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1 | INTRODUCTION

| YiXiong"?® | HongweiLiu® | ChangLi®¥?*® | Xuejun Li'?®

Abstract

Tumour microenvironment of brain lower grade glioma (LGG) consists of non-tumour
cells including stromal cells and immune cells mainly. These non-tumour cells dilute
the purity of LGG and play pivotal roles in tumour growth and development, thereby
affecting patient prognosis. Tumour purity is also associated with molecular subtypes
of LGG. In this study, we discovered the most relevant module to purity by weighted
gene co-expression network analysis (WGCNA) and afterwards performed consen-
sus network analysis and survival analysis to filter 61 significant genes related to both
purity and prognosis. In turn, we built a simplified model based on the calculation of
purity score, and consensus measurement of purity estimation (CPE), with a satis-
factory predictive performance by random forest regression. HLA-E, MSN, GNG-5,
MYL12A, ITGB4, PDPN, AGTRAP, S100A4, PLSCR1, VAMP5 were selected as the
most relevant genes correlating to both purity and prognosis. The risk score model
based on the 10 genes could moderately predict patients’ overall survival. These 10
genes, respectively, were positively correlated positively to immunosuppressive cells
like macrophage M2, but negatively correlated to patient prognosis, which may ex-

plain partially the poor prognosis with low-purity group.

trials using checkpoint inhibitors was not satisfactory.? The effi-

ciency of immunotherapy partially influenced by tumour microenvi-

Glioma is the most common and lethal tumour type in central ner-
vous system (CNS). Compared to glioblastoma (GBM, WHO V),
lower grade glioma (LGG, WHO I, Ill) grow slowly with less malig-
nancy. Because of bioinformatics study on gliomas, the WHO added
molecular markers, such as IDH mutation status, chromosome 1p
or 19q codeletion (1p/19q codel) status, into the glioma diagnostic
guideline to improve the diagnosis and treatment accuracy.! Apart
from previous treatment on LGG like surgery, chemotherapy and ra-
diotherapy, immunotherapy is now one of popular approaches deal

with tumours. However, clinical outcome in large randomized clinical

ronment which consists mainly of immune cells and stromal cells.®*
Thus, considering the non-tumour components within the tumour is
essential for improving therapy effect.

Tumour purity is defined as the proportion of tumour cells in tu-
mour tissue. It used to be determined by pathologists through visual
evaluation so that the results could be affected by the sensitivity of
histopathology or interobserver bias.”> We adapted the consensus
measurement of purity estimation (CPE) based on RNA-seq data to
evaluate the non-tumour proportion within LGG and former studies
elucidated that CPE shows good accuracy in purity evaluation.®”’
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2 | METHODS
2.1 | Data download and pre-processing

This study collected 697 samples of LGG patient from TCGA and
CGGA database. 516 samples’ RNA-seq data and matched clinical
data were acquired from TCGA database via Xena Browser devel-
oped by UCSC. 181 samples’ RNA-seq data and clinical data were
downloaded from CGGA database (http://www.cgga.org.cn).2 All
RNA-Seq data were normalized by the transcripts per kilobase mil-

lion (TPM) method for further analysis.

2.2 | Tumour purity estimate

Tumour purity scores were inferred by the CPE method as described

previously.® Please read the File S1 for more details.

2.3 | SCNA and mutation analysis

Somatic copy number alteration (SCNA) data were download form
GDAV Firehose which were detected by GISTIC 2.0. MAF files of LGG
were downloaded from TCGA database and performed by R/maftools.

2.4 | Differentially expressed genes (DEGs)
identification and functional enrichment analysis

Two purity groups were divided by X-tile based on CPE value. DEGs
were identified by R/limma. Gene ontology (GO) and pathway en-
richment analysis (Kyoto Encyclopedia of Genes and Genomes
(KEGG)) were performed by R/clusterProfiler.” Gene set variation
analysis (GSVA) was performed by R/GSVA, the reference gene
sets were downloaded from MSigDB, and all parameters were set
as advised.'® We used single-sample gene set enrichment analysis
(ssGSEA) to estimate the immune cellular fraction by R/GSVA and
CIBERSORT.M

2.5 | Survival analysis and model building

Survival-related analysis was conducted by R/survival and R/sur-
vminer. We first perform WGCNA and consensus network analysis

by R/WGCNA with calculated soft threshold to find the module
most relevant to CPE with 200 times permutation, parameters were
advised by (Figure S1D-S1E).1? Then, target genes were filtered by
log-rank test and Pearson's correlation firstly and selected by Lasso
regression and random forest algorism. We used risk score to build
the model.

N
Risk Score= Z (Expi = Coei)
i=1

N, Expi and Coei represented the number of signature genes,
gene expression level and coefficient value, respectively. All TCGA
patients were divided into training set (n = 344) and test set (n = 163)
randomly to build the model and CGGA patients used as validation
set. The receiver operating characteristic curve (ROC) was gener-

ated to assess the accuracy of the model.

2.6 | Statistics Analysis

All statistical analyses were performed using R software, version
3.5.3. Continues variables between groups were compared by
Student's t test, one-way ANOVA with post hoc pairwise Bonferroni
tests or the Wilcoxon rank-sum test. Correlations between continu-
ous variables were evaluated by Spearman or Pearson's correlation
analysis. The method workflow was depicted by Figure S1A. For

more method details, please see the File S1.

3 | RESULTS AND DISCUSSION

By calculating the DEGs between groups that divided by X-tile based
on CPE value, we found that these DEGs were enriched in immuno-
logical activity and immune cell-cell adhesion pathways in low-CPE
group (Figure 1A-B). However, we did not discover any metabolism
pathway with statistical significance by KEGG. Hence, we assume
that the type of biological metabolism of immune cells in the tumour
microenvironment has little difference between groups. Meanwhile,
the immune infiltration analysis revealed that more innate immune
cells and tumour-killing cells like macrophages, cytotoxic T cells and
NK cells were accumulated in low-purity tumour microenvironment,
whereas adapted immune cells like T helper cells and B cells were more
in high-purity tumours, but the whole abundance of immune cells in
high-purity group was less than low-purity group (Figure 1C). It was

FIGURE 1 A, GO enrichment results of DEGs of low-purity group comparing to high-purity group. B, GSVA enrichment results of DEGs
of low-purity group comparing to high-purity group. C, Immune infiltration evaluation by ssGSEA, the redder the immune cells are, the
higher relative abundance the immune cells possess. D, CNV analysis results of low- and high-purity group, CNV score were higher in low-
purity group with classical driver mutation of chromosome 7 gain and 10 loss. E, Kaplan-Meier curve of high- and low-purity groups, and
low CPE means low purity indicated poor prognosis. F, The distribution of CPE value in different LGG molecular subtypes defined by WHO.
IDHmut - codel, IDH mutation with 1p19q codeletion; IDHmut-non-codel, IDH mutation without 1p19q codeletion; IDHwt, IDH wild type.
G, The relationship among LGG subtypes, specific molecular signature and purity score, CPE. H, Somatic variants of LGG between low- and
high-purity groups. I, The distribution of CPE in 4-type classification. CL, classical subtype; ME, mesenchymal subtype; NE, neural subtype;
PN, proneural subtype. J, Purity distribution in different histology of LGG
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FIGURE 2 A, Identification of a co-expression module in LGG by WGCNA. Red, black, yellow, gold, green, brown, blue and turquoise
modules were identified, and grey module contains unmatched genes. B, Module preservation statistics of TCGA 8 modules and
visualization, all modules were conservative due to Zsummary > 10. C, Identification of consensus modules between low- and high-purity
groups, based on consensus modules, low and high CPE groups had their own module organization respectively. D, Module preservation
statistics of consensus network analysis and visualization, there were 4 unpreserved modules in low-purity group comparing to high-purity
group, pink, magenta, purple and black. E, Correlation between the WGCNA co-expression modules and clinical traits. The clinical traits
included sex, overall survival (OS), dead event, grade, CPE and three glioma histological types: oligoastrocytoma, oligodendroglioma and
astrocytoma. F, Forest plot of 61 filtered genes, all of which were identified as risk factors for patient prognosis. G, ROC curve of prediction
efficiency of tumour purity. The constructed model had equivalent predictive value compared with ESTIMATE. H, Kaplan-Meier curve of
high- and low-risk score group calculated by 10 genes in TCGA samples. |, Verification of risk score efficiency in CGGA samples’ prognosis.
J, ROC curve of risk score prediction power on TCGA cohort. K, ROC curve of risk score prediction power on CGGA cohort. L, 10 genes

expression in low-purity group, high-purity group and normal samples

consistent with previous research that low purity accounts for positive
immune status and intensive immune phenotype.” On the other hand,
the Kaplan-Meier survival curve (Figure 1E) showed that low purity
implied a poor prognosis with statistical significance. The high-purity
group possessed a better prognosis (median survival = 28.9 months)
than the low-purity group (median survival = 25.3 months). LGG tu-
mour purity also correlated with molecular signatures such as IDH
mutation, chromosome 1p/19g codeletion, chromosome 7 gain and
10 loss and the 4 LGG subtypes, classical, proneural, neural and mes-
enchymal subtypes (Figure 1G). The prognosis benefit mutation like
IDH mutation and chromosome 1p19q codel were prone to exist in
high-purity group which could explain partially the better prognosis
of high-purity group (Figure 1F). Additionally, we also observed more
classical driver mutations of glioma like chromosome 7 gain and 10 loss
and mutation of TP53, EGFR and ATRX in low-purity group which in-
dicated the malignant potential of these tumours of low-purity group
(Figure 1D,1H). The histologic and molecular subtypes of LGG had dif-
ferent CPE value (Figure 11-J).

Eight modules were identified by WGCNA, and all modules pass
the preservation verification (Zsummary > 10) (Figure 2A-B). It means
all modules were conservative. Among them, the yellow module was
identified to be the most correlated one with CPE value (MS = -0.8)
and could distinguish the high- and low-purity group well (Figure 2E,
Figure S1B). We then used consensus network analysis to identify
specific modules in the low-purity group compared with the high-pu-
rity group, and 10 modules were identified with 4 unconservative
modules (Zsummary < 10) (Figure 2C-D). We intersected these 4
modules with the former yellow module to get our 178 target genes,
and these genes enriched at immune-related pathways which means
immune difference was the major difference between two groups
(Figure S1C). We then conducted Pearson's correlation to CPE (co-
efficient > median), and log-rank test (FDR < 0.05) on target genes,
respectively, and then extracted the 85 common genes passed both
tests. For further dimension reduction, we performed lasso regression
to select 61 genes which also identified as risk factors by univariate
Cox regression (Figure 2F). Purity prediction based on these 61 genes
possessed similar power comparing to ESTIMATE that based on spe-
cific gene expression profiles of 141 immune genes and 141 stromal
genes (Figure 2G) but with less genes. To simplify the model and con-
nect purity with prognosis, we used 3 random forest algorism and se-
lected 10 most correlative genes that ranked in the top 15 in all three
algorisms and listed as follows: HLA-E, MSN, GNG-5, MYL12A, ITGB4,

PDPN, AGTRAP, S100A4, PLSCR1, VAMPS5 (Figure S2G-I, details of
gene function and fold change please see the File S1). Comparing to
normal samples, these 10 genes expression were higher in low-pu-
rity group than high-purity group than normal samples (Figure 2L).
Additionally, we found that these 10 genes were positively correlated
with PDCD1 with pretty good coefficients and moderately positively
related to CTLA4 (Figure S2F). We then calculated each samples' risk
score based on these 10 genes and divided TCGA samples into high-
and low-risk score groups with obvious prognostic difference, and risk
score had moderately good prognostic prediction power (Figure 2H-
K). To validate risk score prediction power, we risk score into multi-
Cox regression with gender, grade, IDH mutation, 1p19q codeletion
and MGMT promoter methylation and the HR of risk score was 1.03
with FDR equalling 0.048. All these 10 genes were highly expressed
in the high-risk score group, associating with the low-purity group in
the TCGA data set and immune cell fractions. Also, we got consistent
results in the CGGA dataset (Figure S2A-D). Since innate immune cells
dominated in the low-purity LGG immune microenvironment, we ob-
served less Treg cells infiltrated (Figure 1C). However, we observed
that macrophage M2 fraction, which could promote tumour progres-
sion, metastasis and suppress anti-tumour immune cells’ reactivity
by expressing high levels of soluble factors such as TGF-f, correlated
positively with these 10 genes obviously, indicating high expression of
these 10 genes correlated with high infiltration fraction of macrophage
M2 (Figure S2E).13% The increased innate immune suppressor infiltra-
tion could partially explain the poor prognosis caused by macrophage
M2 facilitating tumour growth through induction of anti-inflammatory
responses and multitherapy resistance and impairing T cell activation
and proliferation,'® and unsatisfactory outcome of checkpoint inhib-
itor that targeted to PD-1, PD-L1 or CTLA-4 receptor, which usually
expressed on T cell-tumour cell interaction. This gave us a hint to pay
attention on inhibiting innate anti-immune cells like macrophage M2
to improve therapy outcomes. In summary, we identified the 10 most
significant genes that contribute to both prognosis and purity. These
genes showed a consistent correlation with different immune infiltrat-
ing cells between databases which could be further explored as poten-

tial targets in immune therapy.
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