0} was stabilized through the electrostatic binding
of PAA [21,22]. It is of interest to note that the behaviors of anionic macromolecules are comparable
when Sr(II) or Mg(II) coexist, both of which are in the natural environment and available during
biomineralization. The possibility of a similar cooperative mechanism in play during biomineralization
has to be tested with a model crystallization system that mimics the non-classical crystallization of
biominerals, especially with amorphous precursors. Experiments are currently in progress to establish
a simple crystallization system with a stabilized amorphous calcium carbonate.

Supplementary Materials: The following is available online at http://www.mdpi.com/1996-1944/12/20/3339/s1,
Figure S1: XRD patterns for the representative calcite crystals: (a) full spectra (2θ range 20–60◦); (b) zoomed-in
spectra where the positions of {104} peaks marked with blue bars.
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