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Abstract: The aim of this review is threefold. On the one hand, we intend it to serve as a gentle
introduction to the Interacting Quantum Atoms (IQA) methodology for those unfamiliar with it.
Second, we expect it to act as an up-to-date reference of recent developments related to IQA. Finally,
we want it to highlight a non-exhaustive, yet representative set of showcase examples about how to
use IQA to shed light in different chemical problems. To accomplish this, we start by providing a brief
context to justify the development of IQA as a real space alternative to other existent energy partition
schemes of the non-relativistic energy of molecules. We then introduce a self-contained algebraic
derivation of the methodological IQA ecosystem as well as an overview of how these formulations
vary with the level of theory employed to obtain the molecular wavefunction upon which the IQA
procedure relies. Finally, we review the several applications of IQA as examined by different research
groups worldwide to investigate a wide variety of chemical problems.
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1. Chemical Interactions and Energy Decompositions

If any intrinsic value is to be given to theoretical chemistry beyond that of prediction and thus
of its ability to become an in silico alternative to experimental labour, this is its being invaluable
for understanding. Chemists propose new synthetic avenues and design new materials according
to mental models that owe much to quantum chemistry. Among these, the orbital paradigm has
had enormous influence, and the standard textbook classification of chemical interaction types is
rooted in it. However, we should not forget that the very phrasing “chemical interaction” implies the
existence of at least two independent, isolated entities that interact, and that this, strictly speaking,
is intrinsically forbidden in quantum mechanics, for quantum mechanical systems are non-separable
in nature. Once allowed to interact, two systems A and B become entangled.

The whole of chemical thinking is then rooted on methods designed to approximately separate a
fully interacting, non-separable quantum mechanical system into chemically meaningful interacting
entities. When chemists talk about redox reactions, electrons are imagined to flow from one of these
interacting entities to another. Similar conceptual leaps are involved when pushing arrows or when
dipole-dipole interactions are invoked among interacting molecules. In particular, when coming
down to energies, any quantitative assessment involves one kind or another of the so-called energy
decomposition analyses (EDAs). According to Stones and Hayes [1], an EDA should provide a
meaningful partition of the energy into physical terms, lead to total energies in agreement with
those obtained in global calculations, and be applicable to wide range of computational or physical
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conditions. Although many methods have been proposed over the years, most fail to satisfy all of
these general criteria.

One of the most difficult to satisfy requirements is the validity of a given EDA at both the short
and long range distance regimes. This should be clear to every chemist: the language spoken when
talking about chemical bonds, full of orbital-related words like covalency, ionicity, π-backdonation,
hyperconjugation, and so forth, is rather different from that we talk when describing intermolecular
interactions, now stuffed with terms like dispersion, induction, exchange-repulsion among others.
This simply reflects the inability of the approximations used in one realm to cross the border
that separates them from the other. The approximations are simply incompatible with each other.
For instance, the multipolar expansion that lies behind the long-range language simply breaks
down at short distances. It is also useless to use perturbation theory, the basis of one of the most
accurate methods to obtain intermolecular interaction energies (symmetry adapted perturbation theory,
SAPT [2]), to examine the formation of the bond in N2. Similarly, it is not obvious at all how to use the
short-range orbital language for very weak interactions.

The history of EDAs is linked to the field of intermolecular interactions. Forces upon molecules
were initially studied by understanding full separability among them: a set of separated moieties
with a well-defined set of nuclei and electrons and thus isolated Hamiltonians that were allowed
to interact via a small electrostatic perturbation. For two interacting entities A and B, described by
isolated Hamiltonians and eigenstates HA|iA〉 = EA

i |iA〉 and HB|iB〉 = EB
i |iB〉 so that H0 = HA + HB,

H′ = − ∑
i∈A,β∈B

Zβ

riβ
− ∑

j∈B,α∈A

Zα

rjα
+ ∑

i∈A,j∈B

1
rij

. (1)

Notice that H′ is only an electron perturbation operator. The new nuclear repulsion terms
appearing after interaction of A and B are just additive constants under the Born-Oppenheimer
approximation. Blind use of, for instance, a Hartree product for the AB system followed by
Rayleigh-Schrödinger theory, violates antisymmetry and is, in principle, forbidden. Much effort
has been devoted to solve this problem, and although no unique solution exists, SAPT [2] has become
the de facto modern standard to solve this problem.

In the very long range regime, anyway, one may use that the partial overlap∫
d1 ΨA(1, 2, . . . , NA)ΨB(1, 2′, . . . , N′B) (2)

decays exponentially to neglect it, justifying the plain use of a Hartree product and leading to the
so-called polarisation approximation. With this, the states of the subsystem are eigenstates of H0,
H0|iA jB〉 = (EA

i + EB
j )|iA jB〉 = E0

ij|i
A jB〉. If we ignore degeneracies and take the ground states as

|0A〉, |0B〉, the first and second order corrections to the energy are given by [3]

E1
00 = 〈0A0B|H′|0A0B〉

E2
00 = ∑

ij 6=00

〈0A0B|H′|iA jB〉〈iA jB|H′|0A0B〉
E0

ij − E0
00

. (3)

Notice that in the standard long-range EDAs the intervening molecules are unperturbed,
a condition that cannot be assumed at short distances. The terms in Equation (3) have simple
interpretations. E1

00 is the expectation value of the intermolecular electrostatic perturbation, and is
thus known as the electrostatic energy, Eelstat. The multipolar expansion of 1/r12 is also usually
invoked, so that Eelstat is divided into multipole-multipole terms Qla Qlb /Rla+lb+1

AB , where the Ql are
the unperturbed molecular charge multipoles.

The second order corrections include the classical induction, when one of the i, j indices in
Equation (3) is 0, and the dispersion terms, when both are non-zero: E2

00 = EA
ind + EB

ind + EAB
disp.
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Notice that non-overlapping densities are assumed in all these approximations. Even though the
multipolar expansion converges, it may tend to incorrect limits as RAB decreases. Inclusion of
antisymmetry effects via SAPT introduces a kind of doubling of each perturbation term, much as the
Coulomb integrals have to be supplemented by exchange ones in going from Hartree to Hartree-Fock
theory. The first order exchange term, for instance, is called exchange-repulsion, and takes into account
Pauli’s destabilisation between closed-shell fragments.

A second category of approaches to deal with energy decomposition is based on applying the
general computational chemistry machinery on the AB supermolecule, so that Eint = EAB − EA − EB

is obtained by subtraction. This approach is plagued with accuracy issues, most of them related to
the basis set superposition error (BSSE) [4] and the size-consistency problem of most low-cost high
level electron correlation electronic structure methods. Standard protocols, like the counterpoise
correction [5], have been devised to correct for them. If we choose to ignore these problems, the issue
sets in how to decompose a plain interaction energy Eint. Two families of methods have been devised to
cope with this. Either the A, B partition is performed in Fock (orbital) space, or it is done in real space.

The first route is much more common than the second, and most of the methods that use it go
back to the Kitaura and Morokuma (KM) decomposition [6]. For a single determinant approximation,
a set of steps are imagined that take us from the isolated fragments to the interacting ones, and for
which calculations can be performed. First, the free monomers are distorted from the in vacuo to
the interacting geometry. The energetic cost of this process is called preparation energy, Eprep. Then,
the electrostatic energy Eelstat due to the interaction of overlapping densities is obtained. This is
done by avoiding mixing of A and B primitives in the original Hartree product. An antisymmetrised
determinant from unperturbed orbitals is also evaluated, from which the exchange energy EX is
obtained, and by subtraction from the final state the charge-transfer energy ECT is finally obtained.
Versions in which blocks of the Fock operator were successively suppressed were also proposed.

KM has evolved, and a method inspired on it that has been used very much over the years,
usually known as EDA, based on older Ziegler-Rauk decompositions [7] was proposed by Bickelhaupt
and Baerends [8]. It can be applied easily in DFT calculations. In EDA, the fragments are first prepared
(Eprep), and their standard electrostatic interaction is obtained Eelstat. Then, an antisymmetric HF or
Kohn-Sham (KS) determinant is formed. The difference in energy of this with respect to the fragments
is called the Pauli energy, ∆EPauli. Finally, the relaxation energy that takes this antisymmetrised system
to the interacting complex is called orbital relaxation energy, ∆Eorb. Overall,

Eint = Eprep + Eelstat + ∆EPauli + ∆Eorb. (4)

Other popular methods like the LMOEDA [9] approach uses a mixture of a KM-like decomposition
and a non-orthogonal treatment. A different, although related, orbital EDA is the Natural Energy
Decomposition analysis (NEDA) of Glendening and Streitwiseser [10].

All these, and many other methods, rely on reference states that have no physical meaning,
and thus depend on them. When applied to the short range regime to understand intramolecular
chemical bonding, for instance, EDA may be obtained for a whole set of ways to partitioned the AB
system into fragments. This has been used profitably by some groups to define the most chemically
appealing bonding model for a given interaction, for instance, but is obviously not satisfying from the
conceptual point of view.

A way to avoid these and other problems is to turn to orbital invariant objects to define energy
partitions. These are easy to construct from reduced density matrices (RDMs), which can be defined
either in real or in momentum space. Provided that chemists think of molecules residing in the first,
not in the second space, methods taking profit of orbital invariance have usually been defined for
spatial RDMs, and are called real space energy partitions. In a way, the partitioning problem is now
changed to that of how to define our interacting objects, be them atoms or molecules, in space, that is,
to how to partition space into atoms or chemical fragments. Out of the possibilities that have been
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devised, we will basically use the partition provided by the Quantum Theory of Atoms in Molecules
(QTAIM) of Bader and coworkers [11].

2. The Spatial or Real Space Point of View

An appealing alternative to both perturbation theory and other supermolecular EDAs based on
either arbitrarily chosen references or ad hoc approximations is the use of orbital invariant quantities.
These are scalar or vector fields that can be obtained as the expectation value of measurement operators.
By construction, they do depend neither on external references nor on the specific electronic structure
methodology. A well known example is the electron density ρ(r), which is routinely obtained via X-ray
diffraction experiments [12] and that can be defined as the expectation value of an electron position
measurement operator:

ρ(r) = 〈Ψ|ρ̂(r)|Ψ〉, (5)

where ρ̂(r) = ∑N
i=1 δ(r− ri) sums over all spatial electron coordinates. It is easily shown that

ρ(r1) = N
∫

Ψ∗(x1, x2, . . . , xN)Ψ(x1, x2, . . . , xN) dσ1dx2 . . . dxN , (6)

where xi ≡ riσi gathers the spatial (ri) and spin (σi) coordinates of electron i.
If we choose the momentum representation we can also find the momentum density, which is

not so much used in Chemistry. We will not comment in this review on momentum space
quantities anymore.

This approach can be easily generalised to consider the density of electron tuples: pairs, trios,
and so forth, leading to the so-called reduced density matrix (RDM) formalism. In general, the n-th
order RDM (nRDM) is defined as [13]

ρn(x′1, . . . , x′n; x1, . . . , xn) =
N!

(N − n)!

∫
Ψ∗(x′1, x′2, . . . , x′N)Ψ(x1, x2, . . . , xN) dxn+1 . . . dxN . (7)

Spinless variants are simply obtained by summing up the spin degrees of freedom of the 1, . . . , n
electrons. Their diagonal parts, when x′i = xi ∀i ∈ [1, n] are called n-th order reduced densities (nRDs),
and provide the probability densities of finding electron tuples at particular points in space. As we
will see in more detail, the electronic molecular energy depends only on the 1RDM and the 2RD:
E = Tr(hρ1) + 1/2Tr(ρ2/r12).

The essential issue of spatial or real space energy partitions is how to divide the physical space
R3 into a given number of domains m endowed with a relevant physical meaning. From a purely
mathematical point of view, a fairly general way of doing this is to define a function f (r) = ∑m

A ωA(r),
such that f (r) = 1 ∀r. Different choices of ωA(r) provide different partitions of the real space. With this
simple definition it is evident that an arbitrary function of r (say ρ(r)) can be decomposed into as many
contributions as the number of terms in the summation that defines f (r), that is, ρ(r) = ∑m

A ρA(r),
where ρA(r) = ρ(r)ωA(r). By extension, an arbitrary function F(r1, . . . , rn) can always be put in
the form

F(r1, . . . , rn) =
m

∑
AB···

ωA(r1)ωB(r2) · · · F(r1, . . . , rn)

=
m

∑
AB···

FAB···(r1, . . . , rn). (8)

In general, there are mn functions FAB···. However, in the cases we are interested in, there exist
relations between these functions that makes the number of them that is independent less than
mn. For instance, when F(r1, r2) is the spinless 2RDM ρ2(r1, r2), one has ρ2,BA(r1, r2) = ρ2,AB(r1, r2),
and the number of independent functions is only m(m + 1)/2.
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Although infinite definitions of f (r) satisfying f (r) = 1 are possible, only some of them based
in a partition of the real space endowed with a deep physical meaning, deserve to be explored
and have been used to date. It should be noted first that the physical space (R3) can be divided
into fuzzy or exhaustive regions. Among the former, the so-called Hirshfeld partition and its
different versions, References [14,15] among others [16–19], has received some attention so far. In it,
every subindex A in ωA(r) refers to an atom of the molecule, and these atomic functions are defined
based on the electron atomic densities as ωA(r) = ρ0

A(r)/ ∑A ρ0
A(r), where ρ0

A(r) is the in vacuo density
of atom A or the density of this atom modified by its molecular environment. As other fuzzy partitions,
Hirshfeld-like divisions of R3 have the characteristic that each ωA(r) takes a value close to unity when
the point r is close to the nucleus of atom A and decreases progressively as it moves away from it.
Another widely used definition of ωA(r) is that proposed by Becke [16] to simplify the numerical
integrations of Density Functional Theory (DFT). Becke’s partition divides the physical space into
atomic regions that resemble fuzzy Voronoi polyhedron. The size of each atomic domain can be
adjusted by using an effective radius RA for each of the atoms of the molecule [16]. These RA’s can
be chosen in different ways [17]. Finally, it is worth mentioning the choice for ωA(r) proposed by
Fernández Rico et. al. [19], that determines ρA(r) following a minimal deformation criterion for every
two-centre contribution to the electron density ρ(r).

Contrary to fuzzy partitions, exhaustive partitions of R3 have ωA(r) = 1 when r ∈ ΩA and
ωA(r) = 0 when r /∈ ΩA, where ΩA is a given domain or region of R3. Among these, the ΩA’s induced
by the topology of a scalar field that exhaustively partition the real space, such as the molecular density
ρ(r), or the electron localisation function (ELF) of Becke and Edgecombe [20] stand out on their own
merits, have been and continue to be widely used. Let us very briefly state that the 3D maxima or
minima of any well-behaved scalar field f (r) induce a topological exhaustive partition of the physical
space into non-overlapping regions. These are the basins of attraction (or repulsion) of the maxima
(minima), built as the geometrical locus of all points in space whose gradient field lines end (start) at
each maximum (minimum). It is easy to show that the surfaces separating the different basins are
local zero-flux surfaces: ∇ f (r) · n(r) = 0, where n is the exterior normal vector at each point r of the
surface. Obviously, a local zero-flux surface is also a global zero-flux one:

∮
S ∇ f (r) · dS = 0.

The partition of R3 based on the topology of ρ(r) is the key element that supports the Quantum
Theory of Atoms in Molecules (QTAIM) developed by Prof. Bader and his collaborators [11], and the
starting point of the interacting quantum atoms method (IQA) [21,22], whose description is the essential
objective of this work. Each ΩA is then identified with an atomic basin, that includes the nucleus of the
atom plus an open region around it that contains an average number of electrons that is determined by
the electron density ρ(r), whose topological analysis, in turn, defines ΩA.

3. The IQA Methodology

The interacting quantum atoms (IQA) method is an orbital invariant energy partition that divides
the total energy of a molecule into a sum of atomic self-energies and interaction energies between all
the atoms of the molecule. Unlike the orthodox QTAIM, the IQA partition can be performed at any
molecular geometry. As a consequence, it can be particularly useful to follow the evolution of arbitrary
interatomic or inter-fragment interaction energies, and intra-fragment energies as well, along the path
of a chemical reaction. Notice, however, the application of IQA has been limited by its compraratively
much worse computational scaling with respect to other EDA schemes.

Succinctly, since extending on this topic would lead to a considerably more extense discussion, at
stationary points of potential energy surfaces the virial theorem holds and the total molecular kinetic
(T) and potential (V) energies get intertwinned, 2T + V = 0, so that T + V = E = −T. Within the
QTAIM, the atomic virial theorem [11] can then be exploited to define an atomic energy for each
quantum atom A as EA = −TA that is fully additive: E = ∑A EA. These virial energies have been
exploited successfully, but face considerable problems outside stationary geometries. In these general
cases, the virial theorem reads 2T + V = ∑α Rα · Fα, where α runs over the nuclei, and R and F stand
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for the nuclear positions and their Hellmann-Feynman forces. This sum is usually called the nuclear
virial, and there is no unique, simple way to divide it or split it into origin independent atomic terms.
This difficulty is at the root of the more general perspective provided by IQA.

The starting point to apply IQA are the first order, ρ1(r1; r′1), and (diagonal) second order, ρ2(r1, r2),
RDMs of the system. From the general expression given in Equation (7) they are given as

ρ1(r1; r′1) = N
∫

Ψ?(x′1, x2, . . . , xN)Ψ(x1, x2, . . . , xN) dσ dri≥2, (9)

ρ2(r1, r2) = N(N − 1)
∫

Ψ?(x1, x2, . . . , xN)Ψ(x1, x2, . . . , xN) dσ dri≥3, (10)

where σ = σ1, · · · , σN refers to the spin coordinates of all the electrons, and dri≥n indicates spatial
integration from electron n to N. Actually, Ψ(1, N) is not strictly necessary in IQA. All that is required
are ρ1(r1; r′1) and ρ2(r1, r2), regardless of how these have been obtained (vide infra). It is even possible to
use electronic densities from difraction experiments as inputs in the IQA calculations [23,24]. Thanks to
this, IQA can deal with electronic structure methods that give rise to a wavefunction, such as the
Hartree-Fock (HF), the complete active space (CAS), or the full Interaction of Configurations (full-CI)
methods, for which ρ1(r1; r′1) and ρ2(r1, r2) can be derived, but also with other methods where the
wavefunction is not available but in which more or less accurate forms for ρ1(r1; r′1) and ρ2(r1, r2) can
be found. Among the latter, both the Coupled Cluster (CC) method [25], due to the very high accuracy
results it generates in medium and small systems, and the Møller-Plesset perturbative approach should
be highlighted.

Leaving aside the errors associated with the three- and hexa-dimensional numerical integrations
that are characteristic of the method, IQA recovers exactly the total energy of the molecular system
under study. None of the energy components is calculated by making approximations of any kind in
order to accelerate these numerical integrations. Given the ρ1(r1; r′1) and ρ2(r1, r2) RDMs, and assuming
negligible integration errors, the IQA energy components add to the total molecular energy. Of course,
IQA offers also the possibility of calculating in a simplified form some inter-atomic interactions
(specifically Coulomb-type interactions and exchange interactions between atoms or fragments far
enough apart), but only in an optional way, particularly in those cases where the exact calculation
would be prohibitive or for purely comparative purposes.

A remarkable feature of the IQA methodology is its orbital invariance. Most times, ρ1(r1; r′1)
and ρ2(r1, r2) are built with the canonical molecular orbitals (MO) of the system. However, it is also
possible to replace them with the corresponding natural orbitals or, even more interesting, with real
space localised MOs, obtained from the canonical MOs with one of the different localisation schemes
existing in the literature. This last possibility is very attractive in correlated calculations with a high
number of orbitals. In these cases it is essential to truncate ρ1(r1; r′1) and ρ2(r1, r2) by eliminating
some of them: the less localised some MOs are in two atoms of the system (say A and B) the less the
interaction between both atoms will be affected by eliminating these orbitals from the complete list
used to construct the density matrices.

Although until recently the IQA methodology had been applied to molecular systems in the
ground electronic state, there is nothing preventing its application in excited electronic states [26].
Very recently, the black-box equation-of-motion (EOM) coupled-cluster singles and doubles (CCSD)
approximation has been used to construct ρ1(r1; r′1) and ρ2(r1, r2) and to use the IQA method to dissect
excitation energies into atomic and interatomic contributions of molecular clusters such as (H2O)2,
getting very valuables insights in photochemistry.

In a similar way, even though IQA requires, in principle, the availability of ρ2(r1, r2), whatever
the electronic structure method used to generate it, a proposal has been formulated such that IQA
can be applied with Kohn-Sham determinants (formally, single-determinant pseudo-wavefunctions)
obtained from DFT calculations. This fact opens up the possibility of performing IQA calculations on
systems larger than those analysed to date.
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After this general preamble, we will present in Section 3.1 the general IQA formalism, paying a
special emphasis on the presentation of the energetic components in which IQA divides the total
energy of an arbitrary molecule and in how these are grouped together into quantities endowed with a
clear physical meaning. In Section 3.2, we will briefly show the specific peculiarities of the IQA method
with the different forms that have been used so far for the 1RDM and 2RDM. Finally, the algorithms
used to carry out the complex three- and hexa-dimensional numerical integrations are considered in
Section 3.3.

3.1. The Iqa Energy Partition

The total electronic energy of a molecule, within an arbitrary wavefunction-based electronic
structure method different from DFT, may be written under the usual Coulomb Hamiltonian as

E = h + Vee + Vnn =
∫

ĥρ1(r1; r′1)dr1

+
1
2

x
dr1dr2

ρ2(r1, r2)

r12
+ Vnn. (11)

The prime superscript in ρ1 is removed prior to integration, but after ĥ acts on it. This operator
gathers all monoelectronic terms: electronic kinetic energy, T̂, and electron–nuclear attraction, V̂en.
The term Vee is the interelectron repulsion, and the last one is the internuclear repulsion energy,
Vnn = ∑A>B ZAZBR−1

AB. Considering that ρ2(r1, r2) can be naturally partitioned into Coulomb and
exchange-correlation (xc) contributions,

ρ2(r1, r2) = ρJ
2(r1, r2) + ρxc

2 (r1, r2), (12)

= ρ(r1)ρ(r2) + ρxc
2 (r1, r2), (13)

Vee can always be split as Vee = Vcl + Vxc, where:

Vcl =
1
2

x
dr1dr2

ρJ
2(r1, r2)

r12
and (14)

Vxc =
1
2

x
dr1dr2

ρxc
2 (r1, r2)

r12
, (15)

are the total classical and xc molecular energies, respectively. All the integrations in the above
expressions are extended to the whole three dimensional space. Using the definitions given in Section 2
and, in particular, Equation (8), E is exactly given by

E = ∑
A

hA +
1
2 ∑

A
∑
B

VAB
ee + Vnn, where (16)

hA =
∫

ωA(r)ĥρ1(r; r′)dr, and (17)

VAB
ee =

1
2 ∑

A,B

x
dr1dr2

ωA(r1)ωB(r2)ρ2(r1, r2)

r12
. (18)

We must remember at this point that ωA(r) = 1 if r ∈ ΩA and ωA(r) = 0 if r /∈ ΩA, where ΩA is
the basin associated to atom A according to QTAIM. With these premises, it is only necessary to group
the different energy terms of Equation (16) into two categories: (1) those that only involve the particles
(nucleus plus electrons) within a single atomic basin ΩA and (2) those that involve interactions between
the particles from two different regions ΩA and ΩB. The result is the main equation of the IQA energy
partition (to simplify the notation ΩA is replaced by A from now on):
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E = ∑
A

EA
self + ∑

A>B
EAB

int (19)

EA
self = TA + VAA

ne + VAA
ee (20)

EAB
int = VAB

ne + VBA
ne + VAB

ee + VAB
nn . (21)

EA
self is the self-energy of the atomic basin ΩA, and includes the kinetic energy of the electron density

inside ΩA,

TA =
∫

A
T̂ρ1(r; r′)dr, (22)

the attraction between the nucleus and electrons in ΩA,

VAA
ne = −ZA

∫
A

dr
ρ(r)
|r− RA|

, (23)

and the repulsion between the electrons in ΩA,

VAA
ee =

1
2

∫
A

dr1

∫
A

dr2
ρ2(r1, r2)

r12
. (24)

EAB
int is the total interaction energy between the atomic basins ΩA and ΩA, including the

nucleus(A)-nucleus(B), nucleus(A)-electrons(B), nucleus(B)-electrons(A), and electrons(A)-electrons(B)
terms, given respectively by:

VAB
nn = ZAZBR−1

AB, (25)

VAB
ne = −ZA

∫
B

dr
ρ(r)
|r− RA|

, (26)

VBA
ne = −ZB

∫
A

dr
ρ(r)
|r− RB| , (27)

VAB
ee =

∫
A

dr1

∫
B

dr2
ρ2(r1, r2)

r12
. (28)

Using Equation (12), VAB
ee can be split into a classical electron-electron interaction term,

VAB
ee,cl =

∫
A

dr1

∫
B

dr2
ρJ

2(r1, r2)

r12
, (29)

and an xc interaction energy

VAB
xc =

∫
A

dr1

∫
B

dr2
ρxc

2 (r1, r2)

r12
. (30)

In this way, the total AB interaction energy, EAB
int , admits the following more chemical reorganisation

EAB
int = VAB

cl + VAB
xc , (31)

where VAB
cl is the total classical interaction between the atomic basins ΩA and ΩB,

VAB
cl =

∫
A

dr1

∫
B

dr2
ρT

A(r1)ρ
T
B(r2)

r12
, (32)

with ρT
A(r) = ZAδ(r− RA)− ρ(r).

It is important to note that the VAB
cl definition is formally identical to the electrostatic terms in

perturbative expansions or in the Energy Decomposition Analysis (EDA) procedure [8]. However,
in the IQA method the electron densities ρT

A(r1) and ρT
B(r2) do not interpenetrate. This is the source of

important numerical differences between EDA-like and IQA classical interactions. We should mention
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here that, even though ρT
A(r1) and ρT

B(r2) do not interpenetrate in IQA, these two densities may be,
however, overlapping in the sense to be discussed in Section 3.3. The overlap between ρT

A(r1) and
ρT

B(r2) is the origin of the non-convergence or lack of validity of the well-known multipolar expansion
(widely used to determine VAB

cl ) when atoms A and B are not far enough from each other [27,28].
As we will see, since this overlap is explicitly taken into account, this lack of convergence does not
occur in the IQA method.

VAB
xc represents the covalent interaction between atoms A and B [29,30]. A null value of this

term signals the absence of electron exchange between both atoms, and being this exchange the
fundamental identity sign of a covalent bond, a zero value of VAB

xc simply means that atoms A and B
are not covalently bonded. Let’s be even clearer and consider a molecule formed only by two atoms A
and B separated by a distance R in which the classical interaction is close to −1/R but has VAB

xc = 0.
This simply means that approximately one electron has been permanently transferred from A to B
(or vice versa), but once the electron has been transferred, it is not exchanged any more between
both atoms. In other words, there is no fluctuation in the electronic population of either of the two
atoms, which is equivalent to say that the covariance of the electron population of both atoms (say nA
and nB) is zero, cov(nA, nB) = 0. Real space theories of chemical bonding establish that the bond
order between A and B is given by δAB = −2cov(nA, nB) [31,32]. Hence, a double implication exists
(VAB

xc = 0)⇔ (δAB = 0). An algebraic proof of the existing connection between VAB
xc and δAB is given

in a later subsection.
The atomic self-energy EA

self contains all of the energy contributions that are already present in
the isolated atom A, and so the free atomic energies, EA

vac, are comparable in order of magnitude.
The binding energy of the molecule, defined as its total energy E minus the sum of all the free atomic
energies, Ebind = E−∑A EA

vac, can then be written as

Ebind = ∑
A

EA
def + ∑

A>B
EAB

int , (33)

= ∑
A

EA
def + ∑

A>B

[
VAB

cl + VAB
xc

]
. (34)

EA
def is the deformation energy of atom A and measures the change in energy of this atom in

passing from the isolated to the in-the-molecule state. Although we will not pursue here a more
detailed analysis of this energy, it is important to say that it can be written in turn as the sum of two
components, EA

def = EA,ρ
def + EA,ct

def . The first term, always present, is due to the deformation of the
atomic density and is positive as long as EA

vac is variationally determined with the same basis later
employed in the molecule. This is so because, by definition, the density of the isolated atom A, ρA

vac(r),
minimises EA

vac. The second term, EA,ct
def , is mainly associated to the electron transfer from atom A to the

remaining atoms of the molecule or vice versa, and to others effects like spin-recoupling, and so forth.
It clearly vanishes in homodiatomic molecules, A2, but is different from zero when atom A gains or
loses electron density when the molecule is formed from the isolated atoms. Usually, it is negative in
the first case and positive in the second.

The total interaction energy EAB
int has recently be shown to be a good measure of the in situ bond

strength between the atoms A and B [33]. The sum of these interaction energies for all different pairs
of atoms A and B, ∑A>B EAB

int , would be the total atomisation or fragmentation energy of the molecule
if the atomic energies are are measured with respect to their in-the-molecule state [33].

All the above equations correspond to a partition of the molecule into atoms. However,
they can be easily generalised when the molecule is divided into several groups or fragments,
each containing one or more atoms [22]. For instance, calling G and H two generic groups of the
molecule, Equations (19) and (21) remain the same if A and B are replaced by G andH, respectively,
and EGself is equal to (20), with G instead of A, and adding a term VGGnn = ∑(A∈G)>(B∈G) ZAZBR−1

AB that
accounts for the repulsion between the different nuclei of group G, in the event that this group has
more than one atom. The remaining contributions to EGself must be trivially modified as follows: TG
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is given by Equation (22) with the integration over r extended to ΩG = ∑A∈G ΩA, that is, to the set
of atomic basins of all the atoms that belong to group G, and the intra group nuclei-electrons and
electrons-electron energies VGGne and VGGee are given by

VGGne = − ∑
A∈G

ZA
∫
G

dr
ρ(r)
|r− RA|

, (35)

VGGee =
1
2

∫
G

dr1

∫
G

dr2
ρ2(r1, r2)

r12
. (36)

Similarly, the four energy terms of EGHint are given by generalisation of Equations (25)–(28)

VGHnn = ∑
A∈G

∑
B∈H

ZAZBR−1
AB, (37)

VGHne = − ∑
A∈G

ZA
∫
H

dr
ρ(r)
|r− RA|

, (38)

VHGne = − ∑
B∈H

ZB
∫
G

dr
ρ(r)
|r− RB| , (39)

VGHee =
∫
G

dr1

∫
H

dr2
ρ2(r1, r2)

r12
. (40)

The last equation when ρ2 is replaced by ρxc
2 gives VGHxc . Finally, the total classical interaction

between the groups G andH is given by

VGHcl =
∫
G

dr1

∫
H

dr2
ρT
G(r1)ρ

T
H(r2)

r12
, (41)

where ρT
G(r) = ∑A∈G ZAδ(r− RA)− ρ(r).

3.2. Iqa from Different Electronic Structure Approximations

The equations presented in the previous subsection constitute the essential core of the IQA
methodology and, with very slight changes, were already present in the original formulation of the
method [22,34]. Many of the improvements in recent years have consisted of expanding the set of types
of wavefunctions with which it is possible to apply these equations. In particular, as it is evident from
Equation (11), the more exact ρ1 and ρ2, the better the quality and plausibility of the results obtained
for the different energy components. Even though RDMs of a given method are not of higher quality
to others already incorporated in the IQA methodology, no doubt that the formalism is enriched as
it is capable of dealing with an expanded set of forms for ρ1 and ρ2, coming from different types of
electronic structure methods. Regardless the method used, ρ1 and ρ2 in a given basis of molecular
orbitals φi (usually the canonical HF orbitals) are written in the form [35]

ρ1(r; r′) = ∑
pq

Dpqφ?
p(r
′)φq(r) (42)

ρ2(r1, r2) = ∑
pqrs

dpqrsφ?
p(r1)φq(r1)φ

?
r (r2)φs(r2). (43)

3.2.1. Densities for Single- and Multideterminantal Wavefunctions

In the simplest mean-field or HF approximation the summations over p, q, r, and s in the above
two equations (assuming a closed-shell molecule for simplicity) are from 1 to n = N/2. In this
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approximation, D is diagonal, Dpq = npδpq, where np = 2 is the occupation of φp, and dpqrs =

4δpqδrs − 2δprδqs. Using these expressions of Dpq and dpqrs in Equations (42) and (43) we have

ρHF
1 (r; r′) =

n

∑
p

npφ?
p(r
′)φp(r), and (44)

ρ2(r1, r2) = ρHF(r1)ρ
HF(r2)

−
n

∑
pq

2φ?
p(r1)φq(r1)φ

?
p(r2)φq(r2), (45)

= ρJ
2(r1, r2) + ρxc

2 (r1, r2), (46)

where ρHF(r) ≡ ρHF
1 (r; r). At this point, it is relevant to note that, assuming real MOs and defining the

basis of pairs of MOs G1 = φ1φ1, G2 = φ2φ1, G3 = φ2φ2, . . . , ρxc
2 acquires the form

ρxc
2 (r1, r2) =

n(n+1)/2

∑
i

λiGi(r1)Gi(r2), (47)

where λi = −2 for i = 1, 3, 6, . . . , and λi = −4 for the remaining values of i. As we will see, this diagonal
form of ρxc

2 has important implications related to the numerical integrations of the method.
When ρ1 and ρ2 come from a multideterminantal wavefunction (say, from a complete active space

(CAS) or full interaction of configurations (full-CI) calculation), neither ρ1 is diagonal in the canonical
basis φi (as in Equation (44)) nor ρxc

2 (r1, r2) can be written as in Equation (47). In this and other cases
to be discussed below, the present implementation of IQA proceeds as follows. Firstly, ρ1 is built in the
canonical basis, obtaining the D matrix, which after being diagonalised leads to

ρCAS
1 (r; r′) =

m

∑
p

np ϕ?
p(r
′)ϕp(r), (48)

where ϕp are the natural MOs of the system and np (0 ≤ np ≤ 2) are their occupation numbers.
The upper limit m ≥ n in Equation (48) is the size of the MO basis used in the calculation.

Regarding ρxc
2 , its expression in the φi basis is analogous to Equation (43) for the complete ρ2,

that is, (assuming again real MOs)

ρxc
2 (r1, r2) = ∑

pqrs
εpqrsφp(r1)φq(r1)φr(r2)φs(r2) (49)

≡ ∑
p≥q,r≥s

ηpq,rsFpq(r1)Frs(r2), (50)

were we have defined Fpq = φpφq and ηpq,rs = εpqrs + εpqsr∆rs + εqprs∆pq + εqpsr∆pq∆rs, with ∆ab = 0
if a = b and ∆ab = 1 if a 6= b. Condensing the pair of indices (p, q) in a single index i, and the pair of
indices (r, s) in another index j, both i and j varying from 1 to m(m + 1)/2, one obtains

ρxc
2 (r1, r2) = ∑

ij
ηijFi(r1)Fj(r2). (51)

η is a symmetric array that can be diagonalised [36]. Calling λi and Gi its eigenvalues and eigenvectors,
respectively, we can see that Equation (47) applies also to multideterminantal wavefunctions, this time
the index i changing from 1 to m(m + 1)/2. Although, in the HF or single-determinant case,
each λi = −2 for i = 1, 3, 6, . . . and λi = −4 for the other i’s, in the multideterminantal case this
is not so, and the deviations of λi from the above values gives a measure of the multiconfigurational
character of the wavefunction. In a similar way, each Gi is the product of two canonical orbitals in the
HF case, but it is a linear combination of orbital products in the general case.
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3.2.2. Coupled Cluster (Cc) Densities

Except in the case of a full-CI calculation, the coupled-cluster (CC) electronic structure method
probably provides the most accurate results of quantum chemistry [25] at this moment. Contrarily to
the HF approximation, that does not include dynamical correlation (DC) at all, or with CAS
self-consistent-field (CASSCF) calculations, where most part of the included electron correlation
is non dynamic, the CC theory including single and double excitations (CCSD) and, sometimes,
third order excitations in a perturbative way (CCSD(T)), is able to recover a large percentage of the
dynamic correlation energy. A first proposal to divide the Coupled Cluster energy according to the
IQA partition was made by Rocha-Rinza and coworkers [37]. They use HF/CC transition densities to
carry out such division. Unfortunately, that approach had the inconvenience of not being consistent
with the calculation of other properties beyond the electronic energy. Later on, the same group put
forward an implementation of the IQA energy partition based on CC Lagrangian one- and two-electron
density matrices [38]. In this approach, the Dpq and dpqrs coefficients of ρ1 (Equation (42)) and ρ2

(Equation (43)) are given as

DΛ
pq = 〈Λ|Êpq|CC〉, (52)

dΛ
pqrs = 〈Λ|êpqrs|CC〉, (53)

where Êpq = ∑σ=α,β â†
pσ âqσ, â†

pσ is a creation operator, âqσ an annihilation operator,
êpqrs = ÊpqÊrs − δrqÊps,

〈Λ| = 〈HF|+ ∑
µ

t̄µ〈µ|e−T̂ , (54)

and t̄µ and 〈µ| are the Lagrange multipliers and the projection manifold of the CC equations,
respectively. After substituting Equation (54) into Equations (52) and (53), one obtains the expressions

DΛ
pq = 〈HF|Êpq|CC〉+ ∑

µ

t̄µ〈µ|e−T̂ ÊpqeT̂ |HF〉, (55)

dΛ
pqrs = 〈HF|ÊpqÊrs|CC〉

+ ∑
µ

t̄µ〈µ|e−T̂ ÊpqÊrseT̂ |HF〉 − δqrDΛ
ps. (56)

A detailed derivation of DΛ
pq and dΛ

pqrs will not be given here. Their final expressions for the
CC single and double (CCSD) densities in terms of the single- (ta

i ) and double-excitation (tab
ij ) CC

amplitudes and the Lagrange multipliers t̄µ can be found in References [38,39].
After the CCSD coefficients DΛ

pq and dΛ
pqrs have been obtained, they are treated in the same way as

in the case of multideterminantal wavefunctions: D is diagonalised to obtain the CCSD natural orbitals
ϕi and their occupation numbers ni, and the η matrix defined in Equation (49), obtained from the dΛ

pqrs

coefficients after subtracting the Coulomb part ρJ
2(r1, r2) (Equation (12)) from the full two-electron

density ρ2(r1, r2), diagonalised to obtain the eigenvalues λi and eigenfunctions Gi(r).

3.2.3. Møller-Plesset Densities (Mpn)

The IQA partition combined with the MP2 approximation was successfully used for the first
time by Popelier and coworkers to study electron correlation [40,41]. The problem with this initial
IQA/MP2 approach is that its computational cost is practically the same as the one corresponding to
an IQA/CCSD partition. However, a new algorithm has been recently developed that takes only into
account occupied to virtual excitations [42]. The new IQA/MP2 method allows for dramatic reductions
in computer time, although it has the disadvantage of providing first order properties similar to those
of the HF approach. This is so because Møller-Plesset perturbation theory adds exclusively correlation
energy corrections on top of the HF reference, E(MP) = E(HF) + Ecorr. Partitioning Ecorr à la IQA
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leads to MP IQA correlation contributions. Restricting to second-order corrections (MP2) (although the
treatment is easily generalised to the general MPn case), EMP2

corr for a closed-shell molecule is given by

EMP2
corr =

1
2 ∑

iajb

2(2giajb − gibja)

εi + εj − εa − εb
giajb, (57)

where giajb = (φi(r1)φ
?
a (r1)|r−1

12 |φj(r2)φ
?
b (r2) is a two-electron integral over canonical HF orbitals

φp(r) with energy εp, p, q, . . . , are general orbitals, and i, j, . . . , and a, b, . . . , run over occupied
and virtual orbitals, respectively. The definition of the the effective correlation matrix elements
diajb = 2(2giajb − gibja)/(εi + εj − εa − εb) allows to define an effective second-order ρeff

2 density as

ρeff
2 (r1, r2) = ρHF

2 (r1, r2) + ρMP2
2 (r1, r2), (58)

where
ρMP2

2 (r1, r2) = ∑
iajb

diajbφi(r1)φ
?
a (r1)φj(r2)φ

?
b (r2). (59)

Since matrix elements iijj or ijij are absent from ρMP2
2 , ρeff

2 integrates to the HF density,∫
ρeff

2 (r1, r2; r′1, r2)dr2 = (N − 1)ρHF(r1; r′1), (60)

so that all one-electron properties and standard QTAIM descriptors remain unaltered and equal to
their HF values. Similarly, since the total 2RDM is the sum of its HF component plus the MP2 term
(Equation (58)), all Coulomb and exchange energies are also unchanged with respect to their HF
counterparts, and therefore

EMP2
corr =

1
2 ∑

iajb
diajbgiajb, (61)

= ∑
A

EA
corr,MP2 + ∑

A>B
EAB

corr,MP2. (62)

This is the partition of the total MP2 correlation energy into intra-atomic (EA
corr,MP2) and

inter-atomic (EAB
corr,MP2) contributions. The structure of Equation (61) allows a considerable saving

of effort. The η array (Equation (51)) that has to be diagonalised in the CASSCF, Full-CI, or CCSD
IQA implementations has a size of m(m + 1)/2, where m = o + v is the total number of occupied)
(o) plus virtual (v) orbitals in the basis. In the MP2 case, however, due to Equation (58), η has the
structure depicted in Table 1, where empty (#) and filled ( ) circles represent zero and non-zero
values, respectively.

The oo block, containing the HF exchange energy, is already diagonal, the vv block is zero, and the
ov block, of dimension (ov × ov), is the only one that needs to be diagonalised. In typical MP2
calculations intended for real-life chemical problems, m >> o and v >> o, and the effort needed
to numerically calculate the six-dimensional integrals involved in the computation of EA

corr,MP2 and
EAB

corr,MP2 is reduced by a factor that scales as v/o. This computational saving allows the treatment of
much larger systems in reasonable computed times.
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Table 1. Structure of the η matrix in a IQA/MP2 calculation. Empty (#) and filled ( ) circles represent
zero and non-zero values, respectively.

η oo Pairs ov Pairs vv Pairs

 # · · · # # # · · · # # # · · · #
#  · · · # # # · · · # # # · · · #
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
# # · · ·  # # # # # # # #

# # · · · #   · · ·  # # · · · #
# # · · · #   · · ·  # # · · · #
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
# # · · · #     # # # #

# # · · · # # # · · · # # # · · · #
# # · · · # # # · · · # # # · · · #
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
# # · · · # # # # # # # # #

3.2.4. Kohn-Sham Densities (Dft)

There is no second order density within the Kohn-Sham (KS) approximation. Hence, the IQA
method is not cleanly defined in DFT. However, given the increasing importance of DFT calculations
in ever-expanding fields of Computational Chemistry, it was mandatory to carry out a formulation
of IQA in a DFT context. Popelier et al. were the first to give a first implementation of the IQA/DFT
partition within the KS formalism of DFT in conjunction with the B3LYP functional [43]. The same
year, Francisco et al. presented another formulation that can be applied with a large number of hybrid
and non-hybrid xc functionals [44]. The starting point of the latter is the comparison between the xc
DFT energy (EDFT

xc ) and the exchange-only (x) energy of a KS determinant, EKS
x , formally analogous

to the xc energy of a single-determinant wavefunction, Equation (15). For a non-hybrid xc DFT
functional ε(r) ≡ ε[ρ(r), |∇ρ(r)|] (the treatment of hybrid xc functionals is very similar to this one and
is discussed in detail in Reference [44]) EDFT

xc is given by

EDFT
xc =

∫
drρ(r)ε(r). (63)

On the other hand,

EKS
x =

1
2

x
dr1dr2

ρx,KS
2 (r1, r2)

r12
, (64)

where ρx,KS
2 (r1, r2) is the x density of the KS determinant. After R3 is partitioned into disjoint domains,

EDFT
xc and EKS

x can be written in the form

EDFT
xc = ∑

A

∫
A

ρ(r)ε(r)dr = ∑
A

EA,DFT
xc , and (65)

EKS
x = ∑

A
EA,KS

x , where (66)

EA,KS
x = EAA,KS

x +
1
2 ∑

B 6=A
EAB,KS

x , (67)

EAA,KS
x =

1
2

∫
A

dr1

∫
A

dr2
ρx,KS

2 (r1, r2)

r12
, (68)

EAB,KS
x =

∫
A

dr1

∫
B

dr2
ρx,KS

2 (r1, r2)

r12
. (69)
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The subscript x instead of xc in the above quantities emphasises that they do no recover the full
xc energies of a DFT calculation. To accomplish this objective, we define the λA quantity as

λA =
EA,DFT

xc

EA,KS
x

, (70)

and define the scaled quantities ẼAA
xc and ẼAB

xc by

ẼAB
xc =

1
2
[λA + λB] EAB,KS

x , (71)

both A = B and A 6= B. It is then straightforward to show that

EDFT
xc = ∑

A
ẼAA

xc + ∑
A>B

ẼAB
xc (72)

= ∑
A

[
ẼAA

xc +
1
2 ∑

B 6=A
ẼAB

xc

]
= ∑

A
ẼA

xc. (73)

This is the desired partition of EDFT
xc in terms of intra-atomic (ẼAA

xc ) and inter-atomic (ẼAB
xc )

contributions. Equation (72) recovers exactly the full xc energy of the DFT calculation.
The above strategy to scale the intra- and inter-atomic xc energies such that the total DFT energy

is exactly recovered differs from that used by the Aimall code [43], where this requirement is achieved
by leaving unchanged the inter-atomic term, EAB,KS

x (A 6= B), which is evaluated using Equation (69),
and modifying each intra-atomic term according to EAA

xc (AIMALL) = EA,DFT
xc − 1

2 ∑B 6=A EAB,KS
x .

3.2.5. Other Approximate Densities

Besides all the above ρ2 and ρxc
2 densities, the IQA partition can also deal with approximate xc

densities that do not require the knowledge of the molecular wavefunction, but only the natural orbitals
ϕp and their occupation numbers np (Equation (48)) [45]. Many approximate forms for ρxc

2 have been
proposed within the Density Matrix Functional Theory (DMFT) with the general formula [45]

ρxc
2 (r1; r2) = ∑

pq
f (np, nq) χpq(r1) χpq(r2), (74)

where χpq = ϕp ϕq. Different f (np, nq)’s provide different approximate ρxc
2 ’s. The most widely used

and well-known proposal is the so-called Müller or Buijse-Baerends functional (BB) that, in closed-shell
systems, takes the form [46,47] f BB(ni, nj) = 2(ninj)

1
2 .

Other improved possibilities, which we will not discuss here for brevity, are those due to
Goedecker and Umrigar [48] (GU), Csányi and Arias (CA) [49], Csányi, Goedecker and Arias [50],
the hybrid (GU+CA) functional proposed by Staroverov and Scuseria [51], and the corrected BB
expressions given by Gritchenko et al. [52] in an attempt to correct the overcorrelation of the Müller
functional while preserving the proper description in the dissociation limit, and so forth. Finally,
the successive improved formulas of Piris and coworkers also deserve special mention [53]. All these
possibilities share the common feature of providing diagonal expressions for ρxc

2 in the basis of products
of natural MOs. Therefore, the diagonalisation of η matrix (see Equation (51)) is not required in any of
the above cases.

3.3. Practical Aspects of Iqa Implementation

The most expensive computational task of any IQA implementation lies in the numerical
evaluation of the one-electron tridimensional and two-electron hexadimensional integrals over the,
generally, irregular domains ΩA in which QTAIM divides the physical space. We will not discuss in
this review how different implementations of the IQA method deal with these integrations. As regards
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monoelectronic integrations, the literature on the subject is quite extensive. Even the description of
the many methods that have been proposed so far to integrate ρ(r) and different functions of it in the
QTAIM ΩA regions would require a review in its own. On the contrary, we will settle for discussing
in detail, although not exhaustively, the algorithms developed in our group and incorporated in the
domestic program Promolden. This is not the most popular implementation of IQA. This privilege
corresponds to the one included in the Aimall code. However, as far as we are aware of, Aimall cannot
deal yet with the large variety of second order densities that Promolden can handle almost as easily as
if they were Hartree-Fock densities.

We will consider separately the integration of monoelectronic and bielectronic IQA energies.
Although some elements of both integrations are common, they differ quite a bit in other respects, so it
is appropriate to differentiate both treatments. In any case, one element which is common to all the
integrations made within the Promolden program is the interatomic surface S(ΩA), that separates a
QTAIM domain ΩA from other atomic basins. Centring a spherical coordinate system in the nucleus
of A, we will call R(r̂), with r̂ ≡ (θ, φ), the maximum distance from this nucleus to S(ΩA). In some
cases R(r̂) → ∞. When this happens, Promolden takes R(r̂) = Rmax, where Rmax is large enough
to ensure that the density for larger values is completely negligible. Different Rmax’s can be chosen
for the different atoms of the system. In other case, it may happen that a line leaving the nucleus of
A with the direction r̂ cuts S(ΩA) at various points. This event is explicitly taken into account by
Promolden. In other words, Promolden always foresees the possibility of multiple intersections with
S(ΩA). The latter is determined in the program by means of a bipartition algorithm that, although it
may not be extremely fast, is quite robust.

3.3.1. Integration Schemes: Monoelectronic Terms

There are three different forms in which monoelectronic energy components can be integrated in
Promolden. Let

I =
∫

Ω
f (r) dr, (75)

where f (r) is the integrator of any of the monoelectronic energy terms previously seen. In the first
method (standard method), we define f Ω(r) = f (r) ωΩ(r) and transform Equation (75) to

I =
∫

f Ω(r) dr, (76)

that is, the integration of f within the basin Ω is replaced by the integration of f Ω(r) in the whole
space. Now, the angular integration of f Ω(r) over the angles (θ, φ) ≡ r̂ is performed, obtaining the
radial function f Ω(r)

f Ω(r) =
∫

r̂
f Ω(r) dr̂, (77)

(dr̂ = sin(θ)dθdφ) and, finally, integrate f Ω(r) over the radial coordinate r:

I =
∫ Rmax

r=0
r2 f Ω(r) dr. (78)

Several quadratures can be used to obtain f Ω(r), although a Lebedev angular grid [54,55] with
a variable number of points, is used most times. To compute the radial integral in Equation (78),
the interval r ∈ [0, Rmax] is mapped onto a new finite interval u ∈ [−1,+1] (or u ∈ [0,+1]) by means
of a coordinate transformation r(u) such that r(−1) = 0 (or r(0) = 0) and r(+1) = Rmax. Several r(u)
possibilities are included in Promolden.

Using the Heaviside-like function ωΩ(r) in the definition of f Ω(r) causes sharp jumps in the
values of this function when r̂ is changed for a given value of r when performing integration (77).
This forces the use of angular grids with a considerably high number of r̂ points. However, as a
counterpart, performing the angular integration for each r value instead of the radial integration for
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each r̂, and not the other way around, is what gives bi-electronic integrations a very favourable scaling.
It is implicit in Equation (78) that the present integration scheme requires a single set of radial grid
points for each atomic basin Ω.

In the second monoelectronic integration scheme included in Promolden, the order of the radial
and angular integrations is reversed. For each angular grid point r̂, the integral

I(r̂) =
∫ R(r̂)

r=0
r2 f (r) dr (79)

is computed first. Then, the angular integration is performed

I =
∫

r̂
I(r̂) dr̂. (80)

This method requires a different radial grid for each r̂ point of every monocentric integration,
which adds a negligible CPU time to the total necessary to perform a typical IQA calculation.

Finally, the last monoelectronic integration scheme included in Promolden is a variant of the
above, in which all radial integrations are obtained using the QUADPACK library [56]. Each integral
is obtained with a precision greater than an absolute error predefined in advance by successively
dividing the radial interval up to a maximum number of times that is also previously defined.

3.3.2. Integration Schemes: Bielectronic Terms

A first point that we must highlight here is that, as it can be inferred from Section 3.2, all the
bielectronic integrals that appear in the present implementation of the IQA method have the form

IAB =
∫

A
dr1

∫
B

dr2
f (r1) f (r2)

r12
, (81)

with both monoelectronic functions being the same, f (r), and where B can be equal to (monocentric) or
different from A. If IAB refers to a classical electron-electron interaction, f (r) = ρ(r), while in
exchange-correlation interactions f (r) = G(r), where G(r) is the product of two canonical or
Kohn-Sham orbitals (in HF wavefunctions and Kohn-Sham pseudo-wavefunctions, respectively) or a
linear combination of these products in correlated descriptions (CASSCF, CCSD, etc.). The fact that the
same function is evaluated with the arguments r1 and r2 is what confers this IQA implementation its
very favourable scaling properties with the increase of the size of the system [22].

To advance in the calculation of IAB it is necessary to disentangle the r1 and r2 coordinates
in Equation (81). Full details of how this disentanglement is carried out appear in the original
reference [34]. Here, only a summary of this process is given. The treatment is rather different for
the monocentric (IAA) and bicentric IAB (A 6= B) integrals. In the first case, the well-known Laplace
expansion for r−1

12 is used:

r−1
12 =

∞

∑
l=0

4π

2l + 1
rl
<

rl+1
>

+l

∑
m=−l

Slm(r̂1)Slm(r̂2), (82)

where Slm(r̂) is a real spherical harmonic [57], and r< and r> correspond to the smaller and the larger
of (r1, r2). In the bicentric case (A 6= B), the less-known bipolar expansion for r−1

12 is used [58,59]:

r−1
12 =

∞

∑
l1m1

∞

∑
l2m2

Sl1m1(r̂1) Sl2m2(r̂2) Dl2m2
l1m1

(r1, r2, R), (83)

where r1 ≡ (r1, r̂1) and r2 ≡ (r2, r̂2) are referred to centres A and B, respectively, R = (RB − RA) ≡
(R, R̂) is the vector position of center B with respect to center A, and Dl2m2

l1m1
(r1, r2, R) is a function

defined in a different way in the four regions a, b, c, and d depicted in Figure 1.
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Figure 1. Regions of definition of the Dl2m2
l1m1

(r1, r2, R) function.

To carry out the integration over r1 and r2 in Equation (81) we use again the method 1 discussed
in monoelectronic integrations. Using Equation (82) in Equation (81) with A = B, we have

IAA =
∞

∑
lm

x
(

rl
<

rl+1
>

)
f ΩA
lm (r1) f ΩA

lm (r2) r2
1 r2

2 dr1 dr2 =
∞

∑
lm

IAA
lm , (84)

where f Ω
lm(r) = Nl

∫
r̂ Slm(r̂) f Ω(r) dr̂ and Nl =

√
4π/(2l + 1). As in the monoelectronic integration,

the ∞ upper limit of r1 and r2 in Equation (84) is replaced by a finite value Rmax which guarantees
that f Ω

lm(r) ' 0 for r > Rmax, and map the [0, Rmax] interval onto a new finite interval u ∈ [−1,+1]
or u ∈ [0,+1] by using a r1(u1) and r2(u2) coordinate transformation. Using Nr + 1 points ui and
weights wi (i = 0, 1, ..., Nr), we can write IAA

lm as

IAA
lm =

Nr

∑
i,j=0

rl
<

rl+1
>

f ΩA
lm (ri) f ΩA

lm (rj) r2
i r2

j r′(ui) r′(uj)wi wj, (85)

where ri = r(ui) and r′(u) = (dr/du). A single f Ω
lm(r) function suffices to determine IAA

lm through a
double radial integration. As described in Reference [34], this fact can be used to further reduce the
complexity of the intra-atomic integration.

To compute the bielectronic inter-atomic integrals IAB we replace expression (83) for r−1
12 in

Equation (81) (A 6= B) to give

IAB =
∞

∑
l1m1

∞

∑
l2m2

IAB
l1m1,l2m2

, with (86)

IAB
l1m1,l2m2

= N−1
l1

N−1
l2
×
∫

f ΩA
l1m1

(r1) r2
1 dr1 ×

∫
f ΩB
l2m2

(r2) r2
2 dr2 Dl2m2

l1m1
(r1, r2, R). (87)

Since the two f Ω
lm(r) can be independently computed, the original problem, with a computational

complexity that scales as N6, has been transformed into a more tractable 2N4 problem. This allows
for great savings in computer time, which can be even larger by precomputing and reusing the f Ω

lm(r)
functions in different integrals involving the same atom Ω, for both intra- and inter-atomic integrals.

It becomes clear from Figure 1 that IAB, and also IAB
l1m1,l2m2

, is a sum of four contributions,

IAB = IAB
a + IAB

b + IAB
c + IAB

c , (88)
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corresponding to the four different functional forms that the Dl2m2
l1m1

(r1, r2, r) function has in the four

regions a, b, c, and d in which the (r1, r2) plane has been divided [60]. Despite this, Dl2m2
l1m1

(r1, r2, r) is
continuous and differentiable for any r1 and r2 values, so that each IAB

l1m1,l2m2
can be computed by a

double mapped-radial quadrature similar to that used for IAA
lm , previously replacing the ∞ upper limit

of r1 and r2 by RA
max and RB

max, respectively.
The l expansion in the expression of the monocentric energy terms, IAA (Equation (84)), is carried

out up to a maximum value l = lmax defined in advance, while the l expansion in the bicentric
terms (Equation (86)) is performed up to lmax or until the sum has converged with a given precision,
whichever comes first.

3.3.3. The Multipolar Approach for the Classical and Exchange-Correlation Energies

An important simplification in the calculation of IAB occurs when regions A and B are widely
separated in space. As long as the radial coordinates r1 and r2 in Equation (87) satisfy r1 + r2 ≤ R,
the function Dl2m2

l1m1
(r1, r2, r) has to be evaluated only in region c of Figure 1. This strictly happens only

when the sum of the maximum values of r1 and r2, RA
max + RA

max, is less than or equal to the distance
between the nuclei of regions A and B, that is, RA

max + RA
max < R. This condition is what defines the

non-overlapping character of two regions in IQA bicentric integration, and differs from that commonly
used, in which two regions of R3 are said to be overlapping if the intersection between them is a
non-null region of this space.

The multipolar approximation, widely used to compute the classical interatomic interaction in the
modellisation of biomolecules, is equivalent to assume that the above IQA non-overlapping condition
is always satisfied. In other words, region c of Figure 1 is identified with the complete first quadrant.
After a lenghty but easy manipulation, that we omit here for brevity, we get

IAB '
∞

∑
l1m1

∞

∑
l2m2

Cl2m2
l1m1

(R̂)
f ΩA
l1m1

f ΩB
l2m2

Rl1+l2+1 , (89)

where Cl2m2
l1m1

(R̂) are angular coefficients [34], and f Ω
lm = Nl

∫
Ω rl Slm(r̂) f (r)dr. In case that f (r) = ρ(r),

f Ω
lm are the spherical multipoles QΩ

lm of standard classical multipolar interactions [3]: QΩ
00 is the total

electronic charge in Ω, QΩ
1m (m = +1,−1, 0) the Cartesian dipoles of Ω (µΩ

x , µΩ
y , µΩ

z ), and so on.
The multipolar approximation can be applied to compute, not only the classical Coulomb

interatomic energy, but also the exchange-correlation bicentric terms. Using it can save huge amounts
of CPU time. Our domestic code Promolden optionally includes that possibility [61]. However,
by default, all bicentric interactions are always calculated using the exact expression for Dl2m2

l1m1
, that is,

the one corresponding to given values of r1 and r2. Doing it this way, the expression 87 is always
absolutely convergent, regardless the values of l1m1 and l2m2. Moreover, even if the multipolar
approach converges to a defined value of a given interaction, there is not guarantee that this value
coincides the exact one.

3.3.4. Increasing the Precision of Iqa Integrations: Atomic β-Spheres

The irregular shapes of QTAIM atomic domains ΩA are a challenge for numerical integration
quadratures. Sometimes, even with a very large number of radial (Nr) and angular (Nθ,φ) points,
it is impossible to achieve a good convergence in the integrations. A test of the quality of the latter
is the total energy of the molecule, that ideally should be equal to that obtained in the electronic
structure calculation performed to obtain the wavefunction of the system, or the total charge of the
molecule, which is known beforehand. The usual way of trying to improve this convergence, both in
the original QTAIM integrations of ρ(r) as in the IQA method, is the use of atomic β-spheres [54].
Each atomic basin ΩA is divided into two-subregions, ΩA = βA + γA (βA ≡ β-sphere region of
ΩA,γA ≡ no-β-sphere region of ΩA). Then, each monoelectronic integral (Equation (75)) is the sum of
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two contributions, I = I(β) + I(γ), and each bielectronic integral IAB (A = B or A 6= B, Equation (81))
the sum of four terms

IAB = IAB
ββ + IAB

γβ + IAB
βγ + IAB

γγ . (90)

The β-spheres radii (Rβ) can be freely chosen, with the only requirement that they do not cut
the interatomic surface S(Ω). For this, Rβ must be less than the shortest distance from the atomic
nucleus to S(Ω). Any two β-sphere regions βA and βB are, by definition, non-overlapping in the sense
discussed above. Hence, the IAB

ββ term is given exactly by the expression Equation (89), provided f Ω
lm

are replaced by the β-sphere spherical multipoles, f β
lm.

It might appear at first glance that the greater the value Rβ that meets the non-overlapping
domains condition and, consequently, the greater the region of the (r1, r2) quadrant for which it is
possible to apply the multipolar approximation, the more precise would be the calculated value of
a given integral IAB. While this is so in many cases, in others it is not. In practice, it seems that Rβ

values around 40–60% the minimum distance from the atomic nucleus to S(Ω) is a close-to-optimal
choice in most cases.

4. Selected Applications of the Iqa Methodology

IQA has been successfully employed in the study of a wide variety of chemical problems.
Herein we present a selection of this applications. We tried to give an accurate overview of the
diverse work carried out by a variety of research groups around the globe.

As it is natural, the first applications of IQA were on intramolecular interactions in systems of
moderate size. For instance, Martín Pendás et al. produced a seminal work regarding the use of IQA
in the study bonding properties using diatomic molecules of the first row as examples [62]. Later on,
more research has emerged regarding the use of IQA to investigate intramolecular chemical interactions.
For example, García-Revilla and coworkers studied the (O2)4 [63] cluster while Belyacob et al.
investigated. gaseous proline [64]. Moreover, Bartashevich and coworkers [65] and Mitzel et al. [66]
have studied the internal contacts in halogen-substituted trinitromethanes, or Cukrowski and
Mangondo who investigated the interactions in beryllium complexes with nitrilotriacetic and
nitrilotri-3-propionic acids [67].

Converserly, there have been a strong push for approximations that would allow for
the application of IQA on larger, more complex systems. For instance, the kernel energy
method, a fragmentation approximation intended to calculate different properties of large molecules
relatively quickly and accurately, has been applied to atomic energies with mostly favorable results [68].

4.1. Electronic Correlation

The study of electronic correlation has also benefited by the application of IQA. A first effort
in this direction was carried out by Rocha-Rinza et al. who studied separately Fermi and Coulomb
correlation [69]. Popelier et al. analysed the effects of electron correlation within atoms and between
atoms, bonded or not, under the MP2 approximation [70] and later on examined how higher orders of
perturbation theory affect electronic correlation [71]. More recently, the same authors compared intra-
and interatomic electron correlation energies resulting from of MP4SDQ and CCSD calculations finding
that the later produces correlation energies that are much larger in magnitude [72]. Casals-Sainz used
IQA in combination with CCSD(T) coupled cluster densities to investigate the spatial distribution of
electronic correlation. They show that the interatomic electronic at long-range can be identified with
dispersion [73].

4.2. Relationships between Vxc and Di

From theory, the linear connection to the delocalization index between the covalent energy
associated with an interaction, Vxc, and the corresponding delocalisation index, DI, is well known.
Jara-Cortés and Hernández-Trujillo investigated further this relationship in aromatic, antiaromatic,
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and nonaromatic organic molecules and confirmed these regularities [74]. Badria and Foroutan-Nejad
working exclusively on aromatic compounds found only a marginal deviation from the ideal linear
behaviour of DI with respect to Vxc [75].

Martín Pendás and Francisco extended this idea of this connection to include the so-called ionic
bond order, an analogous of DI, by expanding the covalent and ionic interaction energies as multipolar
series. They shown how the terms dominating both energies are the zeroth order ones, and thus
correspond to distance-scaled bond orders [76].

4.3. The Nature of Chemical Bonding

IQA has found application in the investigation of chemical bonding in cases where the nature of the
interaction between atoms is uncertain, in particular regarding the relationship between QTAIM bond
paths bonds. For example, IQA has been used to study hydrogen–hydrogen bonding in planar biphenyl
(represented in Figure 2), a controversial subject in the literature. For instance, studies applying
QTAIM to this problem have found a bond path between H atoms and declared it as evidence
of attractive interaction [77,78]. It has been proposed by Martín Pendás and coworkers that bond
paths are preferred exchange channels its occurrence are independent from electrostatics factors
or changes in the self energies of the involved atoms [29]. Eskandari and Van Alsenoy found the
H–H contact attractive, although this contribution is cancelled out by very destabilising changes
in the intraatomic energies [79]. Popelier et al. also studied the biphenyl outside the equilibrium
and coincide in saying that the H–H contact in the planar configuration should not be considered as
repulsive [80]. Additionally, other research groups have studied the H–H contact in alternative systems
reaching similar conclusions; Mallia et al. investigated the intramolecular C-H...H-C interactions
in the crystal of triphenylamine substituted arenes finding these interactions by themselves can
be considered attractive [81]. Matczak showed that C-H...H-C contacts diheteroaryl ketones and
thioketones conduct to a energetic total destabilisation in spite of the interaction between H atoms
being weakly attractive [82].

Figure 2. Biphenyl representations. Schematic (left) and non-overlapping topological atoms bounded
by interatomic surfaces (right). Figure from reference [80].

Additionally, IQA has been used to discern the nature of the intramolecular interactions in
situations where the energetic relationship between atoms or functional groups is controversial.
Demyanov and Polestshuk studied the nature of interactions between host and guest in the
HeAdamantane complex, establishing that there energy of the He–C contact is repulsive [83] while
Tognetti and Joubert shown that the intramolecular interactions between electronegative atoms can also
be attractive [84]. More recently, Dem’yanov and Polestshuk studied small ionic complexes and their
work strongly suggest an altogether disconnection between bond paths and bonding interactions [85].

4.4. Non-Covalent Interactions

The modelling of non-covalent interactions is usually a complex matter given the relatively low
but important energy associated. Foroutan-Nejad et al. utilised IQA to explore the nature of the
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anion-π bonding. Contrary to the classical vision of these contacts as mostly electrostatic, they found
that the covalent contribution plays a central role in the stability of these complexes. They use this
information to suggest that the recipe to prepare stable anion-π complexes is to use more extended
π-systems rather than strong electrostatic π-receptors [86]. These authors also investigated lone
pair-π interactions, finding, as in the previous case, that the exchange-correlation contribution to the
interaction energy is relatively large. However, for the lone pair-π systems, this contribution is almost
completely counterbalanced by the deformation energy. Thus, the determining factor for the formation
of these types of contacts lies in the electrostatics of the fragments [87].

In a systematic effort for validating the use of IQA energies for the study of non-covalent
interactions, Suárez et al. analysed the binding energies, magnitude of numerical errors, and the
fragment and atomic distribution of formation energies within the IQA framework for the S66 and
ionic-hydrogen-bond data sets. They shown that this energy partition rigorously quantify atomic and
group energy contributions for biomolecular systems [88].

Non-covalent interactions involving larger systems have also been studied using IQA.
Mitoraj and coworkers used the IQA methodology to quantify the different non-covalent interactions
present in the LiN(CH3)2BH3 and KN(CH3)2BH3 crystals, commonly utilised as hydrogen storage
materials [89]. Yourdkhani et al. studied the adsorption of a series organophosphor molecules by
graphene [90].

4.4.1. Hydrogen Bonding

Among the first applications of the IQA methodology was the study of the hydrogen bond by
means of the examination of small dimers. The emerging picture from this seminal work of HB is one of
an interaction characterised by both electrostatic and covalent contributions [91]. This vision has been
confirmed by posterior studies. For instance, Rocha-Rinza et al. used IQA to investigate cooperative
effects of hydrogen bonding in small water clusters and also found that the exchange contribution to the
interaction energy is particularly strengthened by adjacent hydrogen bond contacts [34]. Additionally,
recent work by Rocha-Rinza and coworkers on larger water clusters utilised the ability of IQA to
compute the interaction energy of individual contacts to demonstrate that double proton donors
and acceptors present cooperativity in addition to anticooperativity and that both phenomena have
electrostatic and covalent components [92].

Alkorta et al. compared the hydrogen bonding occurring between charged and neutral
carboxylic acid dimers. They found that once the repulsion between the charged groups is discarded,
the interactions between the charged molecules resemble those of the neutral ones, thus showing the
enduring nature of hydrogen bonds [93].

IQA has proven to be particularly useful in the study of systems where a clear partition between
different fragments is difficult, as in the case of intramolecular hydrogen bonds. As shown in Figure 3,
IQA allows for the calculation of each interaction in a separate way, allowing us to determine which
contact is most affected by the formation of any new contact. On this regard, the IQA methodology has
been applied by Rocha-Rinza et al. to investigate the origin of the relationship between insaturations
and hydrogen bonds [94,95], and the cooperativity and anticooperativity between them [96]. For its
part, Eskandari and coworkers have studied intramolecular interaction within vitamin C finding that
most conformers are stabilised by cooperative networks of hydrogen bonds [97].
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Figure 3. Interacting quantum atoms (IQA) allows for the individual changes in IQA interaction
components accompanying the formation of the different hydrogen bonds. Figure from reference [98]
shows systems with insaturations and intramolecular HBs (a,b), along with their non-conjugated
counterparts (c,d). Figure reproduced by permission of the PCCP Owner Societies.

4.4.2. Halogen Bonding

Peculiar bonding situations have been extensively studied with the help of the IQA methodology.
Tognetti and coworkers investigated the nature of halogen bonding in diverse situations such as
small complexes [98], intramolecular interactions [99] and halogen-halogen contacts in perhalogenated
ethanes [100] Their investigations using DFT densities revealed that for the studied systems the Lewis
basis interaction with the halogen atom is always stabilising, being the exchange-correlation the
dominant component, with additional attractive electrostatic contributions in most cases. An scheme
of this situation is shown in Figure 4. This observation has been confirmed by Popelier et al. in a
further study including electron correlation [101].

IQA has been also particularly useful in the characterisation of systems where the categorisation
of the interaction as halogen bond is not as straightforward. Eskandari et al., for example, discarded
the formation of halogen bonding by fluorine [102]. In contrast, Madzhidov and coworkers found [103]
that the interaction between different organoselenium molecules and diiodine indeed complies with the
definition of a halogen bond, and Guevara-Vela et al. shown that the dihalogen-water cage interactions
in the 512 and 51262 clathrate cages can be considered as halogen bonding [104].

IQA has played an important role in visualising the role of covalency in the halogen-halogen
contacts. In the study of bifurcated halogen bonding Bartashevich et al. and Marek et al. found that
these types of interaction presents a strong covalent component [105,106]. In an investigation about
trihalogen interacting synthons Hariharan and coworkers also highlighted the importance of covalence
for these systems [107]. Finally, Duarte et al. studying multicentric halogen bonds shown that strong
ionic and covalent contributions are not mutually exclusive [108].
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Figure 4. IQA energy partition of the FBr · · · NH3 complex. (Top) changes intra-atomic
energies (red) and intermolecular interactions (classical and exchange terms in blue and green,
respectively). (Bottom) Change in interatomic energies within each fragment upon complex
formation. Figure reprinted (adapted) with permission from reference [98]. Copyright 2020 American
Chemical Society.

4.4.3. Other Bonding Situations

IQA has also been used to study other chemically interesting bonds. Martín Pendás et al.
investigated the chemical bonding in a series of systems that contain beryllium bonds [109],
and Casals-Sainz and coworkers applied the IQA methodology to investigate tetrel interactions [110].
In both cases it was shown that the interaction contain important contributions from both its
electrostatic and covalent parts.

Madzhidov and Chmutova have employed IQA to study the interaction between dimethylselenide
and IIIA group element halides, where the former is an electron pair donor and the later IIIA group
atoms act as acceptors. In all the studied complexes the covalence of the Se· · · A plays a very important
role [111].

4.5. Bonding of Metallic Elements

The chemical bonding situation in simple transition metal complexes has been also studied using
IQA. The first examples of such investigation are studies of metal carbonyls by Martín Pendás et al.
which conclude that the metal-ligand interaction in these systems is strongly dominated by covalent
effects and that the electrostatic energy associated is comparatively small [112,113]. Other examples of
investigations of metal-ligand interactions are the work of Cukrowski and coworkers on the stability
of zinc-bipyridil complexes [114] or the study of Albrecht-Schmitt et al. regarding the nature of the
fluoride-uranium contact in the (NH4)UF8 crystal [115].

IQA has also been applied to the study of the controversial metal-metal contact. For instance,
Tiana et al. demonstrated that in policarbonyl metal clusters the intermetallic interaction is consistent
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with the description of a delocalised covalent bond that includes both the metals and the carbonyls.
However, the global stability of the dimers should be attributed to the electrostatic attraction between
the metals and the oxygens and not to this bond [116]. In the intermetallic phase FeGa3 Wagner et al.
found that the Fe–Fe interaction energy is negative and therefore stabilising [117].

4.6. Organic Chemistry and Reactivity

Taking advantage of its ability to describe systems outside the equilibrium, IQA has been
used extensively to study chemical reactions. Jouanno et al. utilised the IQA methodology to
quantify the influence of the substituents (through its interatomic interactions) along the reaction
path of a thermally controlled metal-free decarboxylative hetero-Diels–Alder (HDA) reaction [118].
Alkorta et al. used IQA to study the mechanism of the adduct formation and capture of CO2 by
nitrogen heterocyclic carbenes [119]. In particular IQA allowed them to identify the role played by
electrostatic and exchange-correlation factors for different carbenes. Tognetti and coworkers studied
the reaction mechanism of a diastereoselective allylation of aldehydes with chiral allylsilanes [120].
Barquera-Lozada investigated the role of different interactions in the torquoselectivity of a series
of 3-substituted cyclobutenes [121] and Polo and coworkers studied the reaction mechanism of the
oxidative addition of ammonia by Iridium complexes [122]. Alkorta et al. carried out a systematic IQA
study of SN2 reactions of the type X− + CH3X→ XCH3 + X− where X = F, Cl, Br, and I, with particular
attention to the the intra-atomic and interatomic energy changes along the reaction path [123].

One field where the IQA methodology can be particularly useful is in the examination of
catalytic processes, given its ability to account for each individual interaction separately. For instance,
Rocha-Rinza et al. have used IQA to investigate the catalytic effect of additional water molecules
in the formation of acid rain [124]. Another example is the work of Popelier et al. who studied the
mechanism behind peptide hydrolysis in HIV-1 protease [125]. Figure 5 shows parts of this process
signalling with different colours bonds that become stronger and weaker.. Through IQA we are able to
determine exactly how a specific interaction is affected during a chemical reaction. We believe that as
time goes on and IQA gains notoriety, more groups will apply this methodology to catalytic processes.

Figure 5. Diagram representing the changes in the strength of the different bonds. The greens arrows
represent bond strengthening/forming and while the red ones bond weakening/breaking. Figure taken
from Reference [125].

IQA has also been employed in the study of other phenomena in organic chemistry
beyond reactivity and catalysis. For example, Popelier and coworkers studied the gauche effect,
that is, the atypical situation where a gauche conformation is found to be more stable than the
corresponding anti conformation using the IQA methodology. In this investigation it was proposed
that the origin of gauche stability is electrostatic polarisation interactions occurring between fluorine
atoms [126]. Indeed, IQA has been applied to diverse conformational puzzles—Cukrowski et al.
studied the stability of the 2-butene conformers and determined that the origin of the relative energies
lies in the interactions between various fragments and cannot be attributed to any specific contact [127],
Matczak and coworkers investigated the energetic components governing the conformational
behaviour of diheteroaryl ketones and thioketones [128], Vishnevskiy et al. used IQA to explain the
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relative stability dimethylsubstituted 1,5-diazabicyclo[3.1.0]hexanes [129], Uhlemann and coworkers
the explored the interaction in the potential energy surface of the sulfanilamide-water complex, and the
sulfanilamide dimer [130] and Maxwell and Popelier determined the cause of the torsional preferences
of a series of dipeptides [131].

Passmore and Rautiainen applied the IQA energy partition to compare the Lewis basicity of
siloxanes and its analogous ethers. Their analysis revealed that the differences in basicity are related to
changes in bonding and polarisation siloxane and diethyl ether in the presence of metal cations. For the
former, already polar bonds are further polarised by the metal which generates strong destabilisation
which impedes its basicity [132]. Mitzel et al. also used IQA to study pentafluoroethyl-substituted
α-silanes concluding that the interactions between the silicon and the donor atoms is mostly an
stabilisation effect generated by electrostatics and should not be considered as bonded [133].

Vallejo Narváez et al. used IQA to rationalise that amides dimerise more strongly than imides in
spite of their lower acidity [134]. They found that the traditional Jorgensen Secondary Interactions
Hypothesis (of repulsion between carbonyl oxygens) fails once the carbon atoms are included in the
calculations. Instead, they propose a model based in N-H acidities and C=O basicities, which was later
by the same authors for doubly and triply H-bonded complexes consisting in amide/imide homo- and
heterodimers and ADA–DAD clusters [135].

4.7. Excited State

The IQA methodology is also an useful tool to study systems in the excited states. The first article
regarding the use of IQA in the excited state is an investigation of the energetic features of the lowest
singlet and triplet states of the H2 molecule carried out by Martín Pendás and coworkers [136]. In spite
of this, the application of IQA in the excited state has been limited.

Mosquera an coworkers used this methodology to analyse the n→ π∗ transition in formaldehyde,
a paradigmatic example in the discipline. They were able to shown how upon excitation each atom in
the CO moiety increases its net energy in detriment of the interaction energy between them [137]. This is
in agreement with the common assumption that this the n→ π∗ excitation conducts to the population
of an antibonding molecular orbital. Ferro-Costas and coworkers also applied the IQA method to
validate the concept of the transferability of functional groups in the excited state [138]. More recently,
Hernández-Trujillo et al. completed an investigation of archetypal processes in photophysics from the
perspective of the IQA methodology using as examples model reactions. They showed how by using
this methodology it is possible to carry out an unified description of these these processes [139].

4.8. Steric Repulsion

In a seminal work Pendás et al. explained a series of phenomena, namely steric repulsions,
hyperconjugation and stereoelectronic effects, from the perspective of IQA methodology although
the main objective of the article was to link IQA concepts with those of EDA [140]. Later on,
Dillen delved into the subject, showing how steric hindrance is the result of an increase in the
intra-atomic or self-energy of congested atoms [141]. Figure 6 shows how the decrease in the distances
between hydrogen atoms modify the volume of the corresponding atoms. Later on, the relationship
between congestion and the increase of intra-atomic energy was confirmed by Popelier and coworkers.
Moreover they provided evidence of how intraatomic energy can serve in the quantitative description
of steric energy [142].
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Figure 6. Atomic volume of one of the congested hydrogen atoms in tetra- cyclododecane at a H...H
distance of 2.4 Å (top), the equilibrium distance of 1.831 Å (middle), and 0.5 Å (bottom). Figure taken
from reference [141].

4.9. Machine Learning

The research group of professor Popelier have cleverly combined machine learning techniques
and the IQA energy partition for a number of applications. Figure 7 shows an scheme of the
different steps and programs involved in the training and execution of their models. Using this
methodology, they have been able to predict intra- [143] and interatomic energies [144,145], as well as
correlation energy at the MP2 approximation for a previously unknown molecular geometries [146]
Using. the models produced in this manner, they were able to accurately carry out geometry
optimisations with chemical accuracy [147] for biomolecules [148], charged systems [149] and
non-covalent interactions [150].
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Figure 7. Flowchart representing the different stages in the training (first four steps) and execution
(DL_POLY) of the, detailing the programs involved and summaries of their tasks. Figure taken from
reference [147].
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