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Abstract

Hypothesis generation in observational, biomedical data science often starts with computing

an association or identifying the statistical relationship between a dependent and an inde-

pendent variable. However, the outcome of this process depends fundamentally on model-

ing strategy, with differing strategies generating what can be called “vibration of effects”

(VoE). VoE is defined by variation in associations that often lead to contradictory results.

Here, we present a computational tool capable of modeling VoE in biomedical data by fitting

millions of different models and comparing their output. We execute a VoE analysis on a

series of widely reported associations (e.g., carrot intake associated with eyesight) with an

extended additional focus on lifestyle exposures (e.g., physical activity) and components of

the Framingham Risk Score for cardiovascular health (e.g., blood pressure). We leveraged

our tool for potential confounder identification, investigating what adjusting variables are

responsible for conflicting models. We propose modeling VoE as a critical step in navigating

discovery in observational data, discerning robust associations, and cataloging adjusting

variables that impact model output.

Introduction

Observational data science is often akin to sailing without a map. We navigate, at times blindly,

through an infinite array of variables—some that were immeasurable until recently—to iden-

tify those that are potentially associated with an outcome (e.g., disease). This hypothesis-gener-

ating process, at large scale, is “discovery,” and it stands in contrast to approaches

underpinned by theory or a prior hypothesis (e.g., randomized clinical trials) that, for the most

part, predate the observational “big data” revolution of the 21st century. Most scientific disci-

plines—and many eye-catching results discussed in media outlets—rely on nonrandomized/
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noninterventional observational data in some capacity. Whether it be eyeglass usage and

COVID-19 infections [1], milk and breast cancer [2], the human microbiome and any number

of diseases [3], or red meat and heart disease [4], these conclusions are based on correlations

from observational studies of varying size.

Charting a course through the process of analyzing observational data (Fig 1) is not always

straightforward, however. Any decision along the analytic pipeline—from data collection to

statistical analysis—can introduce uncertainty (e.g., false positives), obscuring underlying biol-

ogy [5–7]. As a result, there is a large need for methods to aid in navigating the maelstrom of

the analytic process. Here, we present a tool, “quantvoe,” for mitigating one of many potential

biases: arbitrary model specification to address potential confounding. Broadly speaking,

quantvoe operationalizes the identification of robust (i.e., high-confidence) versus nonrobust

(i.e., low-confidence) associations, enabling greater long-term model reproducibility and

interpretability. For example, if our tool had existed in the past year, we could have understood

one aspect of the confusing and contradictory claims regarding COVID-19 positivity and vita-

min D levels [8].

Quantvoe identifies confounding in associations by a form of sensitivity analysis: modeling

“vibration of effects,” (VoE), which is defined as how model output changes as a function of

specification, specifically the distribution of the size, direction, and statistical significance of

the association between 2 features (Fig 1B–1D) [5–7]. It is capable of identifying highly nonro-

bust associations with “Janus effects” (JEs), where model specification yields consistently

results, reporting both positive and negative associations. In practice, JEs can be used to under-

stand if an association between 2 variables is consistent regardless of model specification. For a

full list of definitions relevant to quantvoe, please see S1 Table.

The task of correlating an “independent variable X” with a “dependent variable Y” lies at

the heart of many observational studies. Confounding variables are defined as being correlated

to both X and Y. A priori “adjustment,” or inclusion/stratification of hypothesized and mea-

sured confounding variables in a model, may address confounding bias; however, there is an

infinite sea of modeling options. Without underlying theory, there is no consensus on what

variables should be considered in a model [6]. However, arbitrary choices in modeling strate-

gies has leading some to conclude that most published research findings are false, or, at least,

not reproducible [7]. Different adjustment or modeling strategies may lead to contradicting

results—an “X,” (e.g., vitamin D), being either positively or negatively associated with a “Y”

(e.g., COVID-19 positivity) depending on what covariates a researcher adjusts for in a given

model. In other words, is vitamin D really associated with COVID-19 positivity [8], or are

there some other characteristics of individuals that have high vitamin D (e.g., age, exercise,

diet) that can make them appear at higher or lower risk for COVID-19?

Modeling VoE can be thought of as a specific type of “multiverse analysis” designed for a

“discovery” scenario in biomedical sciences, where there are many possible X variables to be

correlated with a Y variable, such as metagenomic-phenotype association studies or expo-

some-wide association study [9,10]. Multiverse analyses, very broadly speaking, describe how

any analytic choice (e.g., data preparation, model assumptions, model type) can change find-

ings, and there are many different forms of them [11–13]. But few of the possible types of mul-

tiverse analyses have been fully automated and many require manual configuration.

Additionally, some of these tools, such as specification curve analysis [14,15], rely on users

“enumerating all data analytic decisions necessary to map a hypothesis onto a set of possible

associations,” a step often not feasible for complex, discovery-based questions and analyses,

such as genomics. VoE expands on multiverse analysis, fully automating the exploration of

model choice. For example, we have recently used VoE to prioritize >1 million correlations in

metagenomic-phenotype associations [16].
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No standardized software package exists to systematically model VoE in massive datasets

with hundreds of potential adjusting variables. Other work and software packages for model-

ing sensitivity under the umbrella of multiverse analysis is additionally focused less on model-

ing strategy and more on alternative aspects of data analysis, such as data collection [17]. We

propose that this gap is limiting the ability of researchers to navigate observational data, identi-

fying robust associations and potential confounders. Indeed, in other disciplines (e.g., genet-

ics), the development of analogous software (e.g., PLINK [18]) democratized genetic

Fig 1. Overview of the algorithmic approach and its place in the hypothesis generation toolkit. (A) The process/paradigm of “data-

driven” discovery. First, high-dimensional data are collected on a set of individuals with a given phenotype (i.e., a disease) as well as

controls (individuals without the phenotype). The researcher selects a modeling strategy, most often just one, and computes

associations between the phenotype of interest (a “Y”) and a particular feature (an “X,” like coffee in the example). The resultant

associations yield associational “hypotheses” regarding the relationship between the X and the Y, but only fitting one model

specification can yield nonrobust results. Quantvoe replaces this middle step of choosing one model, instead attempting to fit up to

every possible model specification, thereby charting a course to robust hypothesis generation. (B) Quantvoe takes 3 types of input data,

all in the form of pairs of data frames (tables), either at the command line or in an interactive R session: (1) a single dependent variable

and multiple independent variables; (2) multiple dependent variables, or (3) multiple datasets. (C) There are 4 main steps—checking

the input data, computing initial univariate associations, computing vibrations across possible adjusters, and quantifying how adjuster

presence/absence correlates to changes in the primary association of interest. (D) Following computing VoE, we evaluate the results by

measuring Janus effect (the fraction of associations greater than 0) and estimating the impact of different adjusters on the change in

correlation size.

https://doi.org/10.1371/journal.pbio.3001398.g001
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epidemiology and meta-analysis (e.g., via genome-wide association studies [GWASs]). Finally,

there is also a need also missing from these other approaches to not just quantify VoE demon-

strate how results change as a function of approach, but specifically show why model output

may vary why they do: what adjusters confound associations the most and therefore should be

considered in future studies.

To address these gaps, we developed quantvoe to efficiently search among all (potentially

thousands) of covariates, automatically identifying what measured adjusting variables drive

inconsistency in associations between X and Y. Simply put, for a given dataset, our package fits

up to every possible model using every covariate present and analyzing variation in the output

(Fig 1). This analysis yields lists of candidate variables, some of which potentially could be con-

sidered as adjusting variables in later analyses. We specifically analyze the degree to which var-

iables potentially impact association sizes.

We applied our package to 2 use cases to demonstrate its utility for addressing the critical

step of identifying robust versus nonrobust associations in biomedical research. First, we used

2 of the largest, general observational cohorts in existence (The volunteer-based UK Biobank

[UKB] and the survey-based National Health and Nutrition Examination Survey [NHANES])

to query 5 different associations. We selected these cohorts on the bases of their vast array of

potential confounding variables (e.g., laboratory, dietary, and lifestyle covariates) and sample

size, each containing >50,000 individuals. Second, in NHANES, we explored VoE in-depth in

the association between a set of dietary and lifestyle exposures and indicators of risk for cardio-

vascular disease and medical intervention.

Results

Vibration of effects pervades popularized and reported associations

We probed the associations between calcium intake and femur density, carrot intake and eye-

sight, COVID-19 positivity and vitamin D levels, poverty level and blood glucose, and lisino-

pril usage and systolic blood pressure. Lisinopril, which is used to reduce blood pressure, is the

most commonly prescribed drug in the NHANES 2011 to 2018 prescription data. Socioeco-

nomic status is often reported as a risk factor for type 2 diabetes (high blood glucose), and vita-

min D has been both positively and negatively associated with COVID-19 positivity in

conflicting studies [8,19–21]. Finally, calcium and carrot intake pervade the public zeitgeist as

causal for increasing bone strength and vision, respectively [22–25].

Fitting 10,000 vibrations (different model specifications) per association, we identified vary-

ing levels of VoE in the 5 potential relationships described above (Fig 2A–2E, S2 Table). In

addition to reporting JEs, we report the median, 1%, and 99% quantiles of association sizes

across all models. SARS-COV-19 (COVID) positivity and vitamin D (Fig 2E) had the most

substantial JE (0.55, i.e., 55% of models show a positive relationship, 45% a negative one), fol-

lowed by systolic blood pressure and lisinopril (Fig 2D) (JE = 0.46), though the latter had fewer

nominally significant outputs than the other associations tested. The association between pov-

erty index and blood glucose had a JE of 0.09 and was overall negative (i.e., decreased wealth,

increased blood glucose).

We found that moderate changes to model adjustment yielded contradictory results. For

example, adjusting the association between femur density and calcium intake, for phosphorus

intake versus vitamin B12 intake yielded opposite sign yet statistically significant results (Fig

2A). Similarly, alternative dietary variables (e.g., egg, fruit, and vegetable intake) appeared to

correlate to sign-switching in the relationship between carrot intake and vision, which was our

most robust finding (though it still had a moderate JE = 0.06). Incidentally, however, on aver-

age, increased carrot intake was associated with worse vision (a median negative association
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size of −0.05). Adjusting the COVID-19 versus vitamin D associations for the presence of

smokers in the patient’s household in one case yielded a nominally significant negative associa-

tion, whereas other models, when adjusted for a range of features like dietary choices, yielded a

positive and nominally significant result.

Quantifying vibration of effects in common indicators of cardiac health

We next leveraged our pipeline to model VoE for a second use case—querying a range of indi-

cators that have been reported as relevant to aspects of cardiovascular health and are compo-

nent variables of the Framingham Risk Score [26–28]. Specifically, our dependent variables

were systolic blood pressure, body mass index (BMI), low-density lipoprotein (LDL) choles-

terol, and total cholesterol. We tested the association between these phenotypes and exposures

that had been reported as associated in the observational literature with cardiovascular health,

including total caloric intake, fiber intake, alcohol intake, sugar intake, fat intake, caffeine

Fig 2. Examples of VoE for prominent associations. Each point in the density plots represent at least one model. x-Axes are estimate size for beta-

coefficients of interest (e.g., for panel A, the coefficient on the calcium intake variable). Quantiles show the range of estimate sizes for each above

relationship. The y-axis is the −log10(p.value) of that association. The solid line is nominal (p< 0.05) significance. Data underlying these plots are

available at https://figshare.com/account/home#/projects/120969 and S2 Table. VoE, vibration of effects.

https://doi.org/10.1371/journal.pbio.3001398.g002
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intake, physical activity, smoking, family history of coronary artery disease, and, once again,

BMI) [26,29–35].

We identified VoE for the majority of these 39 relationships (Fig 3, S2 Table), with 26/39

(66.7%) of tested relationships highly dependent on model specification and demonstrating

JEs. Only one association (between systolic blood pressure and alcohol usage) was devoid of

conflicting results, and 30/39 (77.0%) had at least one example of statistically significant

(p< 0.05) and opposite sign associations for the variable of interest. The least robust associa-

tions were between LDL and sugar intake (JE = 0.53), systolic blood pressure and total fat

(JE = 0.48), and BMI and caffeine intake (JE = 0.55). The most robust negative associations

were systolic blood pressure and caffeine intake (JE = 0.001) as well as systolic blood pressure

and fiber intake (JE = 0.002). The most robust positive associations were systolic blood pres-

sure and alcohol intake (JE = 1.0), total cholesterol and caffeine intake (JE = 1.0), total choles-

terol and alcohol intake (JE = 1.0), systolic blood pressure and BMI (JE = 1.0), and LDL and

caffeine intake (JE = 1.0). With the exception of its association with caffeine intake, every rela-

tionship tested with LDL was nonrobust.

Having discovered substantial model specification–dependent VoE among established

associations with cardiovascular health, we next sought to identify which adjusters were driv-

ing the majority of JEs. As part of its built-in function, our software measures how the presence

or absence of different variables correlates with increases or decreases in the absolute value of

association size for particularly nonrobust associations (see Materials and methods, Eq 11).

We report the impact on VoE of (1) established correlates of heart disease risk as well (edu-

cation and race/ethnicity) as (2) additional adjusters illuminated by our study (Fig 4). We were

able to identify situations where the presence or absence of an adjuster in a model correlated

heavily to the direction of association for the independent and dependent variables of interest.

Alternatively, dietary intake (e.g., magnesium and moisture) tended to have strong effects on

the direction of association between fiber intake and total cholesterol. (Fig 4A and 4B). The

association between smoking and systolic blood pressure (Fig 4C and 4D) was sensitive to

adjustment to socioeconomic variables (e.g., income). Notably, models adjusted for education

tended to have negative directionality, whereas models adjusted for weight tended to have pos-

itive directionality. Adjusting for other dietary and socioeconomic features, such as insurance

coverage, also played a major role in the associations between BMI and caloric intake (Fig 4E

and 4F) and LDL and sugar intake (Fig 4G and 4H). For the latter, modules adjusted for carbo-

hydrate intake tended to yield a positive association, whereas models adjusted for if an individ-

ual had received an oral glucose tolerance were negative. We additionally report model

validation plots for this analysis (e.g., residuals) in S1 Fig.

We found in many cases that the same adjusting variables affected associations for multiple

dependent features, such as in the case of carbohydrate intake, risk for diabetes, and weight.

Conversely, a number of dominant adjusters were unique to particular dependent features,

like folate and total cholesterol/fiber, various fatty acids and BMI/caloric intake, and hemoglo-

bin and blood pressure/smoking.

Toward optimally modeling of vibration of effects

Modeling VoE is inherently a computationally demanding task due to the number of models

that must be estimated. As such, we estimated the minimum number of models fit to accu-

rately measure association robustness or associations of interest that we would later probe in

detail. We fit a total of 13,047,200 models. Runtime scaled exponentially, whereas RAM usage

was relatively unchanged (Fig 5A and 5B, S2 Fig), with a range of 0.38 to 6.5 GB depending on

the number of vibrations and specific association.
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Fig 3. VoE output for 10 exposures and their relationship with common indicators of cardiovascular health in the

form of density plots. Each point represents output from different model specifications. The x-axis is the beta-
coefficient on the primary independent variable of interest (e.g., physical activity), and the y-axis the −log10(p.value) of

that association. The solid line is nominal (p< 0.05) significance. Data underlying these plots are available at https://

figshare.com/account/home#/projects/120969 and S2 Table. BMI, body mass index; LDL, low-density lipoprotein;

VoE, vibration of effects.

https://doi.org/10.1371/journal.pbio.3001398.g003

Fig 4. Examples of adjusters that appear to drive VoE for highly confounded associations. Rows: associations with particularly high JEs

for each dependent variable. Left column: established variables known to confound cardiovascular risk factors. Middle column: top 10

adjusters (not found in the left most column) whose presence is correlated to changes in the associations reported on the rows. Right

columns: vibration plots from Fig 3 (rescaled on the axes) colored by if the adjuster in the plot title was present in models represented by a

given point. The solid line is nominal (p< 0.05) significance. Data underlying these plots are available at https://figshare.com/account/

home#/projects/120969 and S2 Table. JE, Janus effect; LDL, low-density lipoprotein; MFA, Monounsaturated Fatty Acids; OGTT, oral

glucose tolerance test; PIR, poverty income ratio; SFA, Saturated Fatty Acids; VoE, vibration of effects; WIC, Women, Infants, Children.

https://doi.org/10.1371/journal.pbio.3001398.g004
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We measured the impact of the presence or absence of different adjusting variables on the

association between our primary variables and dependent variables. The output of this analysis

is a weight measuring the impact a given adjusting variable has on change in association size—

we computed the correlation between these weights at differing numbers of models fit (e.g.,

100 versus 1,000 versus 10,000). At 10,000 vibrations (which ran for an average of 1.8 hours

and used 3.4 GB of RAM) per dependent variable, the correlation with all higher-numbers-of-

vibration tests was on average >0.98 in all cases, indicating consistency in the effects of differ-

ent adjusters regardless of sampling size above that point (Fig 5C). Given our other parameters

(max variables per model = 20), this worked out to each of the approximately 300 adjusting

variables (the exact number varying depending on the association in question) being present

an average of 398 +/− 178 models when running 10,000 vibrations.

Discussion

The novelty of our tool—quantvoe—lies in its ability to bridge the gap between data and robust

associations in observational and biomedical studies. By using quantvoe, researchers can iden-

tify which associations are robust (or not) and why this is the case prior to publishing them.

Indeed, many “popular” associations—like the association between egg consumption and

mortality [36–38]. The association between wine consumption and cardiovascular health

[39,40] and even the results of famous “marshmallow experiment” as an indicator of a child’s

self-control and success later in life [41–44] have conflicting reports of directionality that, we

hypothesize, could potentially be attenuated by multiverse analyses such as probing the space

of VoE possible for those variables.

Given our result showing the immense variation in output even in well-established corre-

lates of cardiovascular health (e.g., exercise and BMI) and other relationships (e.g., vitamin D

and COVID-19 positivity), we clearly need to be transparent when anchoring claims based on

associations, especially when hypotheses about the X and Y are not prespecified or when aris-

ing from datasets with a large number of variables measured. In the predictive setting, and

even in the case where a researcher prefers not to use a linear model for their final association

Fig 5. Software performance statistics. (A) Runtime for different numbers of vibrations, (B) memory usage for different numbers of vibrations, and

(C) consistency of results across the number of vibration associations (n). Heatmap color depicts the correlations between the coefficients in the

nonmixed effects version of Eq (10). Data underlying these plots are available at https://figshare.com/account/home#/projects/120969. BMI, body mass

index; LDL, low-density lipoprotein.

https://doi.org/10.1371/journal.pbio.3001398.g005

PLOS BIOLOGY Charting a course in observational science with vibration of effects

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001398 September 23, 2021 9 / 21

https://figshare.com/account/home#/projects/120969
https://doi.org/10.1371/journal.pbio.3001398.g005
https://doi.org/10.1371/journal.pbio.3001398


or prediction (and would rather compute a final predictive accuracy statistic) modeling VoE

quickly on the important variables can still be useful to quantify the robustness of predictions

[45].

Our approach, however, is not without caveats. First, our specific implementation makes

use of generalized linear models, and there are many possible more complex associational

methods that could potentially capture nonlinearities, such as pretransforming the variables

(which itself could be thought of as yet another parameter to vary). Second, our definition of

JE is only contingent on association size, and not statistical significance. An alternative

approach would be to measure JEs only for estimates that passed a certain significance cutoff.

We deliberately chose to avoid this as (1) p-values vary highly depending on small changes

made by the researcher and significance thresholds are, at best, somewhat subjective, and (2)

while approaches exist for inference after feature selection in machine learning (e.g., “post-

selection inference” [46]), it is still not straightforward to estimate inferential statistics on

many popular modeling approaches like random forests or similarly complex machine learn-

ing methods. It is additionally worth noting that when signs change sign, or the JE, across

model specifications is neither entirely unexpected (due to the underlying correlation structure

of the data) nor necessarily a negative [47] with respect to overall findings. In the examples we

describe, the JE could help identify potential confounding variables.

Additionally, our analysis to identify potential confounders (Fig 4) may have some draw-

backs if the models violate some of the assumptions of regression. While, on average, the

examples in this manuscript did not egregiously do so (S1 Fig), there are, for example, outliers

and slight nonnormality in residuals. As a result, we recommend users consider the full model

output, which is provided alongside summary statistics, for their specific use case. In future

versions of quantvoe, it may be prudent to consider alternative confounder analysis strategies

than a simple (mixed) linear regression, like variable selection methods (e.g., an elastic net).

There are also potential drawbacks to our brute force modeling approach (i.e., fitting up to

every possible model). For example, there may be variables not measured in a cohort that are

critical for modeling, and given that random permutations of models are fit, these may be

missing a certain unknown necessary adjusting variable. Alternatively, collider bias or reverse

causality may complicate the output of the mixed effect modeling analysis in terms of distin-

guishing between confounding and colliding. We also do not consider metrics such as R2 or

Akaike information criterion (AIC), which could be used to evaluate model fit. However, full

model outputs are returned as part of quantvoe, so users can analyze these metrics. Future iter-

ations of quantvoe should automate the evaluation of models based on these and other criteria,

enabling users greater clarity when interpreting our analysis.

Given these drawbacks, it is worth noting that there are other tools, like Bayesian modeling

averaging [48] or regularization methods (e.g., LASSO) [49], which have been used to search

the space of variables measured in a dataset that predict the Y optimally; however, these stand

apart from our method, which automates multiverse analysis by undertaking a systematic

exploration and presentation of the association and inference between an X and Y as a func-

tion of all other possible models in a dataset. Furthermore, there are other methods that could

be used for sensitivity analysis. A nonexhaustive list includes E-values (which measures how

strong the association between potential confounding variables, the outcome, and the exposure

would have to be to influence an association of interest), Monte Carlo sensitivity analysis

(which attempts to correct for bias based on model parameters), or the Confidence Profile

Method (which is a Bayesian approach to measure uncertainty) [50,51]. All of these methods

have their strengths and limitations [52]. The key difference between these tools and VoE is

that VoE explicitly models the impact of specific and measured adjusting variables or model

specifications on an association size instead of using outside parameters and assumptions to
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do so. That said, these methods could be used to augment quantvoe, or potentially they could

be deployed in its stead in situations where the potential drawbacks of the brute force model-

ing approach (e.g., compute time) outweigh the benefits. We believe considering quantvoe

alongside other tools will be crucial in the future, as its misuse or overuse would lead to an

excessive on how it displays model robustness, which, in turn, would be its own form of bias.

Overall, we have developed software for automatically assessing VoEs to identify adjusting

variables that may foul up associations, leading investigators and the public astray. This soft-

ware allows researchers to automate sensitivity analyses, to navigate through large-scale associ-

ation studies, fulfilling a tenet of biomedical data science: computing robust associations. We

used our tool to query a range of reported associations, including those between exposures and

cardiovascular risk prediction, the components of the Framingham Risk Score [28]. In the

end, our methods are generalizable to any correlational study. We hope that our tool can be

deployed, either prior to or in lieu of more complicated associational methods, to deepen our

understanding of “rules” that govern observational data, providing a bulwark against the publi-

cation of inaccurate results and prioritizing the impact of those that are robust.

Materials and methods

Overview

The “quantvoe” package can be accessed from Github (https://github.com/chiragjp/quantvoe).

It is implemented using the Tidyverse [53], so all data frames should be passed as “tibbles.” For

more information on the Tidyverse and its associated data structures (e.g., tibbles), please see

https://www.tidyverse.org/. Its purpose is, for a given dataset, to identify the “analytic flexibility

landscape” of a particular correlation between a “primary independent variable” (e.g., BMI)

and at least one “dependent” variable (e.g., dietary fiber intake) in 3 broad steps: (1) initial

associations; (2) vibrations; and (3) analytic flexibility landscape analysis (identifying potential

confounding adjusters, as in Fig 5) (Fig 1C). These processes involve, respectively, fitting an

initial univariate linear model for an independent primary variable of interest and each depen-

dent primary variable, computing vibrations for each dependent variable (i.e., fitting up to 2P

models, where P corresponds to the number of possible adjusters and generally should be

under 1,000), and identifying with a separate regression analysis the contribution of different

adjusters to the overall VoE. If multiple cohorts are provided, the software will run a random

effects meta-analysis after the first step to compute overall p-values and effect sizes for the ini-

tial associations. An analyst can use any family of linear model from R’s “glm” module (with

the default being gaussian). Another option includes negative binomial regression for overdis-

persed count data. The output from each step, including the initial data, is returned as a

named list. The entire pipeline can be run with one command, or its components can be

deployed individually. In addition to the standard, interactive, function-based interface of the

R language, we provide a command line interface to allow for straightforward package deploy-

ment on virtual machines or high-performance-compute clusters. We confirm that we fol-

lowed the STROBE checklist for reporting of observational studies.

Parameters

We provide a range of parameters (S4 Table) when running the full pipeline that allow users to

customize the pipeline to their specific use case and, if needed, reduce processing. That said,

only 3 parameters must be specified by the user, as the rest have defaults that will work in most

cases.

If the user is using the command line implementation, then these parameters can be dis-

played by running “Rscript voe_command_line_deployment.R -h.” The only additional

PLOS BIOLOGY Charting a course in observational science with vibration of effects

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001398 September 23, 2021 11 / 21

https://github.com/chiragjp/quantvoe
https://www.tidyverse.org/
https://doi.org/10.1371/journal.pbio.3001398


required parameter is “-o,” which specifies the path to and name of the RDS file where the out-

put should be saved.

Input data

User input can come in 1 of 3 forms depending on the end goal (Fig 1B). In all cases, the user

specifies at least 1 pair of R tibbles—one containing the dependent variable(s) of interest (m X
n, where m = number of samples and n = number of dependent variables and sample identifi-

ers), one (m X p, where p = number of adjusters, the independent variable, and the sample

IDs) containing the independent variables (the primary independent variable of interest and

the adjusters to be used in vibrations). The first (left-most) column for both tibbles links the

dataframes and must contain the sample identifiers, with one unique value per row. Multiple

samples per individual (i.e., duplicate sample identifiers) are not permitted. The numbers on

the left hand side of Fig 1B correspond to the following 3 situations:

1. One dependent variable—This is a classic cross-sectional epidemiological design. The

dependent variable tibble contains 2 columns, one for the sample identifiers and one for the

data.

2. Multiple dependent variables (discovery)—The user has multiple dependent variables

(many thousands) of interest and is interested in discovery.

3. Multiple cohorts (meta-analysis)—The user has multiple cohorts and therefore must supply

as many pairs of dependent/independent dataframes as there are cohorts. After running the

initial associations for each cohort, a meta-analysis will be computed to generate overall

summary statistics for the correlation(s) of interest.

As input, a user can specify any number of cohorts or dependent variables to vibrate over.

If multiple cohorts are provided, the tool runs a random effects meta-analysis across the initial

associations in each cohort (see Initial associations and optional meta-analysis).

Initialization

Prior to launching the pipeline, the tool reports and logs the specific parameters of the run (see

Parameters). It additionally checks the input data to confirm that the sample identifiers match

and can be merged, that the number of independent and dependent tibbles match, and that

the column names of the dataframes do not conflict with any global variables required for the

pipeline to run.

Initial associations and optional meta-analysis

For each of the dependent variables and for each dataset, an initial, univariate association is

computed using the linear regression family selected by the user (Eq 1). Note that this equation

can be modified to include X constant (baseline) adjusters—independent variables that will be

present in every vibration (not depicted below).

Dependent Variable � b0 þ b1Primary Variable ð1Þ

where β1 is the association between the primary variable and the dependent variable. Overall,

this step returns the list of dependent variables that will be “vibrated” over as well as the raw

association output for each one. The pipeline can remove dependent variables that are above a

sparsity threshold (e.g., those that are 99% zero values) set by the user with the proportion_cut-

off parameter. Any generalized linear model offered by R’s glm command can be used, as well

as negative binomial regression (from the MASS package) or survey-weighted regression
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(from R’s survey package). Summary statistics are calculated for each regression, and p-values

are adjusted for multiple hypothesis testing with a method that can be selected by the user.

Given that the pipeline is designed for computing VoE for a large set of dependent variables

(e.g., microbiome data), only those that have p-values below and false discovery rate (FDR)

cutoff threshold (that can be set by the user) will be selected for vibration analysis. To select all

dependent variables regardless of initial significance, the FDR threshold can be set to 1; how-

ever, for massive datasets, this can lead to long computation times. Regressions for dependent

variables that return warnings or errors are dropped from the pipeline.

Providing multiple datasets to the pipeline will trigger a random effects “REML” [54] meta-

analysis (from which all relevant outputs are reported, including estimates of heterogeneity,

including I2 and Q values). In this step, the results from each of the univariate associations will

be combined across each dataset to generate an overall p-value and estimate size. These p-val-

ues can be adjusted for multiple hypothesis testing (e.g., FDR) and filtered in a similar manner

to the non-meta-analytic pipeline in order to identify features for the vibration analysis.

Vibrations: Computing the distribution of association sizes due to model

specification

The pipeline computes VoE for each of the features that were selected in the “initial associa-

tions” step (Fig 1B, Eq 2), using the same regression parameters (such as sampling weights,

etc.). This is done by fitting a series of models containing the same primary and dependent

variable as in Eq 1; however, this time adjusted by, at most, every possible combination of

adjusting variables (or “adjusters”).

DependentVariablen � b0 þ b1PrimaryVariableþ b2::npowerSetðadjustersÞ ð2Þ

Eqs 3 to 9 demonstrate the models that would be fit in the case of 3 adjusters and 1 depen-

dent variable:

DependentVariable � b0 þ b1PrimaryVariableþ b2adjuster1 ð3Þ

DependentVariable � b0 þ b1PrimaryVariableþ b2adjuster2 ð4Þ

DependentVariable � b0 þ b1PrimaryVariableþ b2adjuster3 ð5Þ

DependentVariable � b0 þ b1PrimaryVariableþ b2adjuster1 þ b3adjuster2 ð6Þ

DependentVariable � b0 þ b1PrimaryVariableþ b2adjuster1 þ b3adjuster3 ð7Þ

DependentVariable � b0 þ b1PrimaryVariableþ b2adjuster2 þ b3adjuster3 ð8Þ

DependentVariable � b0 þ b1PrimaryVariableþ b2adjuster1 þ b3adjuster2 þ b4adjuster3 ð9Þ

The coefficient of interest is that on the primary variable (“PrimaryVariable”), β1. It indi-

cates the association between the primary and dependent variables. When we refer to “VoE,”

we are considering the distribution of the size, direction, and statistical significance of this

value for all models considered (e.g., Eqs 3 to 9).

The maximum number models that can be fit is S�N�2p, where P is the number of adjusters

provided by the user, N is the number of dependent variables provided, and S is the number of

datasets provided. The number of models fit can be lowered by adjusting the
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max_vars_in_model and/or max_vibration_num parameters, which, respectively, reduce the

number of variables that can be in a given model and reduce the overall number of models fit

per feature. Setting either of these will force the pipeline to randomly select combinations of

variables (with no more in a single set than the max_vars_in_model parameter allows), and

then vibrating over those sets. The functions additionally drop any independent categorical

adjusters that lack multiple levels. The vibration process also can be sped up and distributed

across multiple CPUs using the “cores” argument. This component of the pipeline returns

each of the results of each regression for each dependent feature in a large, nested tibble.

Identifying drivers of association biases

By default, the pipeline will attempt to identify the major drivers of VoE for the user’s depen-

dent variables of interest while also computing summary statistics (i.e., quantifying JEs, mea-

suring the range of p-values and estimates across all models) for each dependent feature. Using

Eq (10), for all vibrations, the impact of the presence of each adjuster on the value of the beta-

coefficient of the independent primary variable of interest (referred to as β1 in the above equa-

tions).

absolute valueðbeta coefficient on primary variableÞ

� b0 þ
XP

i¼1

biadjusteri þ ð1jdependent variable1::nÞ ð10Þ

Each adjuster is encoded as a binary variable indicating its presence or absence in a given

model. The random effect is used to account for cases when multiple dependent variables were

analyzed. Using a random effect adjusts for variation in effect size due to specific dependent

variables (e.g., if one is positively associated with an independent feature and one is negatively

associated). Adjusting for these dependent variable–specific shifts enables this modeling strat-

egy to identify underlying changes in effect size due to different independent adjusters and not

dependent variables. In the event that the user specifies a single dependent variable (as in Eqs 3

to 9 and in the examples in our manuscript), a nonmixed model is fit. In either case, the inter-

pretation of the beta coefficients on the adjuster variables is that in the presence of adjusters1..

P, the absolute value of the beta-coefficient on the primary variable increased/decreased, on

average, by the values of β1..P.

In the case that the user is only investigating one dependent variable at a time, the follow-

ing, nonmixed model will be fit:

absolute valueðbeta coefficient on primary variableÞ � b0 þ
XP

i¼1

bi adjusteri ð11Þ

This is because, in this case, the random effect would only have 1 level (corresponding to

the one dependent variable), rendering it meaningless. We investigated our dependent vari-

ables one at a time in this manuscript, so this is the model that was used to generate the results

in Fig 4.

In addition to summarized “tidy” model statistics, we provide the full model output for Eqs

10/11 as part of quantvoe, enabling users to explore model features (e.g., residuals)

independently.

Package installation and testing

The package can be downloaded from GitHub. Detailed installation instructions and other

package details are located in the GitHub README. Quantvoe is replete with an example
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vignette to demonstrate use in the R terminal, unit testing suite, and example (bash) command

line deployments.

Datasets used in example

To demonstrate the utility of our tool, we computed VoE for a variety of clinical phenotypes

(e.g., LDL cholesterol, triglycerides, glucose, vision). For all examples except 1, we used the

2005 to 2018 NHANES, which can be accessed in its raw components (including prescription

data) at https://wwwn.cdc.gov/nchs/nhanes/ or, as we did, through the R package RNHANES

(https://github.com/silentspringinstitute/RNHANES). This contains a total of 70,328 individu-

als, though the exact number of individuals differed slightly depending on the analysis in ques-

tion (e.g., the dependent variable). For associations where BMI was the dependent variable, we

used N = 70,328 individuals. For bone density, we used N = 21,939; for blood pressure and lisi-

nopril, we used N = 28,656. For LDL, we used N = 58,973. For blood pressure and other indica-

tors of heart disease, we used N = 58,295. For total cholesterol and other indicators of heart

disease, we used N = 58,973. For vision, we used N = 9,368. For glucose, we used N = 11,223.

Datasets used in analysis can be accessed on our GitHub repository.

Additionally, we computed VoE for the COVID-19 positivity outcome (testing positive ver-

sus negative) in 9,268 individuals, 7,724 controls, and 1,544 cases. The data from the UK Bio-

bank are available upon application (https://www.ukbiobank.ac.uk/register-apply/).

Computing total physical activity (TOTMETW)

We computed a series of variables to summarize the total minutes, vigorous and moderate

minutes of activity per week from self-report physical activity variables. We used a metabolic

equivalent of 8 for physical activity classified as vigorous, and a metabolic equivalent of 4 for

moderate activities. The total metabolic equivalent for the week was the summation of vigor-

ous, moderate, transportation, and leisure time activities.

Downloading and processing NHANES and UK Biobank data

The scripts we used to minimally preprocess our data can be found at https://github.com/

chiragjp/quantvoe/tree/main/manuscript/. Note that these are reliant on an existing dataframe

containing NHANES prescription and processed physical activity (in units of METs) data and

another dataframe containing UK Biobank COVID-19 test outcome, environmental, clinical,

and sociodemographic data.

Generally speaking, for each association of interest, we created 2 RDS files: one containing

the dependent variable(s) of interest (e.g., vision), the other containing the independent vari-

ables of interest. We (1) removed adjusters that were more than 50% missing data, (2) identi-

fied pairs of variables encoding redundant information and removed one (S3 Table), and (3)

removed individuals with missing values for any of the independent variables of interest (i.e.,

primary variables). We additionally scaled and centered all numeric, continuous variables

using R’s scale() function with the default settings.

For the relationships queried in Fig 2, we examined the associations between overall vision

(VIDLVA and VIDRVA) and carrot intake (FFQ0032), femur density (DXXOFBMD) and cal-

cium intake (DR1TCALC), family monthly poverty index, the ratio of family monthly income

to United States Health and Human Services poverty guidelines as a function of family size

(INDFMMPI) and blood glucose (LBDGLUSI), and lisinopril usage (flag_LISINOPRIL) and

average systolic blood pressure (mean of BPXSY1, BPXSY2, and BPXSY3). For the associations

with lisinopril usage, we only used NHANES data between 2011 and 2018, as those years were

the only times prescription usage was recorded. We indicated drug usage as 1 if a patient
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indicated having taken the drug, and 0 as otherwise. Other variables (e.g., vision) were only

recorded for a small set of years, resulting in our using a subset of the dataset in these cases. The

carrot intake association was done using binary logistic regression. This is likely nonoptimal

and was done for the sake of simplicity, given that this was meant to illustrate just an example of

VoE. Another—more appropriate—approach for this would be to use an ordinal model.

We also examined associations between COVID-19 positivity and vitamin D levels using a

subset of the UK Biobank cohort for which COVID-19 testing data was made available (as of

July 17, 2020). The UK Biobank determines the COVID-19 test positivity outcome by microbi-

ological (reverse transcriptase polymerase chain reaction [RT-PCR]) testing [55]. We define

the outcome as the presence of at least one positive test result for a given participant. Adjusters

in this dataset broadly include (a) clinical and diagnostic biomarkers of chronic disease and

infection (e.g., white blood cell count, LDL cholesterol, BMI); (b) “environmental” factors

(e.g., estimated nutrients consumed yesterday, infectious antigens, smoking history); (c) self-

reported, doctor-diagnosed health and disease indicators (e.g., “diabetes diagnosed by doctor,”

“overall health rating,” “vascular/heart problems diagnosed by doctor”); and (d) baseline socio-

demographic factors (e.g., age, gender, average total household income after tax). Further-

more, since the UK Biobank measured clinical biomarkers during multiple visits, we

computed the medians of biomarkers across visits. Additionally, we averaged quantitative

environmental factors (which include the “estimated nutrients consumed yesterday” (23 expo-

sures [e.g., estimated carbohydrate intake]) and “infectious antigens” (25 exposures [e.g., 1gG

antigen for herpes simplex virus-1]) categories) over measurements from multiple visits. For

categorical variables measured during multiple visits of a participant to the assessment center,

we used the visit that contained the highest number of observations. We also performed rank-

based inverse normal transformation (INT) of all real-valued adjuster variables to enhance

comparability of associations across models. We performed the transformation using the

RNOmni package (rankNorm function) [56] with the offset parameter set to 0.5 (as was sug-

gested by Millard and colleagues [57]).

Using quantvoe to model vibration of effects

For the cardiovascular associations, we queried the following dependent variables: body-mass-

index (BMXBMI), total cholesterol (LBXTC), LDL-cholesterol (LBDLDL), and systolic blood

pressure (mean of BPXSY1, BPXSY2, and BPXSY3). We queried the association between those

4 dependent variables and the following: caffeine intake (DR1TCAFF), sugar intake

(DR1TSUGR), alcohol intake (DR1TALCO), smoking (LBXCOT), physical activity

(TOTMETW), fiber intake (bDIETARY_FIBER_gm), total fat intake (DR1TFAT), total caloric

intake (DR1TKCAL), and family history of coronary artery disease (MCQ300A) as well as all

of the possible adjusters present. We additionally included BMI again as a 10th independent

variable due to its role as both a risk factor and potential causative factor for heart disease [58],

bringing the total list of associations we were studying to 39.

Given their reported ability to confound many associations and our aim to explore VoE

beyond already established confounding, we included age and sex as baseline adjusters in all

models fit [59],

For the vision/carrots analysis, we used logistic instead of linear regression, encoding the

vision variable as 1 (20 in both eyes, as good as possible) or 0 (not equal to 20 in one or both

eyes). Similarly, we used logistic regression for the COVID positivity analysis, where cases

were encoded as 1, and controls as 0.

For the NHANES data, we additionally used their weighting schema, selecting the appropri-

ate sample weights according to the dependent variable in question (e.g., WTMEC2YR for
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exam data). We additionally used the SDMVPSU and SDMVSTRA columns to account for

primary sampling units and strata, respectively.

For each association of interest, we used a maximum of 20 variables per model, 10,000

vibrations, and 1 core.

Benchmarking

We set the FDR cutoff to 1 to avoid filtering any dependent variables. To avoid fitting >2300

models, we ran the pipeline with a range of options for the max number of vibrations per fea-

ture 100, 250, 500, 1,000, 2,500, 5,000, 7,500, 10,000, 25,000, 50,000, 75,000, and 100,000. Simi-

larly, to avoid fitting models with an excessive number of independent variables, we set the

maximum number of variables in a model equal to 20. We again used weight and stratification

variables as before and set the core usage to 1.

Patient and public involvement

Patients or the public were not involved in the design, or conduct, or reporting, or dissemina-

tion plans of our research.
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