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Abstract: In mammals, a master clock is located within the suprachiasmatic nucleus (SCN)
of the hypothalamus, a region that receives input from the retina that is transmitted by the
retinohypothalamic tract. The SCN controls the nocturnal synthesis of melatonin by the pineal
gland that can influence the activity of the clock’s genes and be involved in the inhibition of cancer
development. On the other hand, in the literature, some papers highlight that artificial light exposure
at night (LAN)-induced circadian disruptions promote cancer. In the present review, we summarize
the potential mechanisms by which LAN-evoked disruption of the nocturnal increase in melatonin
synthesis counteracts its preventive action on human cancer development and progression. In detail,
we discuss: (i) the Warburg effect related to tumor metabolism modification; (ii) genomic instability
associated with L1 activity; and (iii) regulation of immunity, including regulatory T cell (Treg)
regulation and activity. A better understanding of these processes could significantly contribute to
new treatment and prevention strategies against hormone-related cancer types.
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1. Introduction

The master clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus is able to
drive the circadian rhythms observed in a majority of functions, such as hormone production, immune
activity, and blood pressure [1]. Apart from the SCN, there are also peripheral clocks located in
other tissues or cells [2]. Desynchronization of the circadian system and the environment can induce
disruption of circadian coordination and different health problems [3,4]. For example, disruption
of circadian rhythms may be associated with hormone imbalance, sleep disorders, coronary heart
attacks, depression, and cancer proneness [5]. Studies on animal models and on human cancer samples,
such as tissues and biological fluids, show that an alteration of circadian rhythms can increase the
risk of cancer development and progression [5]. Specifically, circadian disruption leads to aberrant
epigenetic modifications, such as hypermethylation, which play an important role in the transformation
of different human normal cells into cancer cells [6]. However, several environmental factors, such as
irregular diet (meals) or night-shift work, that are correlated with exposure to artificial light at night,
are able to disrupt circadian rhythms mostly by altering nocturnal melatonin biosynthesis [4]. The focus
of this review is to examine the impact of circadian disruption due to environmental factors on the
control of tumor growth. In particular, we describe the potential mechanisms by which light exposure
at night (LAN) can increase cancer risk considering also the decision of the World Health Organization
(2007) that has recognized LAN as a probable carcinogen. In fact, LAN can block the pineal gland and
the related nocturnal production of melatonin in individuals, such as shift workers, that are regularly
subjected to LAN, and induce circadian rhythms disruption. These events can increase risk for several
melatonin-sensitive human cancers mainly through several mechanisms, including the Warburg effect
related to tumor metabolism modification, genomic instability, and modification of immunity via Treg
cells (see Figure 1).
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Figure 1. Artificial light exposure at night (LAN) influences the master clock present in the
suprachiasmatic nucleus (SCN) of the hypothalamus. This leads not only to a decrease in nocturnal
melatonin synthesis in the pineal gland but also to circadian rhythms disruption. These events can
increase the risk for several melatonin-sensitive human cancers mainly through several mechanisms,
including the Warburg effect related to tumor metabolism modification, genomic instability, and
modification of immunity via Treg cells.
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2. The Mammalian Biological Clock

The master clock, also known as the central circadian clock, is located within the SCN of
the anterior hypothalamus in mammals. Considering that light is the most potent regulator for
the SCN, it is important to underline that it passes into a mammal’s system through the retina
and is collected by rod cells and cone cells before being transmitted to the retinal ganglion cells.
These cells use the photopigment melanopsin to absorb the light energy that, then, arrives to the
neurons through the retino-hypothalamic tract (RHT). On the other hand, the SCN can integrate these
signals by melatonin [7] and the central circadian clock can support the neurons in resisting shifts
to sporadic stimuli. Recently, circadian rhythms have been found in extra-SCN brain regions and in
many peripheral tissues, including oral mucosa, liver, skin samples, bone marrow, and peripheral
blood mononuclear cells (PBMCs). The expression of clock genes in peripheral tissues is associated
with important tissue functions, such as glucocorticoid production, regulation of the cell-cycle,
fatty acid metabolism and cytokine production by NK cells, B cell maturation, and adipogenesis
in cardiomyocytes and bone formation [1]. The central circadian clock in the SCN regulates the
peripheral clocks through neuroendocrine systems and the autonomic nervous system (ANS) [8].

3. Molecular Mechanism of the Mammalian Biological Clock

In the last few years, many authors have focused on the study of circadian rhythms that are
present in organisms from bacteria to mammals [9]. A molecular clock is composed of regulatory
transcription–translation loops underlining the reciprocal interrelationships between particular genes.
The following nine mammalian circadian genes are known: brain-muscle-Arnt-like1 (BMAL1),
Casein kinase 1ε (CK1ε), Circadian locomoter output cycles protein kaput (CLOCK), Cryptochrome1
(CRY1), Cryptochrome2 (CRY2), Period1 (PER1), Period2 (PER2), Period3 (PER3), and Timless
(TIM). Some key circadian regulators contain basic helix-loop-helix (bHLH) or Per-Arnt-Sim (PAS)
domains and act as transcription factors in interactions between proteins or a protein and DNA
forming a self-sustained transcriptional feedback loop. In fact, changes in cellular localization or
concentration or delays between translation and transcription induce a 24 h cycle [10]. In the mouse,
CLOCK represents the first identified clock gene, capable of inducing CLOCK-BMAL1 heterodimers
formation, to bind to E-box (5′-CACGTG-3′) in the promoters of Rev-Erbα and CRY/PER and to
activate transcription when a circadian day starts. In turn, CRY1, CRY2, PER1, PER2, and PER3 in
the cytoplasm induce the formation of stable CRY-CKIε-PER complexes before entering the nucleus.
When CRY1 is in the nucleus, it disrupts the transcriptional complex associated with BMAL1-CLOCK,
and inhibits BMAL1, Rev-Erbα, and PER transcription [11,12]. Recently, it has been demonstrated that
BMAL1 can form some dimers with neuronal PAS domain protein 2 (NPAS2) and sustain rhythmicity
by activating transcription [13]. Few data are available about the control of CLOCK and BMAL1
expression. However, some studies showed that BMAL1 transcription is negatively regulated by
Rev-Erbα in the SCN and in the liver and positively regulated by PER, CRY, and retinoic acid
receptor-related orphan receptor α (RORα) [11,14,15]. On the other hand, Rev-Erbα plays an important
role also in the regulation of CLOCK transcription. However, Rev-Erbα is not necessary for circadian
rhythm generation even if it is implicated in the phase-shifting properties of the clock and in the
period length. In addition, to simple transcriptional feedback loops, other events, such as the control
of degradation, nuclear translocation, and protein phosphorylation, are implicated in circadian rhythm
generation. For example, CKIε activates BMAL1 transcription and regulates the phosphorylation
of PER and CRY by enhancing their degradation and instability [16]. Interestingly, these studies
demonstrate that the control and maintenance of a circadian period is due to different factors correlated
to post-translational modification, protein synthesis and degradation, and dimer formation.
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4. Alteration of Circadian Rhythm and Carcinogenesis

Many papers show that the disruption of circadian rhythms is associated with various forms
of cancer, including the hormone-related cancers that are frequent in shift workers because they
develop abnormal work hours capable of inducing circadian rhythm disruption [17–21]. According
to this notion, Franzese and Nigri (2007) reported that individuals who work at night, for example
nurses, present decreased melatonin levels and dysregulated hormone profiles and a higher risk of
breast cancer development [18]. Other authors have demonstrated that 95% of breast cancers show
dysregulated levels of PER1 and PER2 that are not due to genetic mutations but to methylation of
these two genes [19,20]. However, mice studies have demonstrated that the disruption of circadian
rhythms can be involved also in the development and progression of pancreatic adenocarcinoma or
osteosarcoma [22]. Also Sephton et al. (2000) reported that patients with metastatic breast cancer had
lower survival when they present flattened or abnormal levels of diurnal salivary cortisol rhythms [23].
In turn, patients with metastatic colorectal cancer show longer survival when 24 h rest/activity rhythms
are marked and not disrupted [24]. A higher risk of acute myeloid leukaemia was found, in 1996,
in men working for Air Canada [25]. Circadian rhythm and sleep control disturbance is also associated
with lymphoma development and progression [26,27]. In fact, PER2-deficient mice present decreased
transcription of genes that are implicated in cell cycle regulation, salivary gland hyperplasia, and high
risk of lymphoma initiation. In detail, Fu et al. (2002) performed a transcriptome analysis evidencing
that many important cell-cycle genes are regulated in a circadian fashion and control various points of
cell division. Among these genes, there are MYC involved in G0/G1 transition, cyclin-D1 involved in
G1/S transition, and WEE1 involved in G2/M transition [27]. If this idea is true, then it could provide
insight into human proliferative diseases, such as cancer.

Overall, these studies demonstrate an important role of circadian rhythms in cancer even if few
data are available in the literature about the molecular mechanisms through which these factors are
able to induce cancer development and progression. For this reason, the correlation between melatonin
and circadian rhythms represents an interesting topic.

5. Circadian Rhythms and Melatonin in the Control of Tumor Growth

Melatonin is a molecule, known since 1958, whose presence and function is phylogenetically
well-recognized in a variety of species from unicellular to vertebrate organisms. It is also a pleiotropic
compound with a large repertoire of actions that operate in a diverse number of biological contexts.
In mammals, the nocturnal production of melatonin is regulated by the circadian clock located in
the SCN of the hypothalamus. In particular, melatonin is synthesized in the pineal gland starting
from L-tryptophan by four steps: (i) Hydrolyzation of L-tryptophan by tryptophan hydroxylase
that produces 5-hydroxytryptophan (5-HTP); (ii) decarboxylation of 5-HTP by pyridoxal phosphate
and 5-hydroxytryptophan decarboxylase that produces serotonin; (iii) N-acetylation of serotonin by
arylalkylamine N-acetyltransferase (AANAT) that produces N-acetylserotonin; and (iv) conversion of
N-acetylserotonin to melatonin by hydroxyindole-O-methyltransferase (HIOMT). The regulation of
melatonin levels is given by norepinephrine, which in turn induces the increase of cAMP concentration
and the activation of cAMP-dependent protein kinase A (PKA) [28]. However, AANAT is considered
the key enzyme in the regulation of all of the mechanisms which lead to melatonin production.
In particular, both elevated cAMP levels and PKA activation are indispensable to the stimulation of
AANAT and, hence, melatonin production in all mammals [28]. The activity of AANAT displays
marked day/night variations (>100-fold nocturnal increase) whereas that of HIOMT only increases
by about 50% at night. Therefore, AANAT is considered the “rate-limiting” enzyme for melatonin
biosynthesis in the pineal gland [29].

Rat hepatoma, human and rat breast cancer, and human leiomyosarcoma cancer are examples
of cancers that are responsive to the inhibitory actions of melatonin [30–34]. Some authors have
demonstrated that melatonin: (i) increases CLOCK and PER2 levels and decreases those of BMAL1 in
prostate cancer cells [35]; (ii) decreases RORα-mediated BMAL1 expression in breast cancer cells [36];
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(iii) has anti-oxidant properties because it scavenges the free radicals and induces an increase of
glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) levels [37]; (iv) reduces metastases
in murine breast cancer [38] and human breast cancer [39]; and (v) inhibits breast cancer cell invasion
by downregulating the p38 pathway and by blocking MMP-2 and MMP-9 activity [39]. On the other
hand, it is well-known that circadian genes regulate cell proliferation and apoptosis and, hence, the
expression of caspases or genes involved in the cell cycle or in cancer suppression [1]. Considering
these features, many papers have demonstrated that disruption of the circadian clock increases the risk
to develop human cancers. In fact, loss of the PER2 gene can damage p53-mediated apoptosis, activate
c-Myc signaling pathways, and induce an increase of cell proliferation and genomic instability [1].

Taken together, these data indicate that the circadian disruption associated with dysregulation of
melatonin production can modify the synchronization of peripheral clocks and, in turn, affect cancer
cell proliferation cycles [40].

6. Tumor Growth Inhibition through the Warburg Effect and Metabolism of Linoleic Acids

In the last few years, several authors have evidenced that there is a connection between
neuro-immunomodulatory control loops and cancer initiation and progression. Various findings
in animals and humans have demonstrated that light can suppress melatonin synthesis and can
increase the levels of cortisol, estrogens, and androgens [41]. Consistent with this notion, Stevens
showed that, in industrialized societies, light exposure at night induces a block of the pineal gland,
a block of the nocturnal production of melatonin, an increase of the estrogen levels in postmenopausal
women, and, hence, a higher risk to develop breast cancer [42]. Another important aspect is that
melatonin’s cancer inhibition in vivo involves linoleic acid (LA), the most prevalent essential omega-6
polyunsaturated fatty acid (PUFA) that presents with high levels in the Western diet [43]. In fact,
the elimination of the nocturnal melatonin signal by LAN is able to enhance nocturnal LA uptake
and its conversion to 13-hydroxyoctadecadienoic acid (13-HODE) and increase breast cancer risk,
which represents a significant public health problem [44]. These factors were used to explain the breast
cancer development in some women who had worked night shifts for many years [44]. Experimental
evidence in both human cancer xenografts and rat hepatoma 7288CTC showed that LA uptake and
its metabolism are blocked through the decrease of cAMP levels [45–48]. In fact, Blask et al. (1999)
indicated that, during light exposure, when circulating melatonin levels are very low, cancer LA uptake
is strongly elevated due to high levels of c-AMP that are capable of increasing FATP (transport proteins)
activity mainly through their phosphorylation. Intracellular LA is rapidly metabolized to 13-HODE by
an EGF-activated lipoxygenase [45]. In many tumors, increased 13-HODE levels positively stimulate
EGF and IGF-1 receptors to enhance ERK1/2 and AKT phosphorylation, leading to enhanced EGF
and IGF-1-dependent cell mitogenesis and survival [49]. Blask al. (2014) also demonstrated that high
levels of 13-HODE in cancer cells can induce AKT activation, drive the Warburg effect, and hence
convert the normal cellular metabolism from oxidative phosphorylation to aerobic glycolysis with
a great oxygen supply [50] (see Figure 1). It is possible that the AKT oncogene, present in many
cancers, is sufficient to stimulate continued transformed cells growth and survival with a relative
increase of glucose use without consuming oxygen [51]. A higher rate of glucose uptake and its
metabolism to lactate via glycolysis might ensure a constant supply of the molecular intermediates
essential for protein and nucleic acid synthesis to support proliferative activity of cancer cells. Finally,
the production of NADPH through the pentose phosphate cycle can induce a decrease of oxidative
stress in many types of malignant cells [52]. Blask et al. [50] also demonstrated that during a dark
phase, when circulating melatonin levels are high, melatonin suppresses the cancer production of
13-HODE and blocks LA uptake by cAMP action and by MT1 receptors. As a consequence, suppression
of 13-HODE production and subsequent attenuation of Akt signaling might indirectly inhibit the
Warburg effect, cell proliferation, and tumor growth [50]. Moreover, other papers have reported that:
(i) the melatonin levels are lower in prostate cancer patients than in normal men [53]; and (ii) the
melatonin interacts with the androgen receptor and modulates the cell growth in prostate cancer
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patients [54]. Additionally, Dauchy et al. (2015) demonstrated that daytime exposure of rats to
blue light significantly increased nocturnal melatonin levels, resulting in a strong suppression of
cancer growth by a marked reduction of cancer cAMP levels, LA uptake, 13-HODE formation, and
the Warburg effect [55]. In contrast to these results, colorectal cancer mucosa presented lower levels of
13-HODE and 15-lipoxygenase-1 that, in turn, are able to inhibit colon cancer growth in vivo [56–58].
Therefore, these authors underlined that 13-HODE’s ability to induce cancer growth is “tissue-specific”.

7. Receptor-Mediated Effect of Melatonin on the Control of Genomic Instability

Another possible mechanism that can mediate cancer inhibition by melatonin is the regulation
of genomic instability associated with retrotransposons, such as Long Interspersed Element-1 (L1),
that are present not only in all mammals and humans but can be also found in plants, protozoa, and
fungi [59,60]. Several papers have investigated the extent of LINE-1’s contribution to tumorigenesis
even if its mechanistic relevance remains unknown. For example, some studies indicate that:
(i) L1 is not expressed or presents with very low levels in normal adult human tissues and early
stages of tumorigenesis [60–62]; (ii) somatic L1 insertions can inactivate the tumor suppressor APC
gene in colon cancer cells [63]; (iii) L1 expression and retrotransposition are inhibited by multiple
mechanisms, including the methylation status of L1 [64]; (iv) the frequent hypomethylation of
chromatin in tumor cells is the main mechanism responsible for L1 mobility [65]; and (v) L1 contributes
to cancer development by inducing hTERT and maintaining telomeres in telomerase-positive tumor
cells [66]. However, L1 expression can be regulated by acetylation and methylation of histones [67],
noncoding RNAs, such as Piwi-interacting RNAs, siRNAs, and miRNAs [65,68], and self-regulation
by the L1 antisense promoter [69]. In 2014–2015, a research group suggested that melatonin, through
an MT1-receptor-mediated action, can downregulate L1 and inhibit its mobilization, consequently
leading to a decrease in L1-associated genomic instability in human cancer cell lines [70,71].
Other studies by Kang and Sancar (2009) also indicate that normal melatonin signal suppression may
indirectly enhance L1-induced genomic instability and tumorigenesis through the circadian disruption
of core clock proteins operating in peripheral tissues capable of interacting with cellular DNA repair
proteins usually involved in the suppression of L1 retrotransposition [72]. Further, the suppression of
melatonin/melatonin receptor signaling is able to modify different pathways necessary for cellular
proliferation and apoptosis. For instance, Santoro and Strano (2013) reported that melatonin can
activate the MT1 and MT2 receptors, induce a DNA damage response, and preserve genome integrity.
In addition, they also suggested that, in the absence of both receptors, melatonin is not able to
decrease cell proliferation and to block DNA damage [73]. Further studies, recently published by
Wylie A et al. (2016), also demonstrated that p53, by genetically interacting with components of piRNA
(piwi-interacting RNA), might suppress the mobility of retrotransposons that are well-documented
piRNA targets. Accordingly, human p53 mutants or p53 loss was strongly associated with transposon
mobility compared to normal counterparts. All these data suggest the possibility that p53 may
contribute to oncogenesis suppression not only by preventing DNA damage but also by restricting
the movement of mobile elements [74]. In addition, studies by Mao L et al. (2012) also reported that
melatonin activates glycogen synthase kinase 3β (GSK3β) by inhibiting serine-threonine kinase Akt
phosphorylation, by inducing β-catenin degradation, and by inhibiting epithelial-to-mesenchymal
transition, a fundamental process underlying cancer metastasis [75]. As a consequence, nocturnal
melatonin signal inhibition via exposure to light at night could increase genomic instability and
the carcinogenesis process. Another important aspect underlined by Coon SL et al. (2012) is that
some long non-coding RNAs (IncRNAs) follow the circadian clock and are able to modify melatonin
biosynthesis [76]. Hence, the dysfunction of the circadian machinery due to LAN may alter melatonin
production and consequently promote carcinogenesis not only by increasing nocturnal tumor uptake
of LA but also by promoting L1-retrotransposon-associated genomic instability and also by changing
the level and activity of certain IncRNAs [76].
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Certainly, it is important to underline that the current literature related to L1’s connection to LAN-
and circadian-disruption-associated risk of cancer is very limited and speculative and further studies
will be necessary to understand this correlation in more detail.

8. Immunoregulation by Melatonin

It is well-known that cancers evade the immune system by producing factors able to block immune
TH1 response and activate TH2 response [77,78]. Melatonin can suppress this process by increasing
the levels of IL2 that favor T cell differentiation and increase IFN-g production [79]. Considering
that melatonin is able to suppress apoptosis in normal cells and to induce apoptosis in cancer cells,
it has been indicated to be useful in cancer treatment [80]. Recent studies by Bollinger et al. (2009)
demonstrated that nTregs (CD4+ and CD25+, natural regulatory T cells) follow circadian rhythms
and increase their levels during night as well as that of melatonin. Hence, sleep deprivation blocks
the normal function of nTreg [81] (see Figure 1). Recent studies indicate that melatonin decreases the
levels of Tregs and Foxp3 and blocks gastric cancer progression even if no direct effects were observed
on lymphocytes cultured “in vitro” [82,83]. Therefore, the authors suggested that: (i) melatonin
may inhibit Treg cell production by such indirect mechanisms as, for example, the inhibition of
macrophage activity, which is involved in Treg cell stimulation [84,85]; and (ii) melatonin can
increase chemotherapy efficacy through the alteration of the macrophage system and the related
suppression of Treg cell production [86]. Recently, Kassayova M et al. (2016) demonstrated that
Lactobacillus plantarum LS/07 and inulin exert antiproliferative and immunomodulatory activities
in rat mammary carcinogenesis and that these activities are significantly amplified by melatonin
co-administration [87]. In particular, melatonin co-administration markedly increased both tumor
infiltration by Treg cell production and tumoral Ki-67 expression. These results demonstrated for the
first time that melatonin is capable of increasing the local immune response induced by a combination
of a probiotic and a prebiotic in mammary tumor tissue [87]. In addition, such findings also indicate that
the role of Treg cells in cancer development remains controversial. In fact, despite numerous reports
indicating a positive association between Tregs and progression of solid tumors [88], an increasing
number of studies also suggest that tumor-infiltrating Tregs are an index of a good prognosis [89,90].
Moreover, in Estrogen Responsive (ER)-negative breast cancer patients, a high degree of concurrent
cancer infiltration by Tcells and Tregs is correlated with robust anticancer immunity and a good
clinical outcome [91]. Notably, transforming growth factor-beta (TGF-β) is a growth factor capable
of modulating Tcell proliferation and differentiation [92] and of inducing Foxp3 expression [93].
Studies by Proietti et al. (2011) suggest that melatonin alone or with vitamin D3 in early stages
of mammary carcinogenesis can inhibit cell growth and activate the TGF-β1 pathway promoting
apoptosis [94]. In addition, it is important to remember that the proinflammatory cytokine IL-6
has an important role in estrogen-dependent tumor growth and inhibits Treg cell production [95].
Therefore, it is not excluded that melatonin administration alone or with vitamin D3 and a probiotic
and a prebiotic can inhibit the estrogen-dependent breast carcinogenesis process by promoting
peripheral Tregs differentiation in mammary tumor tissue by activation of the TGF-1β pathway
and concomitantly by inhibiting the NF-kB/COX-2/IL-6 pathway as well as the development of
Tregs [93,94,96]. There is also evidence that the carcinogenesis process is often associated with several
neuroendocrine disorders. Among them, the most important are: (i) the disappearance of cortisol
circadian rhythms in many malignant tumors; (ii) abnormally high levels of prolactin; and, in particular,
(iii) pineal endocrine deficiency or a progressive decline in the nocturnal melatonin production
that represents the main and the most investigated cancer-progression-related neuroendocrine
alteration [97]. Notably, at present, melatonin represents the only molecule existing in nature that is
potentially capable of suppressing the overall phases of cancer development, progression, invasion, and
neoangiogenesis [98–102]. Certainly, progressive decreasing of melatonin at night could significantly
contribute to cancer development and neoplastic progression [100]. Notably, many studies suggest
that tumor production of indoleamine-2,3-dioxygenase (IDO) may progressively reduce melatonin
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blood levels by inducing a depletion of the amino acid tryptophan (Trp) [103]. Such tryptophan
deficiency and/or the accumulation of Trp catabolites, such as kinurenine (Kyn), 3-hydroxykynurenine,
and 3-hydroxyanthranilic acid, can influence both melatonin synthesis and the anticancer immune
response since tryptofan depletion promotes immune tolerance (or suppression of the anticancer
response) through direct inhibition of TH1-lymphocyte functions and proliferation or by stimulating
regulatory T lymphocyte activation (Tregs) [103,104]. Another interesting study recently published
by Ren W et al. (2017) also suggests that melatonin does not alter Foxp3+ cell frequency in normal
conditions, but only in inflammatory diseases, and it decreases significantly the number of Tregs cells in
immunosuppressive conditions [105]. Other reports also indicate that elevated levels of glucocorticoids
may lead to impaired melatonin production by the pineal gland and subsequent immunosuppression
capable of promoting carcinogenesis or malignant transformation [106]. Further, in malignant tumors,
severe hypoxia was often associated with a decreased differentiation of CD4+ effector T cells and an
increased number of Treg cells. Clambey et al. (2012) suggest that hypoxia inducible factor 1α (HIF-1α)
regulates CD4+ T-cell functions in hypoxic conditions. Specifically, these authors demonstrated that
hypoxia increases the abundance and function of Tregs by stimulating Foxp3 expression without
acting on the pre-existing Tregs and that HIF-1α suppresses inflammation and tissue damage in
conditions of reduced oxygen availability [107]. Other authors also reported that severe hypoxia in
a mouse model with colitis-associated colon cancer increases not only the Tregs’ abundance but also
the expression of antinflammatory and immunosuppressive cytokine IL-10, which directly inhibits the
CD4+ T-cells’ function [108,109]. Since it seems that HIF-1α increases Treg cells production not only in
inflammatory pathologies, such as rheumatoid arthritis or inflammatory bowel disease, but also in the
tumor microenvironment, the development of an anticancer strategy targeting HIF-1 activity represents
an interesting scientific topic. In fact, studies by Park et al. (2009) suggested that pharmacological
concentrations of melatonin can inhibit growth factors (IGF-1, insulin), and induce HIF-1 production
rather than its proteasomal degradation [110]. Finally, melatonin also suppresses tumor angiogenesis
by inhibiting not only HIF-1α accumulation through suppression of the melatonin nuclear receptor
RZR/RORγ and the SUMO-specific protease 1 (SENP1) signaling pathway but also VEGF production
in human gastric cancer cells under hypoxia [111].

Overall, these data collectively highlight that melatonin administration can correct several
cancer-related neuroendocrine disorders involved in the control of anticancer immunity by significantly
improving the prognosis of cancer patients.

9. Conclusions

Several epidemiologic and experimental observations have shown that circadian rhythms
regulate many physiological processes, such as sleep, hormone production, immune activity, and cell
proliferation and apoptosis. As a consequence, circadian coordination disruption increases the risk for
a variety of pathologies, such as psychiatry disorders and metabolic alterations, and promotes cancer
development and progression [1]. On the other hand, melatonin is a pineal hormone that maintains the
daily clock. Its nocturnal synthesis is inhibited by light exposure at night (LAN) [112]. Consequently,
the blocking of circadian melatonin production can increase the risk of cancer development [41,42,53].
In support of this notion, melatonin-rich sera collected at night compared to melatonin-depleted
sera collected after LAN significantly suppressed the proliferative activity of human breast cancer
xenografts in perfused rats [31]. There are several mechanisms (Figure 1) by which LAN might increase
risk for several human cancer types by its ability to inhibit melatonin production at night: (i) nocturnal
tumor uptake of dietary linoleic acid and subsequent production of 13-HODE; (ii) genomic instability
associated with retrotransposons, such as L1, capable of activating oncogenes and inactivating tumor
suppressor genes primarily through insertional mutagenesis and suppression of the expression of
LINE-1; and (iii) regulation of Treg cells production.

Therefore, we can suggest that new therapeutic strategies are necessary to protect the integrity of
the circadian rhythm melatonin signal. As an example, the association of circadian-timed physiologic
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melatonin supplementation with modifications in nocturnal lipid intake could represent a useful
approach for blocking cancer initiation and/or for decreasing cancer progression. Hence, we can
conclude that, considering our increasingly 24 h society, researchers should focus their attention on
the strict relationship among LAN, melatonin production blocking, circadian rhythm disruption, and
increased risk of cancers and should search for new therapeutic strategies.
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96. Štofilová, J.; Szabadosová, V.; Hrčková, G.; Salaj, R.; Bertková, I.; Hijová, E.; Strojný, L.; Bomba, A.
Co-administration of a probiotic strain Lactobacillus plantarum LS/07 CCM7766 with prebiotic inulin alleviates
the intestinal inflammation in rats exposed to N,N-dimethylhydrazine. Int. Immunopharmacol. 2015, 24,
361–368. [CrossRef] [PubMed]

97. Marmont, M.C.; Levi, F. Circadian-system alterations during cancer processes: A review. Int. J. Cancer 1997,
70, 241–247. [CrossRef]

http://dx.doi.org/10.1007/s00018-003-2319-1
http://www.ncbi.nlm.nih.gov/pubmed/12943228
http://dx.doi.org/10.1111/j.1365-2249.2008.03822.x
http://www.ncbi.nlm.nih.gov/pubmed/19040608
http://dx.doi.org/10.1002/ar.21361
http://www.ncbi.nlm.nih.gov/pubmed/21416626
http://www.ncbi.nlm.nih.gov/pubmed/20952751
http://dx.doi.org/10.1038/bjc.1993.260
http://www.ncbi.nlm.nih.gov/pubmed/8512825
http://dx.doi.org/10.1016/j.smim.2003.12.005
http://www.ncbi.nlm.nih.gov/pubmed/15036232
http://dx.doi.org/10.1002/eji.200324181
http://www.ncbi.nlm.nih.gov/pubmed/14768038
http://www.ncbi.nlm.nih.gov/pubmed/27272781
http://dx.doi.org/10.1158/0008-5472.CAN-11-3687
http://www.ncbi.nlm.nih.gov/pubmed/22549946
http://dx.doi.org/10.1158/1078-0432.CCR-11-3216
http://www.ncbi.nlm.nih.gov/pubmed/22510350
http://dx.doi.org/10.1038/srep15179
http://www.ncbi.nlm.nih.gov/pubmed/26462617
http://dx.doi.org/10.1038/bjc.2012.524
http://www.ncbi.nlm.nih.gov/pubmed/23169287
http://dx.doi.org/10.4049/jimmunol.174.4.2071
http://www.ncbi.nlm.nih.gov/pubmed/15699137
http://dx.doi.org/10.1093/jmcb/mjp004
http://www.ncbi.nlm.nih.gov/pubmed/19648226
http://dx.doi.org/10.1111/j.1600-079X.2010.00824.x
http://www.ncbi.nlm.nih.gov/pubmed/21091766
http://dx.doi.org/10.4049/jimmunol.179.4.2041
http://www.ncbi.nlm.nih.gov/pubmed/17675459
http://dx.doi.org/10.1016/j.intimp.2014.12.022
http://www.ncbi.nlm.nih.gov/pubmed/25536541
http://dx.doi.org/10.1002/(SICI)1097-0215(19970117)70:2&lt;241::AID-IJC16&gt;3.0.CO;2-L


Molecules 2018, 23, 1308 14 of 14

98. Park, S.Y.; Jang, W.J.; Yi, E.Y.; Jang, J.Y.; Jung, Y.; Jeong, J.W.; Kim, Y.J. Melatonin suppresses tumor
angiogenesis by inhibiting HIF-1α stabilization under hypoxia. J. Pineal Res. 2010, 48, 178–184. [CrossRef]
[PubMed]

99. Danielczyk, K.; Dziegiel, P. MT1 melatonin receptors and their role in the oncostatic action of melatonin].
Postepy Hig. Med. Dosw. 2009, 63, 425–434.

100. Hill, S.M.; Frasch, T.; Xiang, S.; Yuan, L.; Duplessis, T.; Mao, L. Molecular mechanisms of melatonin anticancer
effects. Integr. Cancer Ther. 2009, 8, 337–346. [CrossRef] [PubMed]

101. Reiter, R.J.; Tan, D.X.; Fuentes-Broto, L. Melatonin: A multitasking molecule. Prog. Brain Res. 2010, 181,
127–151. [PubMed]

102. Li, Y.; Li, S.; Zhou, Y.; Meng, X.; Zhang, J.J.; Xu, D.P.; Li, H.B. Melatonin for the prevention and treatment of
cancer. Oncotarget 2017, 8, 39896–39921. [CrossRef] [PubMed]

103. Bartsch, C.; Bartsch, H. Melatonin in cancer patients and in tumor-bearing animals. Adv. Exp. Med. Biol.
1999, 467, 247–264. [PubMed]

104. Uyttenhove, C.; Pilotte, L.; Théate, I.; Stroobant, V.; Colau, D.; Parmentier, N.; Boon, T.; Van den Eynde, B.J.
Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine
2,3-dioxygenase. Nat. Med. 2003, 9, 1269–1274. [CrossRef] [PubMed]

105. Ren, W.; Liu, G.; Chen, S.; Yin, J.; Wang, J.; Tan, B.; Wu, G.; Bazer, F.W.; Peng, Y.; Li, T.; et al. Melatonin
signaling in T cells: Functions and applications. J. Pineal Res. 2017, 62. [CrossRef] [PubMed]

106. Couto-Morares, R.; Palermo-Neto, J.; Markus, R.P. The immune-pineal axis: Stress as a modulator of pineal
gland function. Ann. N. Y. Acad. Sci. 2009, 1153, 193–202. [CrossRef] [PubMed]

107. Clambey, E.T.; McNamee, E.N.; Westrich, J.A.; Glover, L.E.; Campbell, E.L.; Jedlicka, P.; de Zoeten, E.F.;
Cambier, J.C.; Stenmark, K.R.; Colgan, S.P.; et al. Hypoxia-inducible factor-1 α-dependent induction of FoxP3
drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc. Natl.
Acad. Sci. USA 2012, 109, E2784–E2793. [CrossRef] [PubMed]

108. Shehade, H.; Acolty, V.; Moser, M.; Oldenhove, G. Cutting Edge: Hypoxia-Inducible Factor 1 Negatively
Regulates Th1 Function. J. Immunol. 2015, 195, 1372–1376. [CrossRef] [PubMed]

109. Hori, S.; Nomura, T.; Sakaguchi, S. Pillars Article: Control of Regulatory T Cell Development by the
Transcription Factor Foxp3. Science 2003, 299, 1057–1061. [CrossRef] [PubMed]

110. Park, J.W.; Hwang, M.S.; Suh, S.I.; Baek, W.K. Melatonin down-regulates HIF-1 α expression through
inhibition of protein translation in prostate cancer cells. J. Pineal Res. 2009, 46, 415–421. [CrossRef] [PubMed]

111. Wang, R.X.; Liu, H.; Xu, L.; Zhang, H.; Zhou, R.X. Involvement of nuclear receptor RZR/RORγ in
melatonin-induced HIF-1α inactivation in SGC-7901 human gastric cancer cells. Oncol. Rep. 2015, 34,
2541–2546. [CrossRef] [PubMed]

112. Pevet, P.; Challet, E. Melatonin: Both master clock output and internal time-giver in the circadian clocks
network. J. Physiol. 2011, 105, 170–182. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.1600-079X.2009.00742.x
http://www.ncbi.nlm.nih.gov/pubmed/20449875
http://dx.doi.org/10.1177/1534735409353332
http://www.ncbi.nlm.nih.gov/pubmed/20050373
http://www.ncbi.nlm.nih.gov/pubmed/20478436
http://dx.doi.org/10.18632/oncotarget.16379
http://www.ncbi.nlm.nih.gov/pubmed/28415828
http://www.ncbi.nlm.nih.gov/pubmed/10721063
http://dx.doi.org/10.1038/nm934
http://www.ncbi.nlm.nih.gov/pubmed/14502282
http://dx.doi.org/10.1111/jpi.12394
http://www.ncbi.nlm.nih.gov/pubmed/28152213
http://dx.doi.org/10.1111/j.1749-6632.2008.03978.x
http://www.ncbi.nlm.nih.gov/pubmed/19236342
http://dx.doi.org/10.1073/pnas.1202366109
http://www.ncbi.nlm.nih.gov/pubmed/22988108
http://dx.doi.org/10.4049/jimmunol.1402552
http://www.ncbi.nlm.nih.gov/pubmed/26179900
http://dx.doi.org/10.1126/science.1079490
http://www.ncbi.nlm.nih.gov/pubmed/12522256
http://dx.doi.org/10.1111/j.1600-079X.2009.00678.x
http://www.ncbi.nlm.nih.gov/pubmed/19552765
http://dx.doi.org/10.3892/or.2015.4238
http://www.ncbi.nlm.nih.gov/pubmed/26330273
http://dx.doi.org/10.1016/j.jphysparis.2011.07.001
http://www.ncbi.nlm.nih.gov/pubmed/21914478
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Mammalian Biological Clock 
	Molecular Mechanism of the Mammalian Biological Clock 
	Alteration of Circadian Rhythm and Carcinogenesis 
	Circadian Rhythms and Melatonin in the Control of Tumor Growth 
	Tumor Growth Inhibition through the Warburg Effect and Metabolism of Linoleic Acids 
	Receptor-Mediated Effect of Melatonin on the Control of Genomic Instability 
	Immunoregulation by Melatonin 
	Conclusions 
	References

