
Fenretinide-dependent upregulation of death receptors through
ASK1 and p38a enhances death receptor ligand-induced
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BACKGROUND: Sustained p38MAPK phosphorylation upregulates p75 neurotrophin (p75NTR) and induces apoptosis in Ewing’s sarcoma
family of tumours (ESFT). As fenretinide induces ESFT death through sustained p38MAPK phosphorylation, we hypothesised that this
may be effected through upregulation of death receptors (DRs) and that treatment of fenretinide plus DR ligands may enhance
apoptosis.
METHODS: DR expression was determined by flow cytometry. Trypan blue exclusion assays, caspase-8 flow cytometry and
immunoblotting for Bid were used to measure cell death.
RESULTS: Fenretinide upregulated cell surface expression of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)
receptors, FAS and p75NTR, in an ASK1- and p38a-dependent manner. Cotreatment with fenretinide and DR ligands resulted in
synergistic death compared with either agent alone; caspase-8 and Bid were cleaved in a time-dependent manner. Fenretinide did not
increase DR expression in non-malignant cells. Furthermore, fenretinide, TRAIL or a combination of both agents was non-cytotoxic
to non-malignant cells. Etoposide and actinomycin D increased expression of all DRs examined, whereas vincristine increased FAS
alone. Only actinomycin D and TRAIL, and etoposide with TRAIL or FasL, enhanced death compared with either agent alone.
CONCLUSION: The synergistic death observed with fenretinide and DR ligands suggests that this combination may be an attractive
strategy for the treatment of ESFT.
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Ewing’s sarcoma family of tumours (ESFTs) arise in bone and soft
tissue sites. ESFT occurs at all ages, although there is a peak
incidence at 10– 25 years of age. Recurrence and metastasis pose
the greatest challenge for successful treatment of ESFT; patients in
this cohort have a 20% or less 5-year disease-free survival rate
(Proctor et al, 2009). There is therefore an urgent need for effective
treatment strategies. Fenretinide, a synthetic retinamide with
promising chemopreventive and chemotherapeutic properties, is
well tolerated in both adult (Hail et al, 2006) and paediatric
(Garaventa et al, 2003; Villablanca et al, 2006; Formelli et al, 2008)
phase I clinical trials. We have previously demonstrated that
fenretinide induces apoptosis through generation of reactive
oxygen species (ROS) and phosphorylation of p38 mitogen-
activated protein kinase (p38MAPK) in ESFT. Delayed growth of
subcutaneous ESFT in nude mice was also observed following
fenretinide treatment (Myatt et al, 2005).

The tumour necrosis factor (TNF) receptor (TNFR) superfamily
includes a subclass of receptors known as death receptors (DRs),
so called as they contain a cytoplasmic region called the death
domain (DD) that is important for the induction of DR-mediated

apoptosis. Members of the DR family include TNF-R1, p75
neurotrophin (p75NTR), FAS, DR4 and DR5 (Debatin and
Krammer, 2004; Ashkenazi, 2008). Binding of TNF superfamily
ligands to their cognate receptors induces receptor trimerisation
and recruitment of Fas-associated death domain (FADD), which
subsequently recruits procaspase-8 to form the death-inducing
signalling complex (DISC). This association of proteins induces
caspase-8 cleavage, which subsequently cleaves caspase-3 to induce
a non-mitochondrial apoptotic pathway (Debatin and Krammer,
2004; Ashkenazi, 2008). Bid is a BH3-only member of the Bcl-2
family that is cleaved by caspase-8 in response to certain stimuli,
whereby it translocates to the mitochondria to induce the
oligomerisation of BAX or BAK and release of cytochrome C.
In some cell types, sufficient quantities of caspase-8 are present to
induce apoptosis independently of the mitochondria, whereas
in cells with low levels of caspase-8, Bid cleavage is required to
amplify death through mitochondria (Debatin and Krammer, 2004;
Ashkenazi, 2008).

Tumour necrosis factor-related apoptosis-inducing ligand
(TRAIL) binds to DR4 and DR5, and to three decoy receptors
(DcRs) that either lack an intracellular DD in the case of DcR1 or
contain a truncated DD in the case of DcR2. The third DcR,
osteoprotegrin is a soluble receptor. These DcRs do not induce
apoptosis because of the absence of a functional DD (Ashkenazi,
2008). As TRAIL is reported to be selective in inducing apoptosis
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in malignant cells, although sparing healthy cells (Ashkenazi,
2008), numerous proapoptotic receptor agonists have been
developed that include recombinant TRAIL and monoclonal
agonistic antibodies against DR4 and DR5. Many show promise
in clinical trials, both as monotherapies and in combination
with biological agents, including histone deacetylase inhibitors
(HDACi), bortezomib and chemotherapeutics (Ashkenazi, 2008).

Ewing’s sarcoma family of tumour cells and tumour samples
express both TRAIL DR and FAS (Kontny, 2006), although p75NTR

has only been examined in cell lines (Westwood et al, 2002;
Williamson et al, 2004). Approximately 80% of ESFT cell lines
examined are reported to be sensitive to TRAIL-induced apoptosis
(Kontny, 2006), and those that are resistant can be sensitised by
pretreatment with interferon gamma (IFNg; Kontny, 2006; Lissat
et al, 2007). Enhanced death is also reported when ESFT cells are
treated with TRAIL and bortezomib (Lu et al, 2008) or HDACi
(Sonnemann et al, 2007). Recent analysis of the agonistic DR4
monoclonal antibody Mapatumumab in a paediatric preclinical
testing program failed to demonstrate preclinical efficacy in
subcutaneous ESFT models (Smith et al, 2009). However, the
agonistic DR5 monoclonal antibody (M413; Amgen, Cambridge,
UK) is reported to decrease ESFT growth following intramuscular
injection (Merchant et al, 2004). Furthermore, delivery of TRAIL
through non-viral gene therapy diminished tumour growth and
increased animal survival in ESFT (A673) mouse xenografts
(Picarda et al, 2010). A phase I trial is currently recruiting young
patients with solid tumours or lymphomas refractory to conven-
tional chemotherapeutics to assess the effects of the DR5 agonistic
antibody Lexatumumab either alone or in combination with IFNg
(ClinicalTrials.gov Identifier: NCT00428272).

We previously demonstrated that sustained p38MAPK phosphory-
lation is required for the upregulation of p75NTR protein
expression and induction of apoptosis by basic fibroblast growth
factor (bFGF; Williamson et al, 2004). As fenretinide also induces
ESFT apoptosis through sustained p38MAPK phosphorylation
(Myatt et al, 2005), we hypothesised that fenretinide-induced
death may be effected in part through the induction of DR.
If correct, we hypothesised that treatment with DR ligands plus
fenretinide should amplify the initial apoptosis induced by
fenretinide. Results indicate that fenretinide induced upregulation
of DR at the cell surface in an apoptosis signal-regulating kinase
(ASK) 1- and p38a-dependent manner. Furthermore, cotreatment
with DR ligands and fenretinide resulted in synergistic death
compared with either agent alone. However, only certain
chemotherapeutic drugs (etoposide and actinomycin D) upregu-
lated DR and this did not always occur in a p38MAPK-dependent
manner or correspond with enhanced cell death when cotreated
with drug and DR ligands.

MATERIALS AND METHODS

Cells and reagents

The cell lines used are described in Supplementary Table 1. All
reagents were prepared and stored according to the manufacturer’s
instructions and obtained from the following suppliers: recombi-
nant TRAIL and Fas ligand (FasL) from R&D systems (Abingdon,
UK), g-32P-ATP from GE Healthcare Life Sciences (Little Chalfont,
UK). All other chemicals were obtained from Sigma (Poole, UK)
unless stated otherwise. Fenretinide (gift from the National Cancer
Institute), BAY 11-70892 (Calbiochem, Nottingham, UK) and
SB202190 (Calbiochem) were prepared as previously described
(Myatt et al, 2005; White and Burchill, 2008). BIRB0796
(10 mM stock in DMSO, stored at �20 1C) was purchased from
Dr Hilary McLaughlan, University of Dundee. All antibody
dilutions were determined empirically. Total and phosphoryla-
tion-specific p38MAPK antibodies, used at a dilution of 1 : 5000 and
1 : 10000, respectively, anti-MKK3 and anti-phospho-MKK3/6 (this

antibody recognises a phosphorylated activation loop conserved
between MKK3 and MKK6) antibodies, used at 1 : 500, and Bid
antibody (1 : 500) were all purchased from Cell Signaling Technology
(Danvers, MA, USA). Protein A/G PLUS-Agarose, antitubulin
(1 : 5000) and anti-ASK 1 (H-300, 1 : 100) antibodies were purchased
from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

Antibodies for flow cytometry were diluted in FACS buffer (PBS,
1% fetal calf serum (SeraLab, Haywards Heath, UK), 0.1% sodium
azide). FAS-FITC (Beckman Coulter, High Wycombe, UK) and
IgG1-FITC (Dako Cytomation, Ely, UK) antibodies were used at
1 : 10 dilution. p75NTR antibody (Promega, Southampton, UK) was
used at 1 : 500. All TRAIL-R antibodies (Alexis Biochemicals,
Exeter, UK) were used at 1 : 100 dilutions, except for DR4 (1 : 50).
Secondary antibodies goat F(ab2) antirabbit IgG-PE (Caltag
Laboratories, Paisley, UK) and goat F(ab)2 antimouse IgG-PE
(Southern Biotechnology Associates from Cambridge Biosciences,
Cambridge, UK) were used at 1 : 200.

Cell surface expression of receptors

Cells were harvested, washed in FACS buffer and incubated with
antibodies (4 1C, 30 min for both primary and secondary
antibodies). Controls included secondary antibody only (TRAIL
receptors and p75NTR) or IgG1-FITC antibody (FAS). Cells were
washed, resuspended in 300ml FACS buffer and cell surface
expression was determined by flow cytometry (FACSCalibur, BD,
Oxford, UK). Data were analysed using CellQuest software
(BD Biosciences, Oxford, UK). Results are presented as (mean of
the median fluorescence intensity for each DR minus median
fluorescence with secondary (TRAIL and p75NTR) or IgG1-FITC
(FAS) antibody)±s.e.m. (n¼ 9). The following cell lines and
treatments were used as positive controls to optimise antibodies
(data not shown): jurkat cells (DR5), A375 cells (DR4), MCF-7 cells
(DcR2), doxorubicin (500 ngml�1, 15 h)-treated MCF-7 cells (DcR1
and FAS) and bFGF (20 ngml�1, 16 h)-treated TC-32 cells (p75NTR).

Fenretinide array

RNA was extracted from both untreated and fenretinide (3 mM,
8 h)-treated TC-32 cells using Ultraspec (Biotecx, Houston, TX,
USA), as previously described (Brownhill et al, 2007). Total RNA
(2mg) was used to generate a biotin-labelled apoptosis-specific
cDNA library, which was hybridised with a GEArray Q-series
human apoptosis array (SA Biosciences, Frederick, MD, USA),
according to the manufacturer’s instructions. Arrays were
processed for chemiluminescence, data were extracted with
ScanAlyze software (Eisen Lab, Berkeley, CA, USA) and analysed
using the GEArray analyser software (SA Biosciences).

Electroporation of TC-32 cells with small interfering
RNA (siRNA)

Cells were electroporated as described previously (Myatt et al,
2005; White and Burchill, 2008) with 500 nM siRNA directed
against ASK1 (Santa Cruz Biotechnology; a pool of three individual
ASK1 siRNAs) or scrambled siRNA (Silencer Negative Control #1;
Ambion, Huntington, UK). Sequences of all siRNAs are company
propriety. ASK1 knockdown was confirmed by quantitative
real-time RT–PCR using ASK1 Taqman Gene Expression Assay
ID: Hs00178726 (Applied Biosystems, Warrington, UK) and b2 M
probes and primers, as described previously (Brownhill et al,
2007). Electroporated cells were analysed after 48 h for receptor
expression by flow cytometry or viable cell number using the
Trypan blue exclusion assay.

ASK 1 immunecomplex kinase assay

Fenretinide (3 mM, 0 –60 min)-treated cells were lysed in buffer
(20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA,
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1% Triton X-100, 2.5 mM sodium pyrophosphate, 1 mM b-glycerol
phosphate, 1 mM Na3VO4, 1 mg/ml leupeptin and 1 mM phenyl-
methylsulphonyl fluoride) on ice for 5 min. Lysates were clarified
by centrifugation (10 000 g, 15 min, 4 1C) and protein concentra-
tion was determined using the Bio-Rad DC protein assay (Bio-Rad
Laboratories, Hemel Hempstead, UK). Total protein lysate (200 mg)
was incubated with anti-ASK1 antibody (2 mg, 1 h), and then
incubated with 20 ml protein A/G-sepharose overnight at 4 1C with
rotation. Beads were collected by centrifugation (4000 g, 3 min,
4 1C) and washed twice with 500ml lysis buffer and kinase buffer
(25 mM Tris (pH 7.5), 5 mM b-glycerolphosphate, 2 mM DTT,
0.1 mM Na3VO4 and 10 mM MgCl2). Pellets were resuspended in
50ml kinase buffer containing 200 mM ATP, 2 mCi g-32P-ATP and
4 mg myelin basic protein (MBP), and incubated at 30 1C for
30 min. Reactions were terminated by adding 25ml 2� SDS
loading buffer. Samples were heated at 95 1C for 5 min and
separated by SDS–PAGE. The gel was rinsed in water, stained in
Bio-safe Commassie (Bio-Rad Laboratories) for 1 h and dried
under vacuum. ASK1 activity was assessed by incorporated 32P in
MBP, as determined by autoradiography, and quantified using
phosphorimager (Quantity One software, Bio-Rad Laboratories).
SH-SY5Y cells treated with or without 6-hydroxydopamine
(6-OHDA; 100 mM, 1 h) served as positive and negative controls,
respectively.

Cell viability

Viable cell number was determined using the Vi-cell Trypan blue
exclusion assay (Beckman Coulter) as described previously (White
and Burchill, 2008).

Caspase-8 activity

Caspase-8 activation was determined using the fluorochrome
inhibitor of caspases (FLICA) FAM-LETD-FMK apoptosis detec-
tion kit (Immunochemistry Technologies, Bloomington, MN, USA)
according to the manufacturer’s instructions. The FLICA inhibitor
covalently binds to a reactive cysteine residue on the large subunit
of active caspase-8 heterodimer. This inhibits any further caspase
activity and retains FLICA intracellularly so that active caspase-8
molecules can be quantified by flow cytometry. Jurkat cells treated
with or without etoposide (30mM, 16 h) served as positive and
negative controls, respectively.

Immunoblotting

Lysates were extracted and proteins detected by immunoblotting
and visualised using the Odyssey infrared imaging system (Li-cor,
Lincoln, NE, USA) as described previously (Myatt et al, 2005).

Statistical analyses

Statistical analyses were undertaken using GraphPad Prism 5 or
SAS 9. Data were analysed by analysis of variance and a Bonferroni
post hoc test when comparing three or more conditions. An
interaction effect between drug and DR ligand was assessed to
determine whether enhanced death had occurred. An unpaired
two-tailed t-test was used to analyse differences in untreated
versus fenretinide-treated non-malignant cells. Variations between
means were considered significantly different at Pp0.05.

RESULTS

Fenretinide upregulates DR and DcR in ESFT cells

Basal cell surface expression of TRAIL receptors, FAS and p75NTR,
was established in a panel of ESFT cell lines. DR5 was the most
abundantly expressed receptor in all cell types, whereas DR4 was

expressed at much lower levels (Figure 1A). IgG1-FITC antibody
was moderately expressed in all cells, except in SK-N-MC and
TTC-466, with the highest expression detected in TC-32 cells.
DcR1, DcR2 and p75NTR were marginally expressed in ESFT
cells. RD-ES, SKES-1 and TC-32 were selected for further studies
because of their heterogeneity of receptor expression and the
genotypic differences described previously (Westwood et al, 2002;
Brownhill et al, 2007). Neither DR nor DcR were expressed in the
non-malignant primary normal human urothelial cells (NHUC) or
mesenchymal stem cells (MSC, data not shown).

We previously demonstrated that bFGF-induced apoptosis is
dependent on p38MAPK-mediated induction of p75NTR in ESFT cells
(Westwood et al, 2002; Williamson et al, 2004). As fenretinide-
induced apoptosis also requires sustained p38MAPK phosphoryla-
tion (Myatt et al, 2005), we hypothesised that DR upregulation may
be involved in fenretinide-induced death. Fenretinide (3 mM, 8 h)
strongly upregulated DR5 cDNA and moderately increased DR4
and DcR2 cDNA in TC-32 cells (Supplementary Figure 1 and
Supplementary Table 2). No changes in the expression of other DR
pathway components (DcR1, FAS, caspase-8, caspase-10, TRAIL,
FasL and FADD) were observed.

The effect of fenretinide on cell surface receptor expression was
also examined. Fenretinide induced rapid upregulation of both
DcRs in all ESFT cells (Figure 1B, four- to five-fold in TC-32 cells,
two- to four-fold in RD-ES and SKES-1 cells, Pp0.001). DR4 was
upregulated in a time-dependent manner in RD-ES and SKES-1
cells, and was strongly upregulated in TC-32 cells at 6 h, with no
further increase observed up to 24 h. DR5 was increased at 16 h in
SKES-1 cells and at 24 h in RD-ES and TC-32 cells (Pp0.01).
Fenretinide increased FAS expression from 16 h in TC-32 cells
(Pp0.01) and at 24 h in SKES-1 cells (Pp0.05) but had no effect on
FAS expression in RD-ES cells. p75NTR expression was maximally
increased in RD-ES cells at 16 h (4.9-fold), whereas a time-
dependent increase occurred in SKES-1 and TC-32 cells (2.7-fold
and 2.8-fold, respectively, at 24 h, Pp0.001). Fenretinide (3 mM,
24 h) did not affect DR4, DR5 or p75NTR expression in NHUC
(Figure 1C). However, it did induce a 2.5-fold downregulation of
FAS and upregulation of both DcR1 (4.4-fold) and DcR2 (4.7-fold,
Pp0.001). Fenretinide had no effect on receptor expression in
MSC, suggesting that fenretinide-induced DR upregulation is
selective to cancer cells.

Fenretinide-induced upregulation of DR is dependent on
phosphorylation of ASK1 and p38a

We examined the hypothesis that fenretinide-induced DR up-
regulation may be effected through p38MAPK using the pharmaco-
logical inhibitor SB202190. SB202190 (20mM, 1 h) and fenretinide
cotreatment (3 mM, 24 h) decreased cell surface expression of DR5
in SKES-1 and TC-32 cells, of FAS in TC-32 cells and of p75NTR in
all cell types, compared with fenretinide-induced DR upregulation
(Figure 2A, Pp0.05: p75NTR in TC-32 cells, Pp0.001: other
receptors and cell types). SB202190 alone had no effect on DR
expression. These observations suggest that upregulation of some
DRs by fenretinide may occur in a p38MAPK-dependent manner.

BIRB0796 was used to delineate which p38MAPK isoform was
required for fenretinide-induced DR upregulation; BIRB0796
inhibits p38a at 0.1mM, whereas 1 mM inhibits all four isoforms
(Kuma et al, 2005). BIRB0796 pretreatment (0.1 or 1 mM, 24 h)
before fenretinide treatment (3 mM, 24 h) suppressed fenretinide-
induced upregulation of DR5, p75NTR and FAS in all cell types
(Figure 2B, Pp0.001). Although BIRB0796 treatment alone had no
effect on DR expression, BIRB0796 and fenretinide cotreatment
significantly decreased basal FAS expression in RD-ES cells.
Furthermore, no significant difference was observed between the
effects of 0.1 and 1 mM of BIRB pretreatment, indicating that p38a
is the isoform most likely to be required for fenretinide-induced
DR upregulation.
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Apoptosis signal-regulating kinase 1 is a redox-regulated MAPK
kinase that regulates stress-activated MAPK in response to
apoptotic stimuli (Coulthard et al, 2009). The effect of fenretinide
on ASK1 kinase activity was determined by immunecomplex
kinase assays using MBP as a substrate. Preliminary data indicated
that in all ESFT cell lines examined (RD-ES, SKES-1 and TC-32),
fenretinide (3 mM) induced ASK1 kinase activity from 5 min, with
maximium activation observed at 10 min. MBP phosphorylation
decreased with time but remained above basal levels for up to
60 min (data not shown). To confirm whether ASK1 was an
upstream regulator of p38MAPK-dependent fenretinide-induced DR
upregulation, siRNA was used. ASK1 siRNA (500 nM, 48 h) reduced
ASK1 mRNA levels by 79% in TC-32 cells compared with
scrambled control cells (Supplementary Figure 2). Fenretinide
(3mM) induced ASK1 kinase activity in scrambled siRNA-treated
TC-32 cells and MBP phosphorylation was abolished in ASK1
siRNA-treated TC-32 cells (Figure 2Ci). Phosphorylation was
comparable to that detected in the positive control SHSY-5Y
neuroblastoma cells treated with 6-OHDA (100 mM, 1 h). Further-
more, no ASK1 activity or p38MAPK phosphorylation was detected
in SHEP1 neuroblastoma cells (data not shown), a cell line that we
have previously demonstrated to be resistant to fenretinide (Myatt
et al, 2005; White and Burchill, 2008). Pretreatment of TC-32 cells
with vitamin C (100mM, 1 h) before fenretinide treatment (3 mM,
10 min) completely abolished ASK1 activity (Figure 2Cii; data not
shown for SKES-1 and RD-ES cells), suggesting that fenretinide-
induced ROS production is upstream of ASK1 activity in ESFT
cells.

Immunoblot analysis identified fenretinide-induced p38MAPK

phosphorylation in scrambled siRNA-treated ESFT cells at 30 min.
However, lower phosphorylation levels were observed in ASK1
siRNA-treated cells in response to fenretinide (Figure 2Ciii:
representative image shown for TC-32 cells, data not shown for

SKES-1 and RD-ES cells), thus confirming that p38MAPK is
downstream of ASK1 in the fenretinide-induced apoptotic path-
way. A similar experimental design was used to identify the
intermediate regulatory MAPK kinase (MKK3 or MKK6; Coulthard
et al, 2009) between ASK1 and p38MAPK in the fenretinide-induced
apoptotic pathway. MKK3/6 was robustly phosphorylated
30–60 min after fenretinide treatment in scrambled siRNA-treated
ESFT cells (Figure 2Ciii; representative image shown for
TC-32 cells, data not shown for SKES-1 and RD-ES cells). This
was a comparable level of phosphorylation to that detected in
anisomycin-treated (25mg, 30 min) TC-32 cells used as a positive
control. Lower levels of MKK3/6 phosphorylation were detected in
ASK1-treated siRNA cells, suggesting that these MAPKK are
downstream of ASK1 in the fenretinide-induced apoptotic path-
way. No changes in total MKK3 or MKK6 expression were
observed in either cell type.

Fenretinide induced DR upregulation in scrambled siRNA-
treated TC-32 cells (Figure 2D), consistent with previous observa-
tions in unelectroporated cells (Figure 1B). However, reduced
DR levels were observed in ASK1 siRNA-treated cells compared
with scrambled siRNA cells, indicating that ASK1 is required
for fenretinide-induced upregulation of DR (Pp0.001: DR5 and
p75NTR, Pp0.01: FAS). Furthermore, ASK1 siRNA rescued
fenretinide-induced death by 52% compared with scrambled
siRNA cells (Pp0.01, Supplementary Figure 3), demonstrating
that fenretinide induces DR upregulation and cell death in an
ASK1-p38MAPK-dependent manner in ESFT cells.

Fenretinide sensitises ESFT cells to the DR apoptotic
pathway to enhance cell death

As increased cell surface expression of DR would increase receptor
availability to cognate ligands, we hypothesised that cotreatment of
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Figure 1 Fenretinide upregulates DR and DcR in ESFT cells. (A) Basal cell surface expression of DcR and DR was determined by antibody labelling cells
and by analysing levels by flow cytometry. Results are presented as the mean of the median fluorescence intensity for each DR minus median fluorescence
with secondary (TRAIL and p75NTR) or IgG1-FITC (FAS) antibody±s.e.m. (n¼ 9). (B) ESFT cells were treated with fenretinide (3 mM, 0–24 h) or vehicle
control for 0, 6, 16 or 24 h and (C) NHUC and MSC were treated with fenretinide (3mM) for 24 h. Receptor cell surface expression was examined by
antibody labelling and flow cytometry. Results are presented as the fold increase of the mean of the receptor median fluorescence intensity relative to
untreated control samples±s.e.m. (n¼ 6). *Pp0.001, **Pp0.05.
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ESFT cells with fenretinide plus DR ligands (TRAIL for DR5, nerve
growth factor (NGF) for p75NTR and FasL for FAS) may enhance
death. Treatment with DR ligands (0–40 ng ml�1, 24 h) alone did not
decrease viable cell number (Figure 3A; we have performed viability
assays with up to 400 ngml�1 TRAIL in six ESFT cell lines and have
not observed cell death, unpublished observation). However, the
combination of fenretinide and DR ligands resulted in synergistic cell
death (reductions were 43% for TRAIL and NGF and 36% for FasL
with 40 ng ml�1 DR ligand and 1.5mM fenretinide) compared to
fenretinide alone (Figure 3A, statistical interactions Pp0.001) in
TC-32 cells. Furthermore, neither DR ligands (40 ng ml�1, 24 h) nor
fenretinide (3mM, 16 h) or a combination of both agents had any
effect on viable cell number in non-malignant NHUC or MSC (data
not shown; mean viable cell number calculated as percentage of
untreated control ranged from 95±4% to 107±4%).

We next examined whether this enhanced death was effected
through caspase-8 cleavage. No significant cleavage was observed
following single treatments with fenretinide or DR ligands
(Figure 3B and Supplementary Figure 4), supporting the

hypothesis that fenretinide-induced apoptosis is effected through
the mitochondrial death cascade (Myatt et al, 2005), and consistent
with the observation that DR ligands do not reduce TC-32 viable
cell number. However, combined treatment of fenretinide and
TRAIL increased caspase-8 activity in a time-dependent manner,
with 68% activity observed at 24 h (Figure 3Bi and Supplementary
Figure 4, Pp0.001). FasL and fenretinide induced 31% caspase-8
activation within 14 h exposure, which did not further increase up
to 24 h, whereas NGF and fenretinide induced caspase-8 activity at
12 h (31%), with a further increase observed at 24 h (Figure 3Bii,
Pp0.001).

Immunoblot analysis demonstrated that fenretinide and
TRAIL induced cleavage of Bid to generate a truncated form
(tBid; Figure 3C) compared with untreated cells and cells treated
with either agent alone. This was observed in all ESFT cell lines
examined; cleavage was comparable to that in etoposide (25 mM,
16 h)-treated Jurkat cells (positive control). These data indicate
a putative role of truncated Bid in amplifying the DR pathway of
apoptosis through the mitochondria in ESFT cells.
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Figure 2 Fenretinide upregulation of DR is dependent on phosphorylation of ASK1, and p38a. Ewing’s sarcoma family of tumour cells were pretreated
with (A) SB202190 (20 mM, 1 h) or (B) BIRB0796 (0.1 or 1 mM, 24 h) before fenretinide treatment (3 mM, 24 h) and DR expression was determined by
antibody labelling and flow cytometry. Results are presented as the fold increase of the mean of the receptor median fluorescence intensity relative to
untreated control samples±s.e.m. (n¼ 6). (Ci) TC-32 cells were electroporated with scrambled or ASK1 siRNA (500 nM), and ASK1 kinase activity was
assessed 48 h later by immunecomplex kinase assays using MBP as the substrate. Samples were subsequently resolved by SDS–PAGE and gels were analysed
by quantitative autoradiography using a PhosphorImager system. Untreated and 6-OHDA (100mM, 1 h)-treated SH-SY5Y cells served as negative and positive
controls, respectively, for ASK1 kinase activity. Graph shows ASK1 activity calculated as fold increase over untreated scrambled siRNA cells. (Cii) TC-32 cells
were pretreated with vitamin C (100mM, 1 h) before fenretinide treatment (3mM, 10 min) and ASK1 immunecomplex kinase assays were performed. (Ciii) TC-
32 cells were electroporated with scrambled or ASK1 siRNA (500 nM). Protein expression was determined 48 h later by immunoblot analysis for total p38MAPK

and phospho-p38MAPK and total MKK3 and phospho-MKK3/6. Anisomycin (25mg/ml, 30 min)-treated TC-32 cells served as a positive control for MKK3/6
phosphorylation. Equal protein loading was confirmed by hybridisation to tubulin. M¼molecular weight markers. Representative images from three
independent experiments are shown. (D) TC-32 cells were electroporated with scrambled or ASK1 siRNA (500 nM) and were treated with fenretinide (3mM,
24 h) 24 h after electroporation. DR expression was determined by antibody labelling and flow cytometry, and results presented as the fold increase of the
mean of the receptor median fluorescence intensity relative to untreated control samples±s.e.m. (n¼ 6). *Pp0.001, **Pp0.01, ***Pp0.05.
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Specific chemotherapeutics upregulate DR and enhance
ESFT cell death

Chemotherapeutics commonly used in the treatment of ESFT were
also examined to determine whether they upregulated DR cell
surface expression and enhanced DR ligand-induced cell death or
whether this was a fenretinide-specific phenomenon. Etoposide
increased expression of all DRs (Figure 4A, Pp0.001), actinomycin
D increased DR5 (Po0.001) and p75NTR (P¼ 0.03), whereas
vincristine only upregulated FAS (Pp0.001). On using the
calculated IC50, doxorubicin did not significantly increase DR
expression (Figure 4A). However, at 10 times the doxorubicin IC50

value, upregulation of all DRs was observed (data not shown,
P¼ 0.002). An increase in p75NTR cell surface expression was
detected when cells were treated with 10 times the vincristine IC50

(data not shown, P¼ 0.001).
It is reported in the literature that etoposide induces DR

upregulation through NF-kB transcriptional upregulation (Gibson
et al, 2000; Shetty et al, 2002; Woo et al, 2004; Mendoza et al,
2008). BAY 11-70892, an inhibitor of IkBa phosphorylation and
subsequent NF-kB translocation to the nucleus, was used to
elucidate whether this was the mechanism of upregulation in ESFT
cells. BAY 11-7082 had no effect on DR upregulation (data not
shown), suggesting that NF-kB does not regulate etoposide-

induced DR expression in ESFT cells. However, SB202190
pretreatment decreased both actinomycin D and etoposide-
induced DR5 expression and actinomycin D-induced p75NTR

expression (data not shown). Furthermore, ASK1 kinase activity
increased after treatment with etoposide and vincristine but not
after treatment with doxorubicin or actinomycin D (Figure 4B).
Actinomycin D failed to activate ASK1, although SB202190
prevented DR5 and p75NTR upregulation, suggesting an alternative
mechanism of upregulation. Collectively, these data are consistent
with the hypothesis that both ASK1 and p38MAPK are required for
the chemotherapeutic-induced upregulation of certain DRs in
some ESFT cells.

TC-32 cells were pretreated with chemotherapeutics which
significantly increased DR expression at the cell surface, and
subsequently treated with DR ligands. Both TRAIL and FasL were
dependent on the presence of etoposide to induce cell death, as
neither ligand induced death when used alone (Figure 4C,
Pp0.05). No statistical interaction was observed between etopo-
side and NGF combined treatment, despite a 15% decrease in
viable cell number. Actinomycin D cotreatment with TRAIL
(significant interaction of Pp0.001), but not with NGF, resulted
in additive cell death, whereas vincristine and FasL cotreatment
did not further decrease viable cell number compared with
treatment with vincristine alone (Figure 4C). The observations
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with cotreatments of FasL and vincristine, and NGF with etoposide
or actinomycin D, suggest that high levels of DR expression and
treatment with the cognate ligand might not always correlate with
increased cytotoxicity. The effect of ligands and doxorubicin
was therefore examined because no significant increase in DR
expression was observed with this drug. No enhanced death was
observed with doxorubicin and with either TRAIL or NGF
compared with doxorubicin alone (Figure 4C).

DISCUSSION

In this study, we demonstrate for the first time that cotreatment
with fenretinide and DR ligands enhanced ESFT cell death

compared with fenretinide alone, through the induction of both
the mitochondrial and DR apoptotic pathways (Figure 5); DR
ligands alone did not induce death. Fenretinide upregulated
cell surface expression of DRs TRAIL, FAS and p75NTR in an
ASK1- and p38a-dependent manner. This is likely to be initiated
through increased levels of ROS, as fenretinide-induced death
(Myatt et al, 2005) and ASK1 phosphorylation are inhibited
by antioxidants. ROS have previously been implicated in DR
upregulation at the cell surface and in subsequent apoptosis in
response to hydrogen peroxide (Kwon et al, 2008), 15-deoxy-
delta12,14-prostaglandin J2 (Su et al, 2008), zerumbone (Yodkeeree
et al, 2009) and arsenic trioxide (Woo et al, 2004), consistent with
the hypothesis that induction of DR expression is effected through
the generation of ROS. Induction of DR4 protein expression by

V
ia

bl
e 

ce
ll 

nu
m

be
r

(%
 o

f u
nt

re
at

ed
 c

on
tr

ol
)

*

Trail
FasL
NGF

100

120

40

60

80

0

20

DR ligand alone
(ng/ml)

Fen (1.5�M) +
DR ligand (ng/ml)

Fen
(1.5�M)

*
*** **

*

40
50
60
70

0
10
20
30

C
as

pa
se

-8
 c

le
av

ag
e

(%
 o

f c
el

l p
op

ul
at

io
n)

Fenretinide (1.5�M)
– – ++ + + + ++ + Positive
0 16 224 12 14 18 244 8 Control

Trail (40 ng/ml)
Time (h)

FasL NGF
*

50
60
70

0
10
20
30
40

C
as

pa
se

-8
 c

le
av

ag
e

(%
 o

f c
el

l p
op

ul
at

io
n)

Fenretinide (1.5�M)
Ligand (40 ng/ml)
Time (h)

– + – Jurkat+ + + + +
– – + Positive+ + + + +
0 16 24 Control8 12 14 18 24

RD-ES
FL Bid

Tubulin

tBid

M Unt
re

at
ed

Fen Tra
il

Fen
 +

 T
ra

il

Neg
 co

nt
ro

l

Pos
 co

nt
ro

l

Tubulin

SKES-1
FL Bid

tBid

FL Bid

Tubulin

tBid
TC-32

402010Veh 402010

– +– + ++ + Jurkat+++

Figure 3 Fenretinide sensitises ESFT cells to the DR apoptotic pathway to enhance cell death. (A) TC-32 cells were treated with fenretinide (Fen; 1.5 mM,
16 h) or vehicle control (Veh; ethanol treated cells), media were changed and cells were subsequently treated with the DR ligands TRAIL, FasL or NGF
(0–40 ng/ml, 24 h). Viable cell number was determined by the Trypan blue exclusion assay. Results are presented as the mean of the viable cell number
calculated as a percentage of untreated control cells±s.e.m. (n¼ 9). Statistics indicate significant interactions between fenretinide and DR ligands, which is
indicative of enhanced cell death; *Pp0.001. TC-32 cells were pretreated with fenretinide (1.5 mM, 16 h) before DR ligands (40 ng/ml, 0-24 h) and caspase-8
activity was detected by flow cytometry. (Bi) Effect of fenretinide and (Bi) TRAIL, (Bii) FasL or NGF time course of caspase-8 cleavage in TC-32 cells.
Results are presented as the mean of the percentage of cells with cleaved caspase-8, as detected within the M1 region±s.e.m. (n¼ 9), *Pp0.001. Untreated
and etoposide (30 mM, 24 h)-treated Jurkat cells served as negative and positive control samples, respectively. (C) Total protein lysates from ESFT cells
pretreated with fenretinide (Fen, 1.5 mM, 16 h) before TRAIL treatment (40 ng/ml, 24 h) were examined for both full length (FL, 22 kDa) and truncated
(cleaved) bid (tBid, 15 kDa) by immunoblotting. Equal protein loading was confirmed by hybridisation to tubulin. M¼molecular weight markers. Negative
(Neg) control¼ untreated Jurkat cells, positive (Pos) control¼ etoposide-treated (25 mM, 16 h) Jurkat cells. Immunoblots are representative from three
independent experiments.

Drug-induced upregulation of death receptors in ESFT

DE White and SA Burchill

1386

British Journal of Cancer (2010) 103(9), 1380 – 1390 & 2010 Cancer Research UK

T
ra

n
sla

tio
n

a
l

T
h

e
ra

p
e
u

tic
s



bortezomib (Nakamura et al, 2007) and downregulation of DR5
cell surface expression by HDACi (Sonnemann et al, 2007) have
previously been reported in ESFT cells.

p38MAPK induces p75NTR protein expression in ESFT cells in
response to bFGF (Williamson et al, 2004) and p75NTR mRNA and
protein expression in prostate cancer cells by inflammatory agents
(Quann et al, 2007; Khwaja et al, 2008). Furthermore, zerumbone
induces DR4 but not DR5 protein expression through a p38MAPK-
dependent mechanism in colon cancer cells (Yodkeeree et al,
2009). However, the p38MAPK isoform involved in these processes
has not been identified. This is likely to be important for
therapeutic interventions exploiting p38MAPK, as four isoforms
exist that regulate varied biological processes (Coulthard et al,
2009). Induction of death through specific p38MAPK isoforms that
do not result in unacceptable side effects and toxicities will be

more attractive than if isoforms that are implicated in toxicity are
involved. The mechanism by which ASK1 and p38MAPK upregulate
DR in ESFT cells remains to be elucidated. Upregulation of both
mRNA and cell surface expression of TRAIL DR by agents such as
etoposide, proteasome inhibitors and arsenic trioxide is frequently
reported to be mediated by p53 (Chen et al, 2008) and/or NF-kB
(Woo et al, 2004; Chen et al, 2008; Mendoza et al, 2008; Song et al,
2008). However, we have found that DR upregulation in ESFT cells
is not dependent on EWS– ETS fusion type, p53, p16 (Brownhill
et al, 2007) or NF-kB status, suggesting that the manner of DR
upregulation is cell type and stimulus dependent. DR5 is reported
to be upregulated by the transcription factor CHOP in several
cell lines by different stimuli, for example, 15-deoxy-delta12,
14-prostaglandin J2 (Su et al, 2008), proteosome inhibitors
(Hetschko et al, 2008) and endoplasmic reticulum stress
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(Yamaguchi and Wang, 2004). One report has shown that
fenretinide and TRAIL enhance apoptosis through CHOP-depen-
dent DR5 upregulation (Kouhara et al, 2007). No differences in
DR4 and FAS mRNA levels were reported; hence studies on these
receptors were discontinued. These observations are consistent
with our cDNA array data but importantly we discovered that
fenretinide upregulated these receptors at the cell surface. Further
investigation into how p38a upregulates DR at the surface of ESFT
cells is required. This may be mediated by CHOP because it
has previously been implicated in fenretinide-induced death
(Hail et al, 2006) and is a known p38MAPK substrate (Coulthard
et al, 2009).

p38MAPK inhibitors failed to reduce fenretinide-induced DR
expression to basal levels, suggesting that other factors may also
upregulate DR. c-Jun N-terminal kinase is an additional ASK1
substrate that is activated by fenretinide in certain cell types (Kang
et al, 2008; Appierto et al, 2009). Several groups report dual activation
of p38MAPK and c-Jun N-terminal kinase (Osone et al, 2004; Kim et al,
2006; Woo et al, 2009), suggesting that both MAPK may be required
for fenretinide-induced DR upregulation in ESFT cells.

Cotreatment with fenretinide and DR ligands resulted in
synergistic cell death through caspase-8 and Bid-dependent
pathways, although confirmation that these are effectors of cell
death requires validation through siRNA or inhibitor studies. This
amplified death above that induced by either agent alone reflected
activation through both the extrinsic (DR; Ashkenazi, 2008) and
intrinsic (fenretinide; Myatt et al, 2005) apoptotic pathways
(Figure 5). Fenretinide is also reported to activate caspase-8 and
caspase-9 in glioblastoma (Das et al, 2008), meningioma and
ovarian carcinoma (Cuello et al, 2004; Hail et al, 2006). We also
demonstrated that etoposide and vincristine induce DR upregula-
tion at the cell surface through ASK1 and p38MAPK, which
subsequently results in enhanced death when cells are treated
with DR ligands (although these effects were more modest than
those observed with fenretinide). These observations support
previously published data that etoposide increases DR5 mRNA and
protein expression (Gibson et al, 2000), although they contradict
studies in which vincristine had no effect on FAS mRNA

expression in HL-60 leukaemic cells (Thomadaki et al, 2009) and
the synergistic effect of actinomycin D through downregulation of
XIAP with no effect on TRAIL DR expression (Ng et al, 2002).
Doxorubicin has also been shown to induce DR5 cell surface
expression in other cell types (Yoshida et al, 2003), suggesting that
the effects of chemotherapeutics on DR expression is cell-line
dependent. However, only actinomycin D, TRAIL and etoposide,
with either TRAIL or FasL, enhanced cell death compared with
either agent alone, consistent with the observation that high levels
of DR expression do not necessarily correlate with ligand-induced
cytotoxicity (Georgakis et al, 2005). In all drug combinations,
a 20–40% cell population remained refractory to treatment. This
may be explained by the presence of cancer stem cell like cells
which are hypothesised to be responsible for resistance to therapy
and tumour relapse (Hemmings, 2010).

Importantly, fenretinide did not increase DR expression in non-
malignant MSC and NHUC. Furthermore, fenretinide, TRAIL or
the combination of both agents was not cytotoxic to either of these
non-malignant cell lines, indicating that the combination of
fenretinide and TRAIL may have minimal toxicity. Interestingly,
FAS was downregulated by fenretinide, and both DcRs were
strongly increased in NHUC. We also observed that fenretinide
upregulated TRAIL DcR in ESFT cells, which supports previous
data in which TRAIL DcRs are upregulated alongside DR by
apoptotic stimuli such as UV (Maeda et al, 2001), doxorubicin
(Yoshida et al, 2003) and oxaplatin (Toscano et al, 2008).
Collectively, these observations suggest a possible mechanism to
evade apoptosis, the higher DcR to DR ratio being likely to drive
cells towards a survival pathway. Cytoprotective roles for DcR have
previously been elucidated and are attributed to DcR-mediated
stimulation of the Akt, ERK (Secchiero et al, 2003) and NF-kB
(Degli-Esposti et al, 1997) survival pathways, competitive binding
of TRAIL to DcR1 inhibiting DR-induced DISC formation and
DcR2 forming ligand-independent complexes with DR5 at the
DISC to inhibit DR4 corecruitment and caspase activation
(Ashkenazi, 2008).

Our work demonstrates that the combination of fenretinide and
DR ligands, actinomycin D and TRAIL and etoposide used in
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Figure 5 Combined treatment of fenretinide, etoposide or actinomycin D with TRAIL results in enhanced cell death. Treatment of ESFT cells with
fenretinide leads to mitochondrial-dependent apoptosis through ROS generation, and ASK1-induced phosphorylation of p38MAPK. Fenretinide treatment
also results in ASK1- and p38a-mediated upregulation of DR at the cell surface. Etoposide and actinomycin D had similar effects. Treatment with ligands to
the cognate DR resulted in enhanced cell death, which was mediated through both caspase-8 and Bid cleavage (tBid¼ truncated Bid).
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combination with either TRAIL or FasL may be advantageous for the
treatment of ESFT cells. As DR ligands transduce apoptotic signals
through different pathways to those of chemotherapy and irradiation,
these combinations may augment patient response to either drug
alone and so be more effective. The combination of fenretinide
(Garaventa et al, 2003; Villablanca et al, 2006; Formelli et al, 2008)
and TRAIL (Ashkenazi, 2008) is an attractive therapeutic strategy
because both agents are well tolerated in clinical trials and non-
malignant cells are resistant to their cytotoxic effects, unlike many
commonly used agents that are used in combination with TRAIL.
Furthermore, both agents induce cytotoxicity independently of p53
(Hail et al, 2006; Ashkenazi, 2008), which is important when p53
mutations are common in certain cancer types and many conven-
tional treatments such as irradiation and DNA-damaging drugs rely
on p53 to induce cell death.

The combination of FasL with fenretinide or etoposide may also
have therapeutic potential. However, at present, this is not a viable
combination in the clinic because FAS monoclonal antibodies have
shown hepatotoxicity in preclinical trials (Ashkenazi, 2008).
However, APO010 (a second generation FasL from TopoTarget)
is a recombinant mega-FasL that displays anticancer activities both
in vitro and in xenograft models of human cancer. A dose-
escalation phase I trial is currently recruiting participants with
solid tumours to examine APO010 toxicity (ClinicalTrials.gov
Identifier: NCT00437736).

Two strategies are currently being explored for the clinical use
of TRAIL: recombinant human preparations (Genentech,
San Francisco, CA, USA) or monoclonal antibodies to DR4
(Mapatumumab, Human Genome Sciences, Rockville, MD, USA)
and DR5 (Amgen, Daiichi Sankyo (Munich, Germany), Human
Genome Sciences, Genentech and Novartis, Basel, Switzerland).
Both show promise in clinical trials when used as monotherapies
and in combination with agents such as chemotherapeutics, XIAP
inhibitors, proteasome inhibitors, HDACi, natural products and

BH3 mimetics (Ashkenazi, 2008). As mentioned previously,
Mapatumumab only induced limited in vitro cytotoxicity and
growth inhibition in ESFT xenograft tumour panels (Smith et al,
2009). Low DR4 mRNA expression was observed, in concordance
with our results, suggesting that combination therapies of TRAIL
receptor agonists with fenretinide or chemotherapeutic drugs
would be a better therapeutic regime for the treatment of
paediatric tumours because of the upregulation of DR or down-
regulation of antiapoptotic factors.

In summary, the synergistic cell death observed with the
combined treatment of fenretinide with DR ligands is mediated
through ASK1- and p38a-induced upregulation of DR at the
cell surface. In contrast, only certain chemotherapeutic drugs
upregulated DR at the cell surface, which did not always
correspond to enhanced cell death when cells were cotreated with
the cognate DR ligand. These data suggest that fenretinide in
combination with TRAIL may be a particularly attractive
therapeutic strategy, as both agents are well tolerated in clinical
trials and both induce death through separate apoptotic pathways
that may overcome chemoresistance.

ACKNOWLEDGEMENTS

We thank Thomas Maisey and Andrea Berry for routine
maintenance, characterisation and mycoplasm testing of cell lines,
Dr James Boyne for the fenretinide array data, Drs Elena Jones, Eva
Pitt, Ewan Morrison and Poulam Patel for the kind gift of cell lines
and Mr Colin Johnston for statistical advice.

Supplementary information accompanies the paper on British
Journal of Cancer website (http://www.nature.com/bjc)

REFERENCES

Appierto V, Tiberio P, Villani MG, Cavadini E, Formelli F (2009) PLAB
induction in fenretinide-induced apoptosis of ovarian cancer cells occurs
via a ROS-dependent mechanism involving ER stress and JNK activation.
Carcinogenesis 30: 824 – 831

Ashkenazi A (2008) Directing cancer cells to self-destruct with pro-
apoptotic receptor agonists. Nat Rev Drug Discov 7: 1001 – 1012

Brownhill SC, Taylor C, Burchill SA (2007) Chromosome 9p21 gene copy num-
ber and prognostic significance of p16 in ESFT. Br J Cancer 96: 1914 – 1923

Chen JJ, Chou CW, Chang YF, Chen CC (2008) Proteasome inhibitors
enhance TRAIL-induced apoptosis through the intronic regulation of
DR5: involvement of NF-kappa B and reactive oxygen species-mediated
p53 activation. J Immunol 180: 8030 – 8039

Coulthard LR, White DE, Jones DL, McDermott MF, Burchill SA (2009)
p38(MAPK): stress responses from molecular mechanisms to therapeu-
tics. Trends Mol Med 15: 369 – 379

Cuello M, Coats AO, Darko I, Ettenberg SA, Gardner GJ, Nau MM, Liu JR,
Birrer MJ, Lipkowitz S (2004) N-(4-hydroxyphenyl) retinamide (4HPR)
enhances TRAIL-mediated apoptosis through enhancement of a
mitochondrial-dependent amplification loop in ovarian cancer cell lines.
Cell Death Differ 11: 527 – 541

Das A, Banik NL, Ray SK (2008) N-(4-Hydroxyphenyl) retinamide induced
both differentiation and apoptosis in human glioblastoma T98G and U87
MG cells. Brain Res 1227: 207 – 215

Debatin KM, Krammer PH (2004) Death receptors in chemotherapy and
cancer. Oncogene 23: 2950 – 2966

Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA,
Goodwin RG (1997) The novel receptor TRAIL-R4 induces NF-kappaB
and protects against TRAIL-mediated apoptosis, yet retains an
incomplete death domain. Immunity 7: 813 – 820

Formelli F, Cavadini E, Luksch R, Garaventa A, Villani MG, Appierto V,
Persiani S (2008) Pharmacokinetics of oral fenretinide in neuroblastoma

patients: indications for optimal dose and dosing schedule also with
respect to the active metabolite 4-oxo-fenretinide. Cancer Chemother
Pharmacol 62: 655 – 665

Garaventa A, Luksch R, Lo Piccolo MS, Cavadini E, Montaldo PG, Pizzitola
MR, Boni L, Ponzoni M, Decensi A, De Bernardi B, Bellani FF, Formelli F
(2003) Phase I trial and pharmacokinetics of fenretinide in children with
neuroblastoma. Clin Cancer Res 9: 2032 – 2039

Georgakis GV, Li Y, Humphreys R, Andreeff M, O’Brien S, Younes M,
Carbone A, Albert V, Younes A (2005) Activity of selective fully human
agonistic antibodies to the TRAIL death receptors TRAIL-R1 and TRAIL-
R2 in primary and cultured lymphoma cells: induction of apoptosis
and enhancement of doxorubicin- and bortezomib-induced cell death.
Br J Haematol 130: 501 – 510

Gibson SB, Oyer R, Spalding AC, Anderson SM, Johnson GL (2000)
Increased expression of death receptors 4 and 5 synergizes the apoptosis
response to combined treatment with etoposide and TRAIL. Mol Cell Biol
20: 205 – 212

Hail Jr N, Kim HJ, Lotan R (2006) Mechanisms of fenretinide-induced
apoptosis. Apoptosis 11: 1677 – 1694

Hemmings C (2010) The elaboration of a critical framework for
understanding cancer: the cancer stem cell hypothesis. Pathology 42:
105 – 112

Hetschko H, Voss V, Seifert V, Prehn JH, Kogel D (2008) Upregulation
of DR5 by proteasome inhibitors potently sensitizes glioma cells to
TRAIL-induced apoptosis. FEBS J 275: 1925 – 1936

Kang MH, Wan Z, Kang YH, Sposto R, Reynolds CP (2008) Mechanism
of synergy of N-(4-hydroxyphenyl)retinamide and ABT-737 in acute
lymphoblastic leukemia cell lines: Mcl-1 inactivation. J Natl Cancer Inst
100: 580 – 595

Khwaja FS, Quann EJ, Pattabiraman N, Wynne S, Djakiew D (2008)
Carprofen induction of p75NTR-dependent apoptosis via the p38

Drug-induced upregulation of death receptors in ESFT

DE White and SA Burchill

1389

British Journal of Cancer (2010) 103(9), 1380 – 1390& 2010 Cancer Research UK

T
ra

n
sl

a
ti

o
n

a
l

T
h

e
ra

p
e
u

ti
c
s

http://www.nature.com/bjc


mitogen-activated protein kinase pathway in prostate cancer cells.
Mol Cancer Ther 7: 3539 – 3545

Kim HJ, Chakravarti N, Oridate N, Choe C, Claret FX, Lotan R (2006)
N-(4-hydroxyphenyl)retinamide-induced apoptosis triggered by reactive
oxygen species is mediated by activation of MAPKs in head and neck
squamous carcinoma cells. Oncogene 25: 2785 – 2794

Kontny U (2006) Regulation of apoptosis and proliferation in Ewing’s
sarcoma—opportunities for targeted therapy. Hematol Oncol 24: 14 – 21

Kouhara J, Yoshida T, Nakata S, Horinaka M, Wakada M, Ueda Y,
Yamagishi H, Sakai T (2007) Fenretinide up-regulates DR5/TRAIL-R2
expression via the induction of the transcription factor CHOP and
combined treatment with fenretinide and TRAIL induces synergistic
apoptosis in colon cancer cell lines. Int J Oncol 30: 679 – 687

Kuma Y, Sabio G, Bain J, Shpiro N, Marquez R, Cuenda A (2005) BIRB796
inhibits all p38 MAPK isoforms in vitro and in vivo. Journal of Biological
Chemistry 280: 19472 – 19479

Kwon D, Choi K, Choi C, Benveniste EN (2008) Hydrogen peroxide
enhances TRAIL-induced cell death through up-regulation of DR5 in
human astrocytic cells. Biochem Biophys Res Commun 372: 870 – 874

Lissat A, Vraetz T, Tsokos M, Klein R, Braun M, Koutelia N, Fisch P,
Romero ME, Long L, Noellke P, Mackall CL, Niemeyer CM, Kontny U
(2007) Interferon-gamma sensitizes resistant Ewing’s sarcoma cells to
tumor necrosis factor apoptosis-inducing ligand-induced apoptosis
by up-regulation of caspase-8 without altering chemosensitivity.
Am J Pathol 170: 1917 – 1930

Lu G, Punj V, Chaudhary PM (2008) Proteasome inhibitor Bortezomib
induces cell cycle arrest and apoptosis in cell lines derived from Ewing’s
sarcoma family of tumors and synergizes with TRAIL. Cancer Biol Ther
7: 603 – 608

Maeda T, Hao C, Tron VA (2001) Ultraviolet light (UV) regulation of the
TNF family decoy receptors DcR2 and DcR3 in human keratinocytes.
J Cutan Med Surg 5: 294 – 298

Mendoza FJ, Ishdorj G, Hu X, Gibson SB (2008) Death receptor-4 (DR4)
expression is regulated by transcription factor NF-kappaB in response to
etoposide treatment. Apoptosis 13: 756 – 770

Merchant MS, Yang X, Melchionda F, Romero M, Klein R, Thiele CJ,
Tsokos M, Kontny HU, Mackall CL (2004) Interferon gamma enhances
the effectiveness of tumor necrosis factor-related apoptosis-inducing
ligand receptor agonists in a xenograft model of Ewing’s sarcoma. Cancer
Res 64: 8349 – 8356

Myatt SS, Redfern CP, Burchill SA (2005) p38MAPK-Dependent sensitivity
of Ewing’s sarcoma family of tumors to fenretinide-induced cell death.
Clin Cancer Res 11: 3136 – 3148

Nakamura T, Tanaka K, Matsunobu T, Okada T, Nakatani F, Sakimura R,
Hanada M, Iwamoto Y (2007) The mechanism of cross-resistance to
proteasome inhibitor bortezomib and overcoming resistance in Ewing’s
family tumor cells. Int J Oncol 31: 803 – 811

Ng CP, Zisman A, Bonavida B (2002) Synergy is achieved by complementa-
tion with Apo2L/TRAIL and actinomycin D in Apo2L/TRAIL-mediated
apoptosis of prostate cancer cells: role of XIAP in resistance. Prostate 53:
286 – 299

Osone S, Hosoi H, Kuwahara Y, Matsumoto Y, Iehara T, Sugimoto T (2004)
Fenretinide induces sustained-activation of JNK/p38 MAPK and
apoptosis in a reactive oxygen species-dependent manner in neuroblas-
toma cells. Int J Cancer 112: 219 – 224

Picarda G, Lamoureux F, Geffroy L, Delepine P, Montier T, Laud K, Tirode
F, Delattre O, Heymann D, Redini F (2010) Preclinical evidence that use
of TRAIL in Ewing’s sarcoma and osteosarcoma therapy inhibits tumor
growth, prevents osteolysis, and increases animal survival. Clin Cancer
Res 16: 2363 – 2374

Proctor A, Brownhill SC, Burchill SA (2009) The promise of telomere
length, telomerase activity and its regulation in the translocation-
dependent cancer ESFT; clinical challenges and utility. Biochim Biophys
Acta 1792: 260 – 274

Quann EJ, Khwaja F, Djakiew D (2007) The p38 MAPK pathway mediates
aryl propionic acid induced messenger rna stability of p75 NTR in
prostate cancer cells. Cancer Res 67: 11402 – 11410

Secchiero P, Gonelli A, Carnevale E, Milani D, Pandolfi A, Zella D, Zauli G
(2003) TRAIL promotes the survival and proliferation of primary human
vascular endothelial cells by activating the Akt and ERK pathways.
Circulation 107: 2250 – 2256

Shetty S, Gladden JB, Henson ES, Hu X, Villanueva J, Haney N, Gibson SB
(2002) Tumor necrosis factor-related apoptosis inducing ligand (TRAIL)
up-regulates death receptor 5 (DR5) mediated by NFkappaB activation in
epithelial derived cell lines. Apoptosis 7: 413 – 420

Smith MA, Morton CL, Kolb EA, Gorlick R, Keir ST, Carol H, Lock R,
Kang MH, Reynolds CP, Maris JM, Watkins AE, Houghton PJ (2009)
Initial testing (stage 1) of mapatumumab (HGS-ETR1) by the pediatric
preclinical testing program. Pediatr Blood Cancer 54: 307 – 310

Song JH, Kandasamy K, Kraft AS (2008) ABT-737 induces expression of the
death receptor 5 and sensitizes human cancer cells to TRAIL-induced
apoptosis. J Biol Chem 283: 25003 – 25013

Sonnemann J, Dreyer L, Hartwig M, Palani CD, Hong le TT, Klier U,
Broker B, Volker U, Beck JF (2007) Histone deacetylase inhibitors induce
cell death and enhance the apoptosis-inducing activity of TRAIL in
Ewing0s sarcoma cells. J Cancer Res Clin Oncol 133: 847 – 858

Su RY, Chi KH, Huang DY, Tai MH, Lin WW (2008) 15-deoxy-Delta12,
14-prostaglandin J2 up-regulates death receptor 5 gene expression in
HCT116 cells: involvement of reactive oxygen species and C/EBP
homologous transcription factor gene transcription. Mol Cancer Ther
7: 3429 – 3440

Thomadaki H, Floros KV, Scorilas A (2009) Molecular response of HL-60
cells to mitotic inhibitors vincristine and taxol visualized with apoptosis-
related gene expressions, including the new member BCL2L12. Ann N Y
Acad Sci 1171: 276 – 283

Toscano F, Fajoui ZE, Gay F, Lalaoui N, Parmentier B, Chayvialle JA,
Scoazec JY, Micheau O, Abello J, Saurin JC (2008) P53-mediated
upregulation of DcR1 impairs oxaliplatin/TRAIL-induced syner-
gistic anti-tumour potential in colon cancer cells. Oncogene 27:
4161 – 4171

Villablanca JG, Krailo MD, Ames MM, Reid JM, Reaman GH, Reynolds CP
(2006) Phase I trial of oral fenretinide in children with high-risk
solid tumors: a report from the Children’s Oncology Group (CCG 09709).
J Clin Oncol 24: 3423 – 3430

Westwood G, Dibling BC, Cuthbert-Heavens D, Burchill SA (2002) Basic
fibroblast growth factor (bFGF)-induced cell death is mediated through a
caspase-dependent and p53-independent cell death receptor pathway.
Oncogene 21: 809 – 824

White DE, Burchill SA (2008) BAY 11-7082 induces cell death through
NF-kappaB-independent mechanisms in the Ewing’s sarcoma family of
tumours. Cancer Lett 268: 212 – 224

Williamson AJ, Dibling BC, Boyne JR, Selby P, Burchill SA (2004) Basic
fibroblast growth factor-induced cell death is effected through sustained
activation of p38MAPK and up-regulation of the death receptor p75NTR.
J Biol Chem 279: 47912 – 47928

Woo IS, Eun SY, Jang HS, Kang ES, Kim GH, Kim HJ, Lee JH, Chang KC,
Kim JH, Han CW, Seo HG (2009) Identification of ADP-ribosylation
factor 4 as a suppressor of N-(4-hydroxyphenyl)retinamide-induced cell
death. Cancer Lett 276: 53 – 60

Woo SH, Park IC, Park MJ, An S, Lee HC, Jin HO, Park SA, Cho H, Lee SJ,
Gwak HS, Hong YJ, Hong SI, Rhee CH (2004) Arsenic trioxide
sensitizes CD95/Fas-induced apoptosis through ROS-mediated upre-
gulation of CD95/Fas by NF-kappaB activation. Int J Cancer 112:
596 – 606

Yamaguchi H, Wang HG (2004) CHOP is involved in endoplasmic
reticulum stress-induced apoptosis by enhancing DR5 expression in
human carcinoma cells. J Biol Chem 279: 45495 – 45502

Yodkeeree S, Sung B, Limtrakul P, Aggarwal BB (2009) Zerumbone
enhances TRAIL-induced apoptosis through the induction of death
receptors in human colon cancer cells: evidence for an essential role of
reactive oxygen species. Cancer Res 69: 6581 – 6589

Yoshida S, Narita T, Koshida S, Ohta S, Takeuchi Y (2003) TRAIL/Apo2L
ligands induce apoptosis in malignant rhabdoid tumor cell lines. Pediatr
Res 54: 709 – 717

Drug-induced upregulation of death receptors in ESFT

DE White and SA Burchill

1390

British Journal of Cancer (2010) 103(9), 1380 – 1390 & 2010 Cancer Research UK

T
ra

n
sla

tio
n

a
l

T
h

e
ra

p
e
u

tic
s


	Fenretinide-dependent upregulation of death receptors through ASK1 and p38alpha enhances death receptor ligand-induced cell death in Ewingaposs sarcoma family of tumours
	Materials and methods
	Cells and reagents
	Cell surface expression of receptors
	Fenretinide array
	Electroporation of TC-32 cells with small interfering RNA (siRNA)
	ASK 1 immunecomplex kinase assay
	Cell viability
	Caspase-8 activity
	Immunoblotting
	Statistical analyses

	Results
	Fenretinide upregulates DR and DcR in ESFT cells
	Fenretinide-induced upregulation of DR is dependent on phosphorylation of ASK1 and p38alpha
	Fenretinide sensitises ESFT cells to the DR apoptotic pathway to enhance cell death

	Figure 1 Fenretinide upregulates DR and DcR in ESFT cells.
	Figure 2 Fenretinide upregulation of DR is dependent on phosphorylation of ASK1, and p38alpha.
	Specific chemotherapeutics upregulate DR and enhance ESFT cell death

	Figure 2 Continued.
	Discussion
	Figure 3 Fenretinide sensitises ESFT cells to the DR apoptotic pathway to enhance cell death.
	Figure 4 Specific chemotherapeutics upregulate DR and enhance ESFT cell death.
	Figure 5 Combined treatment of fenretinide, etoposide or actinomycin D with TRAIL results in enhanced cell death.
	ACKNOWLEDGEMENTS
	REFERENCES




