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Abstract: Myotonic dystrophy type 1 (DM1) is a hereditary and multisystemic disease characterized
by myotonia, progressive distal muscle weakness and atrophy. The molecular mechanisms underlying
this disease are still poorly characterized, although there are some hypotheses that envisage to explain
the multisystemic features observed in DM1. An emergent hypothesis is that nuclear envelope (NE)
dysfunction may contribute to muscular dystrophies, particularly to DM1. Therefore, the main
objective of the present study was to evaluate the nuclear profile of DM1 patient-derived and control
fibroblasts and to determine the protein levels and subcellular distribution of relevant NE proteins
in these cell lines. Our results demonstrated that DM1 patient-derived fibroblasts exhibited altered
intracellular protein levels of lamin A/C, LAP1, SUN1, nesprin-1 and nesprin-2 when compared
with the control fibroblasts. In addition, the results showed an altered location of these NE proteins
accompanied by the presence of nuclear deformations (blebs, lobes and/or invaginations) and
an increased number of nuclear inclusions. Regarding the nuclear profile, DM1 patient-derived
fibroblasts had a larger nuclear area and a higher number of deformed nuclei and micronuclei than
control-derived fibroblasts. These results reinforce the evidence that NE dysfunction is a highly
relevant pathological characteristic observed in DM1.

Keywords: myotonic dystrophy type 1; nuclear envelope; DMPK; nuclear profile; lamin A/C; emerin;
LAP1; SUN1; nesprin-1; nesprin-2

1. Introduction

Myotonic dystrophy type 1 (DM1) is the most common adult-onset muscular dys-
trophy with an estimated prevalence of 1:8000 [1,2]. DM1 is characterized by a slowly
progressing muscle weakness, loss of muscle mass and myotonia. Additionally, DM1 is also
categorized as a multisystemic disease, affecting other organs, namely the eyes (cataracts),
heart (conduction problems leading to cardiomyopathies) and respiratory system, and
causing metabolic alterations (insulin insensitivity and diabetes) [3–6]. DM1 is a genetic
disease caused by an abnormal unstable expansion of the CTG trinucleotide in the 3′UTR
of the Myotonic Dystrophy Protein Kinase (DMPK) gene [1,7]. The central protein of DM1,
DMPK, is a protein kinase that consists of seven distinct isoforms (DMPK A to G) in
humans, which are generated by alternative splicing. DMPK’s subcellular localization is
confined to either the endoplasmic reticulum or nuclear envelope (NE) (DMPK A and B),
mitochondria (DMPK C and D) or cytoplasm (DMPK E, F and G) [6,8,9].

Several studies have been carried out to unravel the molecular mechanisms underlying
this pathology. To date, there are three more consensual hypotheses explaining the pathogen-
esis of DM1: RNA toxic gain-of-function, haploinsufficiency of DMPK and rearrangement
of the DM1 locus [6,10–12]. Despite the great deal of effort for unravelling the molecular
mechanism underlying DM1, none of these hypotheses can explain all the multisystemic signs
and symptoms. A defect in the positioning of myonuclei, resulting from alterations in nuclear
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envelope (NE) proteins, has also been proposed as a potential pathological mechanism of
DM1, similar to other muscular dystrophies [13–16]. Previous studies have reported that some
muscular dystrophies result from alterations in NE stability [13–16]. A common feature of
these diseases is the presence of nuclei usually located and grouped in the muscle cells’ center,
compromising myonuclear movement [13,17]. NE proteins are essential for gene regulation,
nuclear structure and muscle function [18,19]. In the case of DM1, very few studies have been
carried out to assess alterations of NE proteins in DM1 [20–22], and the contribution of NE
dysfunction to DM1 has not been fully elucidated.

Therefore, the main objectives of this study were to evaluate the nuclear profile in DM1
patient-derived and control fibroblasts and to determine the intracellular protein levels
and immunolocalization of the disease-associated DMPK protein and other NE proteins,
namely lamin A/C, emerin, lamin-associated polypeptide 1 (LAP1), Sad1/unc-84 protein-
like (SUN1), nesprin-1 and nesprin-2, in both cell lines. The results obtained here may
provide new insights on the potential contribution of NE dysfunction to DM1 pathogenesis.

2. Results
2.1. Evaluation of Intracellular DMPK Protein Levels in DM1 Patient-Derived Fibroblasts

The precise molecular mechanism underlying DM1 is still elusive. The toxic gain of
function of expanded CUG repeats of mutant DMPK mRNA and haploinsufficiency are
two well accepted proposed mechanisms [6]. As a consequence, the protein levels of DMPK
are found to be decreased in DM1 tissues [23]. To confirm these changes, intracellular
DMPK protein levels were evaluated by immunoblotting in DM1 patient-derived and
control fibroblasts. Briefly, in this study, two cell lines were used with approximately
1000 CTG repeats, hereafter referred to as DM1_1000 (1) and DM1_1000 (2), two cell lines
with approximately 2000 CTG repeats, hereafter designated DM1_2000 (1) and DM1_2000
(2), and one control cell line that comprised between 5 and 27 CTG repeats.

The results presented in Figure 1 show that the intracellular DMPK protein levels were
significantly decreased in the DM1_1000 (p = 0.0332) and DM1_2000 (p = 0.0332) fibroblasts
when compared to the control (Figure 1).
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experiments. Ponceau S staining was used to assess gel loading. The statistical analysis was per-
formed using one-way ANOVA followed by the Tukey’s multiple comparison test, used to compare 
between DM1_1000, DM1_2000 and the control groups. * p < 0.05; DM1—myotonic dystrophy type 
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Figure 1. Intracellular DMPK protein levels in DM1 patient-derived and control fibroblasts. The
intracellular protein levels in DM1 patient-derived fibroblasts were estimated in relation to the
protein levels detected in the control condition and are presented as mean± SEM of four independent
experiments. Ponceau S staining was used to assess gel loading. The statistical analysis was performed
using one-way ANOVA followed by the Tukey’s multiple comparison test, used to compare between
DM1_1000, DM1_2000 and the control groups. * p < 0.05; DM1—myotonic dystrophy type 1; DMPK—
myotonic dystrophy protein kinase; SEM—standard error of the mean.

As expected, significantly lower levels of DMPK protein were observed in the DM1
patient-derived fibroblasts. Therefore, we decide to further explore the contribution of NE
dysfunction to DM1 through the evaluation of the nuclear profile as well as protein levels
and the subcellular distribution of several relevant NE proteins.
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2.2. Evaluation of the Nuclear Profile in DM1 Patient-Derived Fibroblasts

The presence of nuclear architectural alterations in DM1 patient-derived fibroblasts
was assessed through DAPI staining, followed by the monitoring of several nuclear pa-
rameters, namely the occurrence of nuclear deformations, number of micronuclei, nuclear
circularity, crossed diameter ratio and nuclear area (Figure 2). Nuclear circularity is a
quantitative measure that assesses the circular shape of nuclei, with a maximum value of 1
corresponding to a perfect circle. Concerning nuclear deformations, the existence of blebs,
lobed nuclei, micronuclei and nuclear invaginations were taken into consideration. Several
visible small nuclei were also quantified as micronuclei.
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Figure 2. Nuclear profile of DM1 patient-derived and control fibroblasts. (A) The nuclear profiles
of DM1 patient-derived and control fibroblasts were analysed using fluorescence microscopy and
representative images are presented. Fibroblasts’ nuclei were stained with DAPI (blue). Quantitative
evaluation of (B) deformed nuclei, (C) micronuclei, (D) nuclear circularity, (E) crossed diameter ratio,
(F) nuclear area comparison between DM1 patient-derived fibroblasts (DM1_1000 and DM1_2000) and
control group and (G) nuclear area of <200 µm2 and ≥200 µm2. The quantitative data are presented
as mean ± SEM and were obtained by analysing 100 cells per condition from four independent
experiments. The statistical analysis was performed using one-way ANOVA followed by Tukey’s
multiple comparison test used to compare between DM1_1000, DM1_2000 and the control groups.
* p < 0.05, ** p < 0.01. Scale bar = 10 µm. A.U.—arbitrary units; DM1—myotonic dystrophy type 1;
SEM—standard error of the mean.

Regarding the presence of nuclear deformations (Figure 2A,B), there was a signif-
icant increase in the percentage of deformed nuclei in DM1 patient-derived fibroblasts
(DM1_1000, p = 0.0066; DM1_2000, p = 0.0012) relative to control fibroblasts. The results
indicated that DM1 patient-derived fibroblasts carrying a higher number of CTG repeats
seemed to present a higher number of nuclear deformations (Figure 2B). The number of
micronuclei also seemed to increase in DM1 patient-derived fibroblasts in comparison
to control fibroblasts (Figure 2C) and was correlated with CTG repeat length. Regarding
the crossed diameter ratio, this parameter was significantly increased in the fibroblast
nuclei derived from DM1_1000 (p = 0.0328) and DM1_2000 (p = 0.0127) fibroblasts when
compared with the control fibroblasts (Figure 2E). Finally, the mean nuclear area of DM1
patient-derived fibroblasts appeared to be larger than the control (Figure 2F). Knowing that
the average nuclear area of fibroblasts is around 200 µm2 [24] (Figure 2G), we quantified
the number of cells with a nuclear area <200 µm2 and ≥ 200 µm2. Interestingly, it was
found that there was a significant increase in the nuclear area in DM1_2000 fibroblasts
compared to the control (p = 0.0041) (Figure 2G).

Since important nuclear changes were observed in DM1 patient-derived fibroblasts in
relation to control fibroblasts, it seemed important to evaluate some relevant proteins of
the NE.

2.3. Evaluation of Intracellular Levels and Localization of NE Proteins in DM1 Patient-Derived
Fibroblasts

To investigate the intracellular protein levels and subcellular localization of NE pro-
teins in DM1 patient-derived and control fibroblasts, immunoblotting and immunocy-
tochemistry techniques were used, respectively. Essentially, the following NE proteins
were evaluated: nuclear lamin protein, namely lamin A/C (Figure 3); three inner nuclear
membrane proteins, including emerin (Figure 4), LAP1 (Figure 5) and SUN1 (Figure 6);
and two outer nuclear membrane proteins, including nesprin-1 (Figure 7A) and nesprin-2
(Figure 7B).
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Figure 3. Intracellular protein levels and nuclear localization of lamin A/C in DM1 patient-derived
and control fibroblasts. (A) Intracellular lamin A/C protein levels in DM1 patient-derived and control
fibroblasts were analysed using immunoblotting. The intracellular protein levels in DM1 patient-derived
fibroblasts were estimated in relation to protein levels detected in the control condition and are presented
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as mean ± SEM of four independent experiments. Ponceau S staining was used to assess gel loading.
The statistical analysis was performed using one-way ANOVA followed by Tukey’s multiple comparison
test to compare between DM1_1000, DM1_2000 and the control groups. To compare intracellular protein
levels between groups, one-way ANOVA was used, followed by Tukey’s multiple comparison test.
** p < 0.01 (B) Subcellular distribution of lamin A/C in DM1 patient-derived and control fibroblasts was
analysed using fluorescence microscopy. Lamin A/C was detected using a specific primary antibody
and linked to an Alexa Fluor 488-conjugated secondary antibody (green). Nucleic acids were stained
using DAPI (blue). Evaluation of lamin A/C-positive (C) nuclei with nuclear inclusions, (D) nuclei with
1–2 or ≥3 nuclear inclusions, (E) deformed nuclei, (F) nuclear invaginations and (G) mild or moderate
nuclear invaginations. The quantitative data are presented as mean± SEM and were obtained by analysing
50 cells per condition from four independent experiments. The statistical analysis was performed using one-
way ANOVA followed by Tukey’s multiple comparison test to compare between DM1_1000, DM1_2000
and the control groups. * p < 0.05; ** p < 0.01; Scale bar = 10 µm; ↑ represents nuclear invaginations; ˆ
represents nuclear inclusions; DM1—myotonic dystrophy type 1; SEM—standard error of the mean.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 21 
 

 

 

Figure 4. Cont.



Int. J. Mol. Sci. 2022, 23, 522 7 of 20

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 4. Intracellular protein levels and nuclear localization of emerin in DM1 patient-derived
and control fibroblasts. (A) Intracellular emerin protein levels in DM1 patient-derived and control
fibroblasts. The intracellular protein levels in DM1 patient-derived fibroblasts were estimated in
relation to protein levels detected in the control condition and are presented as mean ± SEM of four
independent experiments. Ponceau S staining was used to assess gel loading. The statistical analysis
was performed using one-way ANOVA followed by Tukey’s multiple comparison test to compare
between DM1_1000, DM1_2000 and the control groups. (B) Subcellular distribution of emerin in
DM1 patient-derived fibroblasts and control was analysed using fluorescence microscopy. Emerin
was detected using a specific primary antibody and an anti-mouse Alexa-488-conjugated secondary
antibody (green). Nucleic acids were stained using DAPI (blue). Evaluation of emerin-positive
(C) nuclei with nuclear inclusions, (D) nuclei with 1–2 or ≥3 nuclear inclusions, (E) deformed nuclei,
(F) nuclear invaginations and (G) mild or moderate nuclear invaginations. The quantitative data
are presented as mean ± SEM and were obtained by analysing 50 cells per condition from four
independent experiments. The statistical analysis was performed using one-way ANOVA followed
by Tukey’s multiple comparison test to compare between DM1_1000, DM1_2000 and the control
groups. * p < 0.05, ** p < 0.01; Scale bar = 10 µm; ↑ represents nuclear invaginations; ˆ represents
nuclear inclusions. DM1—myotonic dystrophy type 1; SEM—standard error of the mean.
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Figure 5. Intracellular protein levels and nuclear localization of LAP1 in DM1 patient-derived and
control fibroblasts. (A) Total LAP1, LAP1B and LAP1C intracellular protein levels in DM1 patient-
derived and control fibroblasts. The intracellular protein levels in DM1 patient-derived fibroblasts
were estimated in relation to protein levels detected in the control condition and are presented as
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mean± SEM of four independent experiments. Ponceau S staining was used to assess gel loading. The
statistical analysis was performed using one-way ANOVA followed by Tukey’s multiple comparison
test to compare between DM1_1000, DM1_2000 and the control groups. * p < 0.05 (B) Subcellular
distribution of LAP1 in DM1 patient-derived and control fibroblasts was analysed using fluorescence
microscopy. LAP1 was detected using a specific primary antibody linked to an anti-mouse Alexa-
594-conjugated secondary antibody (red). Nucleic acids were stained using DAPI (blue). Evaluation
of LAP1-positive (C) nuclei with nuclear inclusions, (D) nuclei with 1–2 or ≥3 nuclear inclusions,
(E) deformed nuclei, (F) nuclear invaginations and (G) mild or moderate nuclear invaginations. The
quantitative data are presented as mean± SEM and were obtained by analysing 50 cells per condition
from four independent experiments. The statistical analysis was performed using one-way ANOVA
followed by Tukey’s multiple comparison test to compare between DM1_1000, DM1_2000 and the
control groups. * p < 0.05, ** p < 0.01; Scale bar = 10 µm; ↑ represents nuclear invaginations; ˆ represents
nuclear inclusions. DM1—myotonic dystrophy type 1; LAP1—lamin-associated polypeptide 1; SEM—
standard error of the mean.
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Following the assessment of nuclear lamins and inner nuclear membrane proteins, 
we carried on with the evaluation of two important outer nuclear membrane proteins, 
namely nesprin-1 and nesprin-2. SUN1, nesprin-1 and nesprin-2 are the core components 
of the linker of nucleoskeleton and cytoskeleton (LINC) complex and were therefore eval-
uated [29]. 

Regarding nesprin-1, a statistically significant decrease in nesprin-1 intracellular pro-
tein levels was observed in DM1_1000 (p = 0.0179) and DM1_2000 (p = 0.0129) patient-
derived fibroblasts in relation to the control fibroblasts (Figure 7A). Concerning nesprin-
2, the results showed a significant decrease in the protein intracellular levels in DM1_2000 
patient-derived fibroblasts when compared to the control fibroblasts (p = 0.0059) (Figure 
7B). 

Figure 6. Intracellular protein levels of SUN1 in DM1 patient-derived and control fibroblasts. The
intracellular protein levels in DM1 patient-derived fibroblasts were estimated in relation to protein
levels detected in the control condition and are presented as mean ± SEM of three independent
experiments. Ponceau S staining was used to assess gel loading. The statistical analysis was performed
using one-way ANOVA followed by Tukey’s multiple comparison test to compare between DM1_1000,
DM1_2000 and the control groups. ** p < 0.01; DM1—myotonic dystrophy type 1; SEM—standard
error of the mean; SUN—Sad1/Unc-84.
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Figure 7. Intracellular protein levels and nuclear localization of nesprin-1 in DM1 patient-derived
and control fibroblasts. (A) Intracellular nesprin-1 protein levels in DM1 patient-derived and control
fibroblasts. The intracellular protein levels in DM1 patient-derived fibroblasts were estimated in
relation to protein levels detected in the control condition and are presented as mean ± SEM of four
independent experiments. Ponceau S staining was used to assess gel loading. The statistical analysis
was performed using one-way ANOVA followed by Tukey’s multiple comparison test to compare
between DM1_1000, DM1_2000 and the control groups. * p < 0.05. (B) Intracellular nesprin-2 protein
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levels in DM1 patient-derived and control fibroblasts. The intracellular protein levels in DM1 patient-
derived fibroblasts were estimated in relation to protein levels detected in the control condition
and are presented as mean ± SEM of four independent experiments. Ponceau S staining was used
to assess gel loading. The statistical analysis was performed using one-way ANOVA followed
by Tukey’s multiple comparison test to compare between DM1_1000, DM1_2000 and the control
groups. ** p < 0.01 (C) Subcellular distribution of nesprin-1 in DM1 patient-derived and control
fibroblasts was analysed using fluorescence microscopy. Nesprin-1 was detected using a specific
primary antibody and an anti-mouse Alexa-488-conjugated secondary antibody (green). Nucleic acids
were stained using DAPI (blue). Evaluation of nesprin-1 positive (D) nuclei with nuclear inclusions,
(E) nuclei with 1–2 or ≥3 nuclear inclusions, (F) deformed nuclei, (G) nuclear invaginations and
(H) mild or moderate nuclear invaginations. The quantitative data are presented as mean ± SEM
and were obtained by analysing 50 cells per condition from four independent experiments. The
statistical analysis was performed using one-way ANOVA followed by Dunnett’s test to compare
between DM1_1000, DM1_2000 and the control groups. * p < 0.05, ** p < 0.01; Scale bar = 10 µm;
↑ represents nuclear invaginations; ˆ represents nuclear inclusions. DM1—myotonic dystrophy type
1; SEM—standard error of the mean.

Regarding the intracellular protein levels of lamin A/C, an increase was observed
in the DM1 patient-derived fibroblasts DM1_1000 and DM1_2000 (p = 0.0058) in relation
to the control fibroblasts, which was more pronounced in fibroblasts with higher CTG
repeat length (Figure 3A). The results also demonstrated that lamin A/C was located in
the NE and nucleoplasm, and an increase in lamin A/C immunolabelling in DM1 patient-
derived fibroblasts was observed (Figure 3B). The increase in the percentage of lamin
A/C-positive nuclear inclusions in DM1 patient-derived fibroblasts was evident, with a
significant alteration being observed between DM1_2000 and control fibroblasts (p = 0.0254)
(Figure 3C). The number of DM1 patient-derived fibroblasts’ nuclei with three or more
inclusions (≥3) was significantly different between the DM1_2000 and control fibroblasts
(p = 0.0012) (Figure 3D).

Concerning deformed nuclei, the DM1 patient-derived fibroblasts showed more lamin
A/C-positive deformations than the control fibroblasts, with this increase being significant
between the DM1_2000 and control fibroblasts (p = 0.0328) (Figure 3E). Regarding nu-
clear invaginations, DM1_1000 and DM1_2000 fibroblasts had a higher number of nuclear
invaginations than the controls, with this difference being significant in the DM1_2000
fibroblasts in comparison to the control (p = 0.033) (Figure 3F). The patient-derived fi-
broblasts (DM1_2000) also demonstrated a significant increase in the number of moderate
invaginations compared to the control fibroblasts (p = 0.0014) (Figure 3G).

Upon nuclear lamina evaluation, several important alterations were observed in type
A lamins, indicating that the NE structure and function could be compromised. Therefore,
the subsequent analysis of their functional partners was of paramount importance. The
intracellular protein levels of emerin remained apparently unchanged in DM1 patient-
derived fibroblasts when compared with control fibroblasts (Figure 4A). Furthermore,
our results also demonstrated that emerin was located not only in the NE but also in the
nucleoplasm, in which the nuclear inclusions were more evident and in higher number in
DM1 patient-derived fibroblasts (Figure 4B–D).

Additionally, the DM1 patient-derived fibroblasts that were immunolabeled for emerin
presented a higher percentage of deformed nuclei than the control fibroblasts (DM1_1000
vs. control: p = 0.0245; DM1_2000 vs. control: p = 0.0032) (Figure 4E). The results also
showed that the DM1_1000 (p = 0.0040) and DM1_2000 (p = 0.0026) fibroblasts presented
a significantly higher number of nuclei with invaginations than the controls (Figure 4F).
The DM1 patient-derived fibroblasts showed a significant increase in mild (DM1_1000 vs.
control: p = 0.0033; DM1_2000 vs. control: p = 0.0062) and moderate (DM1_2000 vs. control:
p = 0.0089) invaginations when compared with control-derived fibroblasts (Figure 4G).
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LAP1 is another important inner nuclear membrane (INM) protein, belonging to a
dynamic and complex network of interactions spanning the perinuclear space and connect-
ing the nuclear lamina, the NE, the cytoskeleton and nucleoskeleton. At least two human
LAP1 isoforms are known, namely LAP1B and LAP1C [25,26]. LAP1 interacts with several
proteins relevant to this study, such as nuclear lamins and emerin [27,28].

The intracellular protein levels of total LAP1 as well as individual LAP1B and LAP1C
isoforms were increased in DM1 patient-derived fibroblasts. Furthermore, this alteration
seems to be correlated with CTG repeat length, being statistically significant between
DM1_2000 patient-derived fibroblasts and control fibroblasts (total LAP1: p = 0.0302;
LAP1B: p = 0.0137; LAP1C: p = 0.0210) (Figure 5A). Our results also showed that LAP1
was not only located in the NE, and an immunostaining of the NE and nucleoplasm was
observed in DM1 patient-derived fibroblasts (Figure 5B). However, the number of nuclear
inclusions in fibroblasts derived from patients with DM1 were identical (Figure 5C). When
analysing the two established categories, it was observed that cells with one and two
inclusions tended to decrease in patients with DM1_1000 and DM1_2000 (p = 0.0310) when
compared to the control fibroblasts. Concomitantly, the presence of three or more nuclear
inclusions was significantly increased in DM1_2000 fibroblasts when compared to the
control (p = 0.0472) (Figure 5D).

The percentage of LAP1-positive deformed nuclei in DM1 patient-derived fibroblasts
tended to be higher than in the control fibroblasts, and this increase was more pronounced in
fibroblasts with a higher CTG repeat length (DM1_2000 vs. control: p = 0.0301) (Figure 5E).
However, most deformities observed in LAP1 positive nuclei in patient-derived fibroblasts
tended to be mild (Figure 5G).

SUN1 was another protein evaluated from the inner nuclear membrane There was a
significant increase in the intracellular protein levels of SUN1 in fibroblasts from patients
with DM1_1000 (p = 0.0082) compared to the control fibroblasts (Figure 6).

Following the assessment of nuclear lamins and inner nuclear membrane proteins,
we carried on with the evaluation of two important outer nuclear membrane proteins,
namely nesprin-1 and nesprin-2. SUN1, nesprin-1 and nesprin-2 are the core components
of the linker of nucleoskeleton and cytoskeleton (LINC) complex and were therefore
evaluated [29].

Regarding nesprin-1, a statistically significant decrease in nesprin-1 intracellular pro-
tein levels was observed in DM1_1000 (p = 0.0179) and DM1_2000 (p = 0.0129) patient-
derived fibroblasts in relation to the control fibroblasts (Figure 7A). Concerning nesprin-2,
the results showed a significant decrease in the protein intracellular levels in DM1_2000
patient-derived fibroblasts when compared to the control fibroblasts (p = 0.0059) (Figure 7B).

Regarding immunocytochemistry, this study demonstrated the NE and nucleoplasm
localization of nesprin-1 in DM1 patient-derived fibroblasts (Figure 7C). The results demon-
strated an increase in the number of nesprin 1-nuclear inclusions in DM1 patient-derived
fibroblasts, being statistically significant between DM1_2000 and control (p = 0.0226)
(Figure 7D). When we analysed the inclusions by groups, we found that cells with greater
than 3 nuclear inclusions tended to increase in DM1 patient-derived fibroblasts when
compared to the control-derived fibroblasts (DM1_1000 vs. control, p = 0.0281; DM1_2000
vs. control, p = 0.0002) (Figure 7E).

Taking into consideration the nuclear deformity, the DM1-derived fibroblast nuclei
were significantly more deformed than the control nuclei (DM1_1000 vs. control: p = 0.0280;
DM1_2000 vs. control: p = 0.0287) (Figure 7F). Regarding nesprin-1 positive nuclear
invaginations, DM1_1000 (p = 0.0280) and DM1_2000 (p = 0.0106) patient-derived fibroblasts
presented a percentage of nuclei with invaginations significantly superior to the control
fibroblasts (Figure 7G). When we distinguished between mild and moderate invaginations,
there was an increase in both in patients, which was significant between the control and
DM1_2000 for mild (p = 0.0498) and moderate invaginations (p = 0.044) (Figure 7H).
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3. Discussion

In this study, we demonstrated that DM1 patient-derived fibroblast nuclei presented
with an aberrant nuclear morphology. Further, alterations in NE proteins, namely DMPK,
lamin A/C, emerin, LAP1, SUN1, nesprin-1 and nesprin-2, were observed (Figures 1–7).
Our results showed decreased DMPK intracellular protein levels in DM1 patient-derived
fibroblasts (Figure 1). Since the DMPK protein is encoded by the DMPK gene, which is
abnormally expanded in the 3′UTR region in DM1, these mutant transcripts with abnormal
CUG expansions are not efficiently transported to the cytoplasm and accumulate in cell
nuclei; therefore, they are not translated into protein [6,10,23,30,31]. Thus, intracellular
protein levels of DMPK are reduced in patients with DM1, regardless of the length of
the CTG repeat, as shown in Figure 1. This result was particularly important given that
alterations in DMPK protein levels in DM1 patient-derived fibroblasts have not been
previously reported.

The nuclear architectural alterations, namely nuclear deformation, the number of
micronuclei, crossed diameter ratio and nuclear area, were increased in DM1 patient-
derived fibroblasts when compared to control fibroblasts, suggesting that these alterations
represent relevant features in DM1 (Figure 2). The expanded RNA in DM1 patient-derived
fibroblasts may explain the changes in nuclear integrity, since the expanded mutant RNA
exerts an action on chromatin dynamics by remodelling [32] and changing the positioning
of nucleosomes [33–35]. One of the effects of these conformational changes in chromatin
is a decrease in autointegration barrier factor (BAF) availability in cells as a consequence
of BAF downregulation [36]. In addition, our results regarding DM1 patient-derived
fibroblasts revealed a large number of cells with micronuclei (Figure 2C), which may be
due to errors in the NE reassembly process after cell division, since an altered reassembly
of NE accompanied by the abnormal incorporation of chromosomes may result in the
encapsulation of separate and smaller genetic material (i.e., a micronucleus) [37]. Further,
BAF deletion has been associated with defects in NE reassembly [37]. This transcription
factor interacts with the NE proteins emerin, MAN1, LAP2 and lamin A/C [38–40]. Thus,
the expanded mutant RNA and BAF interference with these NE proteins may explain the
increased growth of deformed nuclei and micronuclei in DM1 patient-derived fibroblasts.
Furthermore, it has also been suggested that the linker of nucleoskeleton and cytoskeleton
(LINC) complex dampens forces in the NE while preserving nuclear morphology and
constraining nuclear expansion, while also being involved in the nuclear positioning and
disassembly process of the NE during mitosis [41–44]. Therefore, alterations in the LINC
complex (such as the decrease in intracellular levels of nesprins and the increase in SUN1)
may be responsible for the altered localization of nuclei in the cells and the increase in the
nuclear area in fibroblasts derived from patients with DM1 [45], which is in accordance
with our results regarding nesprins and SUN1protein levels.

In our study, a nuclear lamina protein was also evaluated, namely lamin A/C, which
demonstrated increased intracellular levels, localization in the NE and in the nucleoplasm,
and nuclear deformations in DM1 patient-derived fibroblasts (Figure 3). This may be
correlated with the significantly decreased levels of DMPK protein observed in DM1
patient-derived fibroblasts, since according to a previous study, [46] DMPK seems to
be essential in maintaining the stability of NE and strict regulation of DMPK levels is
absolutely necessary to stabilize NE structure. Nonetheless, more studies are needed to
decipher the role of increased lamin A/C in DM1, and to understand if the increase in lamin
A/C intracellular protein levels is an attempt to stabilize the nuclear structure. Regarding
the nuclear deformations observed, they may be due to a deregulation of the chromatin
organization caused by the abnormal expansion of the CTG repeat. Furthermore, lamin
A/C, as well as emerin, are NE proteins that regulate the organization of chromatin, and
this regulation is essential for normal cell functioning. However, chromatin can undergo
changes in its organization due to DNA damage [47]. When this damage occurs, the cells
stop to proliferate and consequently enter into senescence, forming foci of heterochromatin
in cell nuclei [48,49]. In the case of DM1, the abnormal expansion of the CTG repeat
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may have a role in the alteration of the subcellular localization of lamin A/C, and in the
higher number of nuclear inclusions and deformations in DM1 patient-derived fibroblasts,
leading to chromatin dysregulation and consequently the formation of heterochromatin
foci associated with senescence.

The results regarding the three inner nuclear membrane proteins, namely emerin,
LAP1 and SUN1, were also interesting. Concerning emerin protein levels, no significant
differences between DM1 patient-derived and control fibroblasts were observed (Figure 4A).
In addition, we found that emerin in DM1-patients’ nuclei was located at the NE and in
the nucleoplasm, accompanied by an increase in the number of inclusions and nuclear
deformations (Figure 4B–G). Our results are in agreement with a previous study that also
used DM1 fibroblasts as a cell model [20]. The fact that our results did not demonstrate
changes in intracellular emerin levels leads us to speculate that the structural changes
observed in the nucleus are not correlated with emerin intracellular protein levels, but
rather are associated with a destabilized nuclear lamina and other NE proteins. Inter-
estingly, it was previously reported that a destabilized nuclear lamina leads to greater
nuclear fragility [50,51], resulting in an increase in deformed nuclei, nuclear breaks ac-
companied by abnormal chromatin organization and chromatin extrusion [51,52]. LAP1,
to our knowledge, has not been previously evaluated in DM1. Our study demonstrated
that total LAP1 intracellular levels are increased in DM1 patient-derived fibroblasts, and
this increase seems to be correlated with the number of CTG repeat length (Figure 5A).
In addition, we observed an incorrect localization of the protein, an increase in nuclear
inclusions, and deformed nuclei (Figure 5B–G). LAP1 has been associated with processes
regulating the development and maintenance of skeletal muscle and the integrity of the
NE [53–55]. However, the cause that leads to the increase in this protein was not determined
and should be addressed in future studies. Furthermore, LAP1 and torsinA interact with
each other, and LAP1 stimulates torsinA activity as an ATPase AAA+ [56]. Both proteins
have been identified as mediators of the assembly of the LINC complex and are respon-
sible for the localization of nesprins in the NE [57–60]. Thus, torsinA and LAP1 belong
to a dynamic network of interactions that connect the nuclear lamina, the NE and the
cytoskeleton [57,58,61]. Thus, the altered localization of LAP1 and the increase in deformed
nuclei observed in our study may be associated with an abnormal positioning of the nuclei
and/or nuclear deformations resulting from the mechanical stress exerted on cells that
have a weakened NE due to alterations in the nuclear lamina and proteins of the LINC
complex. In turn, SUN1 is responsible for locating torsinA in the NE [58,60] and is involved
in the connection of the nucleoplasm with the cytoskeleton, in nuclear anchorage and in
nuclear migration [62–64]. Our results demonstrated an increase in SUN1 intracellular
levels in DM1 patient-derived fibroblasts when compared to control fibroblasts (Figure 6).
Mutations in SUN1 (with decreased levels of intracellular protein) have been associated
with EMD, which is histologically manifested by the alteration of nuclear position and,
consequently, the degradation of muscle function [65]. Given the alterations in lamin A/C
location reported in DM1, SUN1 may be increased due to the impossibility of interacting
with lamin A/C, mimicking what occurs in mutated lamin A HGPS fibroblasts and thus
sharing mechanisms with other laminopathies. This hypothesis is reinforced by previous
results showing that myoblasts from DM1 patients with positive nuclei labeled for SUN1
did not present changes in the localization of this protein [22]. However, it should be noted
that these myoblasts and the cells used in this study are distinct models and the results
may differ; thus, further studies will be needed to evaluate this hypothesis.

Finally, the two evaluated outer nuclear membranes proteins, namely nesprin-1 and
nesprin-2, showed decreased intracellular levels in DM1 patient-derived fibroblasts. This
result is in accordance with previous studies using myoblasts and myotubes from patients
with DM1, where a tendency for nesprin-1 and -2 to decrease with an increasing number of
CTG repeats was reported [22]. We also found that positive nuclei labeled for nesprin-1
showed an altered protein localization, increased number of deformed nuclei and increased
number of nuclear inclusions (Figure 7C–H). It was also previously reported that some
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muscular dystrophies associated with mutations in both SYNE-1 and SYNE-2, the genes
encoding nesprin-1 and nesprin-2, respectively, are characterized by abnormal nuclear
morphology, micronuclei and fragmented nuclei [15,66], similar to what we observed in
our results. These changes are usually due to an incorrect localization of the LINC complex
proteins (nesprins and SUN 1/2) or their interactors (lamin A/C) [15,67,68]. Low intracel-
lular levels of nesprins result in a defective interaction of LINC complex proteins and/or
complex-associated proteins (for example, emerin, LAP1 and lamin A/C) with nuclear
actin. With this function impaired, nuclear positioning, NE architecture, gene expression
and maintenance of muscle fibers in patients with muscle diseases are affected [69]. There-
fore, the decrease in nesprin-1 intracellular protein levels might be related to the structural
changes in the NE (deformed nuclei and nuclear inclusions) observed in our study.

Our results strengthen the hypothesis that NE dysfunction is an important contributor
to DM1. Therefore, the identification of the signaling events underlying the NE dysfunction
will be of extreme importance for the identification of novel molecular targets for DM1.

4. Materials and Methods
4.1. Human Samples

Fibroblasts derived from skin biopsies of adult male DM1 donors with different
numbers of CTG repeats, and from a healthy control subject, were obtained from the Coriell
Institute for Medical Research, Newark, NJ, USA. The clinically affected patients’ cell
lines selected for this study included two cell lines with approximately 1000 CTG repeats,
referred to as DM1_1000 (1) (GM04033) and DM1_1000 (2) (GM04647), and two cell lines
with approximately 2000 CTG repeats, designated DM1_2000 (1) (GM03759) and DM1_2000
(2) (GM03989). The DM1 patient-derived fibroblasts with approximately 1000 and 2000
CTG repeat lengths represented the adult and congenital phenotypes, respectively. In turn,
the control cell line used in this study comprised between 5 and 27 CTG repeats (GM02673).

4.2. Cell Culture

Fibroblast cultures were maintained in T75 flasks with Dulbecco’s Modified Eagle
Medium (DMEM; Gibco, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with
15% fetal bovine serum (FBS; GibcoTM), at 37 ◦C in a humidified atmosphere with 5% CO2.
The medium was changed every other day and all washes performed using Dulbecco’s
phosphate buffered saline (PBS; Thermo Scientific, Thermo Fisher Scientific, Waltham, MA,
USA). Whenever fibroblast cultures reached a confluence of 80–90%, they were subcultured
using 0.05% trypsin-EDTA, plated in complete medium and maintained at 37 ◦C in a CO2
incubator [70].

4.3. Antibodies

The list of primary and secondary antibodies used for Western blotting and immuno-
cytochemistry is summarized in Table 1.

4.4. Immunoblotting

Fibroblast cultures were grown in T75 flasks until they reached a confluence of 80–90%.
Cell lysates were collected in 1% sodium dodecyl sulphate (SDS) and boiled at 90 ◦C
for 10 min. The total protein content was quantified using Pierce’s bicinchoninic acid
(BCA) protein assay kit (Thermo Scientific, Thermo Fisher Scientific, Waltham, MA, USA).
Protein samples were separated on a 5–20% SDS-PAGE gradient gel and electrotransferred
onto nitrocellulose membranes. Reversible staining of nitrocellulose membranes with
Ponceau S (Sigma-Aldrich, Saint Louis, MO, USA), followed by scanning in a calibrated
image densitometer GS-800 (Bio-Rad, San Jose, CA, USA) was performed to assess gel
loading [73,74].
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Table 1. Primary antibodies used to detect the multiple proteins analyzed by Western blotting and
immunocytochemistry.

Antibody Company Dilution

Mouse monoclonal anti-lamin A/C (4777T) Cell Signaling Technology WB—1:4000
ICC—1:250

Rabbit polyclonal anti-LAP1 (ICC: HPA050546) Provided by Dr. Dauer [71] WB—1:20,000

Atlas Antibodies ICC—1:150

Mouse monoclonal anti-emerin (sc-25284) Santa Cruz Biotechnology WB—1:1000
ICC—1:500

Rabbit polyclonal anti-SUN1 Provided by Ya-Hui Chi [72] WB—1:2000

Mouse monoclonal anti-nesprin-1 (MANNES1E 8C3) Developmental Studies Hybridoma Bank WB—0.4 µg/mL
ICC—1.5 µg/mL

Mouse monoclonal anti-nesprin-2 (MANNES2A 11A3) Developmental Studies Hybridoma Bank WB—0.3 µg/mL

Mouse monoclonal anti-DMPK (MANDM1 6G8) Developmental Studies Hybridoma Bank WB—0.2 ug/mL

Alexa Fluor 488-conjugated goat anti-mouse IgG (A-11001) Invitrogen ICC—1:300

Alexa Fluor 594-conjugated goat anti-rabbit IgG (A-11012) Invitrogen ICC—1:300

HRP-linked horse anti-mouse IgG (7076) Cell Signaling Technology WB—1:10,000

HRP-linked goat anti-rabbit IgG (7074) Cell Signaling Technology WB—1:10,000

WB, Western Blotting; ICC, Immunocytochemistry.

For immunoblotting analysis of target proteins, upon blocking in 5% bovine serum
albumin (BSA; Nzytech, Lisbon, Portugal)/1× Tris-buffered saline with 0.1% Tween-20 (TBS-
T) for 3 h, the membranes were incubated with the primary antibodies (Table 1) in 3%
BSA/1× TBS-T for 2 h at room temperature, followed by overnight incubation at 4 ◦C. On
the next day, the membranes were incubated with the appropriate HRP-conjugated secondary
antibody (Table 1) in 5% fat-free dry milk/1× TBS-T for 2 h at room temperature. For the
detection of target proteins, the enhanced chemioluminescence ECL™ Select Western blotting
detection reagent (GE Healthcare, Waukesha, WI, USA) was used, and immunoblots were
scanned in a ChemiDoc imaging system (Bio-Rad, Hercules, CA, USA) [27].

The quantification of intracellular protein levels was achieved with ImageLab software
(Bio-Rad, Hercules, CA, USA), and Ponceau S staining was used as a protein loading control
for data normalization [27]. Relative protein levels were calculated by comparing the DM1
patients’ samples with the control samples.

4.5. Immunocytochemistry

Fibroblasts were plated in 6-well plates containing glass coverslips (Corning, New
York, NY, USA) at a cell density of 75,000 cells/well for 24 h. Then, cells were fixed using
4% paraformaldehyde for 20 min and permeabilized with 0.2% Triton X-100/1× PBS for
10 min. After blocking with 3% BSA/1× PBS for 1 h, the cells were incubated with specific
primary antibodies (Table 1) in 3% BSA/1× PBS for 2 h at room temperature, followed by
incubation with the appropriate secondary antibody (Table 1) in 3% BSA/1× PBS for 1 h in
the dark. The coverslips were mounted on a microscope slide using Vectashield® mounting
medium with 4′,6-diamidino-2-phenolyde (DAPI) (Vector Laboratories, Burlingame, CA,
USA) [27,74]. Image acquisition was performed using an epifluorescence microscopy
Zeiss AxioImager Z1 (Zeiss, Jena, Germany) motorized microscope equipped with a Plan-
ApoCHROMAT 63×/1.4 oil objective lens. Microphotograph images were taken with a
digital AxioCam HR3 (soft imaging system).

4.5.1. Morphological Analysis

Two hundred nuclei from each cell line were analyzed. From the morphological
point of view, the nuclear form and the number of nuclear inclusions were evaluated.
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The number of nuclear inclusions was assessed globally and by categories (1–2 inclu-
sions and ≥3 inclusions). Nuclei were considered normal when they presented a typical
ring-shaped immunostaining pattern for NE proteins or an ellipsoid shape when stained
with DAPI. In turn, nuclei were considered deformed when they presented nuclear alter-
ations/deformations, such as invaginations, blebs, lobes and micronuclei. Additionally,
deformed nuclei were subdivided into two different categories according to the presence
of mild invaginations (very soft deformations observed) or moderate invaginations (se-
vere deformations observed). Representative images of mild (Figure 3; DM1_2000) and
moderate (Figure 5; DM1_2000) invaginations are presented.

4.5.2. Morphometric Analysis

For morphometric analysis, four hundred nuclei from each cell line were evaluated.
Quantitative analyses of the circularity ((4π × area)/perimeter2), nuclear area and crossed
diameter ratio (length/width) were performed automatically using Fiji/ImageJ software.

4.6. Statistical Analysis

Statistical analysis was conducted using the GraphPad Prism 9 software (GraphPad
Software, San Diego, CA, USA) and data were analyzed using one-way ANOVA followed
by Tukey’s multiple comparison test. Quantitative data were presented as mean± standard
error of the mean (SEM) of, at least, three independent experiments. Values of p < 0.05 were
considered statistically significant.

5. Conclusions

In summary, our results clearly demonstrate that nuclear profile and nuclear envelope
proteins are altered in DM1-patient derived fibroblasts. Concerning the nuclear profile,
increased nuclear area, a high number of deformed nuclei and the high presence of mi-
cronuclei were the most prominent alterations observed in DM1 patient-derived fibroblasts.

Regarding the NE protein alterations, the protein levels of lamin A/C, LAP1 and SUN1
were increased, while the levels of emerin and nesprin-1/nesprin-2 remained unaltered
and decreased, respectively. Additionally, the results showed an altered localization of
these NE proteins, accompanied by the presence of nuclear deformations, including blebs,
lobes and/or invaginations that were well correlated with the structural differences in the
nuclei observed in DM1-derived fibroblasts.

Our study has strengthened the hypothesis that changes in the NE are important
hallmarks of DM1 and supports further studies and the exploitation of NE dysfunction in
DM1 as a target for the development of DM1 therapies.

Author Contributions: D.V. performed the investigation, collected all the information and analysis,
developed the tables and figures, and developed the initial draft. C.D.P. and S.R. provided analysis
and conceptualization, extensive edits, and reviewed the manuscript. S.R. also provided resources
and supervision. F.M., T.M., O.A.B.d.C.e.S. and M.T.H. revised and edited the manuscript. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Fundação para a Ciência e a Tecnologia (FCT) through the
Institute of Biomedicine (iBiMED)—UIDB/04501/2020/UIDP/04501/2020 and by the MEDISIS
project (CENTRO-01-0246-FEDER-000018). Image acquisition was performed in the LiM facility of
iBiMED, a node of PPBI (Portuguese Platform of BioImaging): POCI-01-0145-FEDER-022122.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Int. J. Mol. Sci. 2022, 23, 522 18 of 20

References
1. Brook, J.D.; McCurrach, M.E.; Harley, H.G.; Buckler, A.J.; Church, D.; Aburatani, H.; Hunter, K.; Stanton, V.P.; Thirion, J.-P.;

Hudson, T.; et al. Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript
encoding a protein kinase family member. Cell 1992, 68, 799–808. [CrossRef]

2. Ranum, L.P.; Day, J.W. Myotonic Dystrophy: RNA Pathogenesis Comes into Focus. Am. J. Hum. Genet. 2004, 74, 793–804.
[CrossRef]

3. DE Antonio, M.; Dogan, C.; Hamroun, D.; Mati, M.; Zerrouki, S.; Eymard, B.; Katsahian, S.; Bassez, G. Unravelling the myotonic
dystrophy type 1 clinical spectrum: A systematic registry-based study with implications for disease classification. Rev. Neurol.
2016, 172, 572–580. [CrossRef]

4. Yum, K.; Wang, E.T.; Kalsotra, A. Myotonic dystrophy: Disease repeat range, penetrance, age of onset, and relationship between
repeat size and phenotypes. Curr. Opin. Genet. Dev. 2017, 44, 30–37. [CrossRef]

5. Tomé, S.; Gourdon, G. DM1 Phenotype Variability and Triplet Repeat Instability: Challenges in the Development of New
Therapies. Int. J. Mol. Sci. 2020, 21, 457. [CrossRef]

6. Mateus, T.; Martins, F.; Nunes, A.; Herdeiro, M.T.; Rebelo, A.S. Metabolic Alterations in Myotonic Dystrophy Type 1 and Their
Correlation with Lipin. Int. J. Environ. Res. Public Health 2021, 18, 1794. [CrossRef]

7. Mahadevan, M.; Tsilfidis, C.; Sabourin, L.; Shutler, G.; Amemiya, C.; Jansen, G.; Neville, C.; Narang, M.; Barceló, J.; O’Hoy, K.;
et al. Myotonic Dystrophy Mutation: An Unstable CTG Repeat in the 3′ Untranslated region of the Gene. Science 1992, 255,
1253–1255. [CrossRef]

8. van Herpen, R.E.M.A.; Ophuis, R.O.; Wijers, M.; Bennink, M.B.; van de Loo, F.A.J.; Fransen, J.; Wieringa, B.; Wansink, D.G.
Divergent Mitochondrial and Endoplasmic Reticulum Association of DMPK Splice Isoforms Depends on Unique Sequence
Arrangements in Tail Anchors. Mol. Cell. Biol. 2005, 25, 1402–1414. [CrossRef] [PubMed]

9. Wansink, D.G.; van Herpen, R.E.M.A.; Coerwinkel-Driessen, M.M.; Groenen, P.J.T.A.; Hemmings, B.A.; Wieringa, B. Alternative
Splicing Controls Myotonic Dystrophy Protein Kinase Structure, Enzymatic Activity, and Subcellular Localization. Mol. Cell. Biol.
2003, 23, 5489–5501. [CrossRef] [PubMed]

10. Philips, A.; Lubov, T.; Timchenko, T.; Al, E. Disruption of Splicing Regulated by a CUG-Binding Protein in Myotonic Dystrophy.
Science 1998, 180, 737–740. [CrossRef] [PubMed]

11. Alwazzan, M.; Newman, E.; Hamshere, M.G.; Brook, J.D. Myotonic dystrophy is associated with a reduced level of RNA from the
DMWD allele adjacent to the expanded repeat. Hum. Mol. Genet. 1999, 8, 1491–1497. [CrossRef]

12. Lee, J.E.; Cooper, T.A. Pathogenic mechanisms of myotonic dystrophy. Biochem. Soc. Trans. 2009, 37, 1281–1286. [CrossRef]
13. Folker, E.S.; Baylies, M.K. Nuclear positioning in muscle development and disease. Front. Physiol. 2013, 4, 363. [CrossRef]
14. Wheeler, M.A.; Davies, J.D.; Zhang, Q.; Emerson, L.J.; Hunt, J.; Shanahan, C.; Ellis, J.A. Distinct functional domains in nesprin-1α

and nesprin-2β bind directly to emerin and both interactions are disrupted in X-linked Emery–Dreifuss muscular dystrophy. Exp.
Cell Res. 2007, 313, 2845–2857. [CrossRef]

15. Zhang, Q.; Bethmann, C.; Worth, N.F.; Davies, J.D.; Wasner, C.; Feuer, A.; Ragnauth, C.D.; Yi, Q.; Mellad, J.A.; Warren, D.T.; et al.
Nesprin-1 and -2 are involved in the pathogenesis of Emery–Dreifuss muscular dystrophy and are critical for nuclear envelope
integrity. Hum. Mol. Genet. 2007, 16, 2816–2833. [CrossRef]

16. Zu, T.; Gibbens, B.; Doty, N.S.; Gomes-Pereira, M.; Huguet, A.; Stone, M.D.; Margolis, J.; Peterson, M.; Markowski, T.W.; Ingram,
M.A.C.; et al. Non-ATG–initiated translation directed by microsatellite expansions. Proc. Natl. Acad. Sci. USA 2011, 108, 260–265.
[CrossRef]

17. Gueneau, L.; Bertrand, A.; Jais, J.-P.; Salih, M.; Stojkovic, T.; Wehnert, M.; Hoeltzenbein, M.; Spuler, S.; Saitoh, S.; Verschueren, A.;
et al. Mutations of the FHL1 Gene Cause Emery-Dreifuss Muscular Dystrophy. Am. J. Hum. Genet. 2009, 85, 338–353. [CrossRef]
[PubMed]

18. Hatch, E.; Hetzer, M. Breaching the nuclear envelope in development and disease. J. Cell Biol. 2014, 205, 133–141. [CrossRef]
[PubMed]

19. Michael, L.W. The Nuclear Envelope its Structure and Relation to Cytoplasmic Membranes. J. Biophys. Biochem. Cytol. 1955, 1,
257–270. Available online: http://www.ncbi.nlm.nih.gov/pubmed/13242591 (accessed on 10 November 2021).

20. Rodriguez, R.; Hernández-Hernández, O.; Magaña, J.J.; González-Ramírez, R.; García-López, E.S.; Cisneros, B. Altered nuclear
structure in myotonic dystrophy type 1-derived fibroblasts. Mol. Biol. Rep. 2014, 42, 479–488. [CrossRef]

21. Meinke, P.; Hintze, S.; Limmer, S.; Schoser, B. Myotonic Dystrophy—A Progeroid Disease? Front. Neurol. 2018, 9. [CrossRef]
22. Hintze, S.; Knaier, L.; Limmer, S.; Schoser, B.; Meinke, P. Nuclear envelope transmembrane proteins in myotonic dystrophy type.

Front. Physiol. 2018, 9, 1532. [CrossRef]
23. Furling, D.; Lemieux, D.; Taneja, K.; Puymirat, J. Decreased levels of myotonic dystrophy protein kinase (DMPK) and delayed

differentiation in human myotonic dystrophy myoblasts. Neuromuscul. Disord. 2001, 11, 728–735. [CrossRef]
24. Pienta, K.J.; Getzenberg, R.H.; Coffey, D.S. Characterization of Nuclear Morphology and Nuclear Matrices in Ageing Human

Fibroblasts. Mech. Ageing Dev. 1992, 62, 13–24. [CrossRef]
25. Kondo, Y.; Kondoh, J.; Hayashi, D.; Ban, T.; Takagi, M.; Kamei, Y.; Tsuji, L.; Kim, J.; Yoneda, Y. Molecular cloning of one isotype of

human lamina-associated polypeptide 1s and a topological analysis using its deletion mutants. Biochem. Biophys. Res. Commun.
2002, 294, 770–778. [CrossRef]

http://doi.org/10.1016/0092-8674(92)90154-5
http://doi.org/10.1086/383590
http://doi.org/10.1016/j.neurol.2016.08.003
http://doi.org/10.1016/j.gde.2017.01.007
http://doi.org/10.3390/ijms21020457
http://doi.org/10.3390/ijerph18041794
http://doi.org/10.1126/science.1546325
http://doi.org/10.1128/MCB.25.4.1402-1414.2005
http://www.ncbi.nlm.nih.gov/pubmed/15684391
http://doi.org/10.1128/MCB.23.16.5489-5501.2003
http://www.ncbi.nlm.nih.gov/pubmed/12897125
http://doi.org/10.1126/science.280.5364.737
http://www.ncbi.nlm.nih.gov/pubmed/9563950
http://doi.org/10.1093/hmg/8.8.1491
http://doi.org/10.1042/BST0371281
http://doi.org/10.3389/fphys.2013.00363
http://doi.org/10.1016/j.yexcr.2007.03.025
http://doi.org/10.1093/hmg/ddm238
http://doi.org/10.1073/pnas.1013343108
http://doi.org/10.1016/j.ajhg.2009.07.015
http://www.ncbi.nlm.nih.gov/pubmed/19716112
http://doi.org/10.1083/jcb.201402003
http://www.ncbi.nlm.nih.gov/pubmed/24751535
http://www.ncbi.nlm.nih.gov/pubmed/13242591
http://doi.org/10.1007/s11033-014-3791-4
http://doi.org/10.3389/fneur.2018.00601
http://doi.org/10.3389/fphys.2018.01532
http://doi.org/10.1016/S0960-8966(01)00226-7
http://doi.org/10.1016/0047-6374(92)90140-9
http://doi.org/10.1016/S0006-291X(02)00563-6


Int. J. Mol. Sci. 2022, 23, 522 19 of 20

26. Santos, M.; Domingues, S.C.; Costa, P.; Muller, T.; Galozzi, S.; Marcus, K.; Silva, E.F.D.C.E.; Silva, O.A.B.D.C.E.; Rebelo, S.
Identification of a Novel Human LAP1 Isoform That Is Regulated by Protein Phosphorylation. PLoS ONE 2014, 9, e113732.
[CrossRef] [PubMed]

27. Pereira, C.D.; Martins, F.; Santos, M.; Müeller, T.; Silva, O.A.B.D.C.E.; Rebelo, S. Nuclear Accumulation of LAP1:TRF2 Complex
During DNA Damage Response Uncovers a Novel Role for LAP1. Cells 2020, 9, 1804. [CrossRef] [PubMed]

28. Serrano, J.B.; Silva, O.A.B.D.C.E.; Rebelo, S. Lamina Associated Polypeptide 1 (LAP1) Interactome and Its Functional Features.
Membranes 2016, 6, 8. [CrossRef] [PubMed]

29. Pereira, C.D.; Serrano, J.B.; Martins, F.; da Cruz e Silva, O.A.B.; Rebelo, S. Nuclear envelope dynamics during mammalian
spermatogenesis: New insights on male fertility. Biol. Rev. 2019, 94, 1195–1219. [CrossRef]

30. Timchenko, N.A.; Cai, Z.-J.; Welm, A.L.; Reddy, S.; Ashizawa, T.; Timchenko, L.T. RNA CUG Repeats Sequester CUGBP1 and
Alter Protein Levels and Activity of CUGBP1. J. Biol. Chem. 2001, 276, 7820–7826. [CrossRef]

31. Theadom, A.; Rodrigues, M.; Roxburgh, R.; Balalla, S.; Higgins, C.; Bhattacharjee, R.; Jones, K.; Krishnamurthi, R.; Feigin, V.L.
Prevalence of Muscular Dystrophies: A Systematic Literature Review. Neuroepidemiology 2014, 43, 259–268. [CrossRef]

32. Brouwer, J.R.; Huguet, A.; Nicole, A.; Munnich, A.; Gourdon, G. Transcriptionally Repressive Chromatin Remodelling and CpG
Methylation in the Presence of Expanded CTG-Repeats at the DM1 Locus. J. Nucleic Acids 2013, 2013, 1–16. [CrossRef] [PubMed]

33. Tomita, N.; Fujita, R.; Kurihara, D.; Shindo, H.; Wells, R.D.; Shimizu, M. Effects of triplet repeat sequences on nucleosome
positioning and gene expression in yeast minichromosomes. Nucleic Acids Symp. Ser. 2002, 2, 231–232. [CrossRef]

34. Wang, Y.-H.; Amirhaeri, S.; Kang, S.; Wells, R.D.; Griffith, J.D. Preferential Nucleosome Assembly at DNA Triplet Repeats from
the Myotonic Dystrophy Gene. Science 1994, 265, 669–671. [CrossRef]

35. Wang, Y.-H.; Griffith, J. Expanded CTG triplet blocks from the myotonic dystrophy gene create the strongest known natural
nucleosome positioning elements. Genomics 1995, 25, 570–573. [CrossRef]

36. Polychronidou, M.; Hellwig, A.; Grosshans, J. Farnesylated Nuclear Proteins Kugelkern and Lamin Dm0 Affect Nuclear
Morphology by Directly Interacting with the Nuclear Membrane. Mol. Biol. Cell 2010, 21, 3409–3420. [CrossRef]

37. Ungricht, R.; Kutay, R.U.U. Mechanisms and functions of nuclear envelope remodelling. Nat. Rev. Mol. Cell Biol. 2017, 18, 229–245.
[CrossRef]

38. Lee, M.S.; Craigie, R. Protection of retroviral DNA from autointegration: Involvement of a cellular factor. Proc. Natl. Acad. Sci.
USA 1994, 91, 9823–9827. [CrossRef] [PubMed]

39. Lee, K.K.; Haraguchi, T.; Lee, R.S.; Koujin, T.; Hiraoka, Y.; Wilson, K.L. Distinct functional domains in emerin bind lamin A
and DNA-briging protein BAF. Cell Sci. 2001, 114, 4567–4573. Available online: https://pubmed.ncbi.nlm.nih.gov/11792821/
(accessed on 10 November 2021). [CrossRef]

40. D’Angelo, M.A.; Hetzer, M.W. The role of the nuclear envelope in cellular organization. Cell. Mol. Life Sci. 2006, 63, 316–332.
[CrossRef] [PubMed]

41. Koch, A.J.; Holaska, J.M. Emerin in health and disease. Semin. Cell Dev. Biol. 2013, 29, 95–106. [CrossRef] [PubMed]
42. Beaudouin, J.; Gerlich, D.W.; Daigle, N.; Eils, R.; Ellenberg, J. Nuclear Envelope Breakdown Proceeds by Microtubule-Induced

Tearing of the Lamina. Cell 2002, 108, 83–96. [CrossRef]
43. Salina, D.; Bodoor, K.; Eckley, D.M.; Schroer, T.; Rattner, J.; Burke, B. Cytoplasmic Dynein as a Facilitator of Nuclear Envelope

Breakdown. Cell 2002, 108, 97–107. [CrossRef]
44. Cantwell, H.; Nurse, P. Unravelling nuclear size control. Curr. Genet. 2019, 65, 1281–1285. [CrossRef]
45. Seaman, L.; Meixner, W.; Snyder, J.; Rajapakse, I. Periodicity of nuclear morphology in human fibroblasts. Nucleus 2015, 6, 408–416.

[CrossRef]
46. Harmon, E.B.; Harmon, M.L.; Larsen, T.D.; Yang, J.; Glasford, J.W.; Perryman, M.B. Myotonic Dystrophy Protein Kinase Is Critical

for Nuclear Envelope Integrity. J. Biol. Chem. 2011, 286, 40296–40306. [CrossRef]
47. Ranade, D.; Pradhan, R.; Jayakrishnan, M.; Hegde, S.; Sengupta, K. Lamin A/C and Emerin depletion impacts chromatin

organization and dynamics in the interphase nucleus. BMC Mol. Cell Biol. 2019, 20, 11. [CrossRef] [PubMed]
48. Pombo, A.; Dillon, N. Three-dimensional genome architecture: Players and mechanisms. Nat. Rev. Mol. Cell Biol. 2015, 16,

245–257. [CrossRef]
49. Rai, T.S.; Adams, P.D. Lessons from senescence: Chromatin maintenance in non-proliferating cells. Biochim. Biophys. Acta

(BBA)-Bioenerg. 2011, 1819, 322–331. [CrossRef] [PubMed]
50. Gotzmann, J.; Foisner, R.P. Lamins and Emerin in Muscular Dystrophy: The Nuclear Envelope Connection. Madame Curie

Bioscience Database. Available online: https://www.ncbi.nlm.nih.gov/books/NBK6513/#_NBK6513_pubdet_ (accessed on 27
November 2020).

51. Brady, G.F.; Kwan, R.; Cunha, J.B.; Elenbaas, J.S.; Omary, B. Lamins and Lamin-Associated Proteins in Gastrointestinal Health and
Disease. Gastroenterology 2018, 154, 1602–1619.e1. [CrossRef]

52. Holaska, J.; Wilson, K.L. Multiple roles for emerin: Implications for Emery-Dreifuss muscular dystrophy. Anat. Rec. Part A Discov.
Mol. Cell. Evol. Biol. 2006, 288, 676–680. [CrossRef]

53. Rebelo, S.; Silva, E.F.D.C.E.; Silva, O.A.D.C.E. Genetic mutations strengthen functional association of LAP1 with DYT1 dystonia
and muscular dystrophy. Mutat. Res. Mutat. Res. 2015, 766, 42–47. [CrossRef] [PubMed]

54. Shin, J.Y.; Méndez-López, I.; Wang, Y.; Hays, A.P.; Tanji, K.; Lefkowitch, J.H.; Dauer, W.T. Lamin-associated Polypeptide-1 Interacts
with the Muscular Dystrophy Protein Emerin and is Essential for Skeletal Muscle Maintenance. Cell 2013, 26, 591–603. [CrossRef]

http://doi.org/10.1371/journal.pone.0113732
http://www.ncbi.nlm.nih.gov/pubmed/25461922
http://doi.org/10.3390/cells9081804
http://www.ncbi.nlm.nih.gov/pubmed/32751253
http://doi.org/10.3390/membranes6010008
http://www.ncbi.nlm.nih.gov/pubmed/26784240
http://doi.org/10.1111/brv.12498
http://doi.org/10.1074/jbc.M005960200
http://doi.org/10.1159/000369343
http://doi.org/10.1155/2013/567435
http://www.ncbi.nlm.nih.gov/pubmed/24455202
http://doi.org/10.1093/nass/2.1.231
http://doi.org/10.1126/science.8036515
http://doi.org/10.1016/0888-7543(95)80061-P
http://doi.org/10.1091/mbc.e10-03-0230
http://doi.org/10.1038/nrm.2016.153
http://doi.org/10.1073/pnas.91.21.9823
http://www.ncbi.nlm.nih.gov/pubmed/7937898
https://pubmed.ncbi.nlm.nih.gov/11792821/
http://doi.org/10.1242/jcs.114.24.4567
http://doi.org/10.1007/s00018-005-5361-3
http://www.ncbi.nlm.nih.gov/pubmed/16389459
http://doi.org/10.1016/j.semcdb.2013.12.008
http://www.ncbi.nlm.nih.gov/pubmed/24365856
http://doi.org/10.1016/S0092-8674(01)00627-4
http://doi.org/10.1016/S0092-8674(01)00628-6
http://doi.org/10.1007/s00294-019-00999-3
http://doi.org/10.1080/19491034.2015.1095432
http://doi.org/10.1074/jbc.M111.241455
http://doi.org/10.1186/s12860-019-0192-5
http://www.ncbi.nlm.nih.gov/pubmed/31117946
http://doi.org/10.1038/nrm3965
http://doi.org/10.1016/j.bbagrm.2011.07.014
http://www.ncbi.nlm.nih.gov/pubmed/21839870
https://www.ncbi.nlm.nih.gov/books/NBK6513/#_NBK6513_pubdet_
http://doi.org/10.1053/j.gastro.2018.03.026
http://doi.org/10.1002/ar.a.20334
http://doi.org/10.1016/j.mrrev.2015.07.004
http://www.ncbi.nlm.nih.gov/pubmed/26596547
http://doi.org/10.1016/j.devcel.2013.08.012


Int. J. Mol. Sci. 2022, 23, 522 20 of 20

55. Shin, J.-Y.; Dauer, W.T.; Worman, H.J. Lamina-associated polypeptide 1: Protein interactions and tissue-selective functions. Semin.
Cell Dev. Biol. 2014, 29, 164–168. [CrossRef] [PubMed]

56. Starr, D.A.; Rose, L.S. TorsinA regulates the LINC to moving nuclei. J. Cell Biol. 2017, 216, 543–545. [CrossRef] [PubMed]
57. Fichtman, B.; Zagairy, F.; Biran, N.; Barsheshet, Y.; Chervinsky, E.; Ben Neriah, Z.; Shaag, A.; Assa, M.; Elpeleg, O.; Harel, A.; et al.

Combined loss of LAP1B and LAP1C results in an early onset multisystemic nuclear envelopathy. Nat. Commun. 2019, 10, 605.
[CrossRef]

58. Saunders, C.A.; Luxton, G.W.G. LINCing Defective Nuclear-Cytoskeletal Coupling and DYT1 Dystonia. Cell. Mol. Bioeng. 2016, 9,
207–216. [CrossRef]

59. Nery, F.C.; Zeng, J.; Niland, B.P.; Hewett, J.; Farley, J.; Irimia, D.; Li, Y.; Wiche, G.; Sonnenberg, A.; Breakefield, X.O. TorsinA
binds the KASH domain of nesprins and participates in linkage between nuclear envelope and cytoskeleton. J. Cell Sci. 2008, 121,
3476–3486. [CrossRef]

60. Burke, B. The nuclear envelope: Filling in gaps. Nat. Cell Biol. 2001, 3, E273–E274. [CrossRef]
61. Gill, N.K.; Ly, C.; Kim, P.H.; Saunders, C.A.; Fong, L.G.; Young, S.G.; Rowat, A.C. DYT1 dystonia patient-derived fibroblasts

have increased deformability and susceptibility to damage by mechanical forces. Front. Cell Dev. Biol. 2019, 7, 103. [CrossRef]
[PubMed]

62. Crisp, M.; Liu, Q.; Roux, K.; Rattner, J.B.; Shanahan, C.; Burke, B.; Stahl, P.D.; Hodzic, D. Coupling of the nucleus and cytoplasm:
Role of the LINC complex. J. Cell Biol. 2005, 172, 41–53. [CrossRef]

63. Jahed, Z.; Fadavi, D.; Vu, U.T.; Asgari, E.; Luxton, G.G.; Mofrad, M.R. Molecular Insights into the Mechanisms of SUN1
Oligomerization in the Nuclear Envelope. Biophys. J. 2018, 114, 1190–1203. [CrossRef]

64. Méjat, A. LINC complexes in health and disease. Nucleus 2010, 1, 40–52. [CrossRef]
65. Meinke, P.; Mattioli, E.; Haque, F.; Antoku, S.; Columbaro, M.; Straatman, K.; Worman, H.J.; Gundersen, G.G.; Lattanzi, G.;

Wehnert, M.; et al. Muscular Dystrophy-Associated SUN1 and SUN2 Variants Disrupt Nuclear-Cytoskeletal Connections and
Myonuclear Organization. PLoS Genet. 2014, 10, e1004605. [CrossRef]

66. Haskell, G.T.; Jensen, B.C.; Samsa, L.; Marchuk, D.; Huang, W.; Skrzynia, C.; Tilley, C.; Seifert, B.A.; Rivera-Muñoz, E.A.; Koller,
B.; et al. Whole Exome Sequencing Identifies Truncating Variants in Nuclear Envelope Genes in Patients With Cardiovascular
Disease. Circ. Cardiovasc. Genet. 2017, 10, e001443. [CrossRef]

67. Chen, W.; Wang, Y.; Abe, Y.; Cheney, L.; Udd, B.; Li, Y.-P. Haploinsuffciency for Znf9 in Znf9+/− Mice Is Associated with
Multiorgan Abnormalities Resembling Myotonic Dystrophy. J. Mol. Biol. 2007, 368, 8–17. [CrossRef]

68. Zhou, C.; Rao, L.; Shanahan, C.; Zhang, Q. Nesprin-1/2: Roles in nuclear envelope organisation, myogenesis and muscle disease.
Biochem. Soc. Trans. 2018, 46, 311–320. [CrossRef] [PubMed]

69. Taranum, S.; Vaylann, E.; Meinke, P.; Abraham, S.; Yang, L.; Neumann, S.; Karakesisoglou, I.; Wehnert, M.; Noegel, A.A. LINC
complex alterations in DMD and EDMD/CMT fibroblasts. Eur. J. Cell Biol. 2012, 91, 614–628. [CrossRef] [PubMed]

70. Basílio, A.C.M. Characterization of the Nuclear Envelope Alterations in Myotonic Dystrophy Type 1. Master’s Thesis, Universi-
dade de Aveiro, Aveiro, Portugal, 2019.

71. Goodchild, R.E.; Dauer, W. The AAA+ protein torsinA interacts with a conserved domain present in LAP1 and a novel ER protein.
J. Cell Biol. 2005, 168, 855–862. [CrossRef] [PubMed]

72. Chi, Y.-H.; Haller, K.; Peloponese, J.-M.; Jeang, K.-T.; Koch, M.; Veit, G.; Stricker, S.; Bhatt, P.; Kutsch, S.; Zhou, P.; et al. Histone
Acetyltransferase hALP and Nuclear Membrane Protein hsSUN1 Function in De-condensation of Mitotic Chromosomes. J. Biol.
Chem. 2007, 282, 27447–27458. [CrossRef]

73. Santos, M.; Costa, P.; Martins, F.; Silva, E.F.D.C.E.; Silva, O.A.B.D.C.E.; Rebelo, S. LAP1 is a crucial protein for the maintenance of
the nuclear envelope structure and cell cycle progression. Mol. Cell. Biochem. 2014, 399, 143–153. [CrossRef]

74. Pinho, A.R.; Martins, F.; Costa, M.E.V.; Senos, A.M.R.; Silva, O.A.B.D.C.E.; Pereira, M.D.L.; Rebelo, S. In Vitro Cytotoxicity Effects
of Zinc Oxide Nanoparticles on Spermatogonia Cells. Cells 2020, 9, 1081. [CrossRef]

http://doi.org/10.1016/j.semcdb.2014.01.010
http://www.ncbi.nlm.nih.gov/pubmed/24508913
http://doi.org/10.1083/jcb.201701054
http://www.ncbi.nlm.nih.gov/pubmed/28242746
http://doi.org/10.1038/s41467-019-08493-7
http://doi.org/10.1007/s12195-016-0432-0
http://doi.org/10.1242/jcs.029454
http://doi.org/10.1038/ncb1201-e273
http://doi.org/10.3389/fcell.2019.00103
http://www.ncbi.nlm.nih.gov/pubmed/31294022
http://doi.org/10.1083/jcb.200509124
http://doi.org/10.1016/j.bpj.2018.01.015
http://doi.org/10.4161/nucl.1.1.10530
http://doi.org/10.1371/journal.pgen.1004605
http://doi.org/10.1161/CIRCGENETICS.116.001443
http://doi.org/10.1016/j.jmb.2007.01.088
http://doi.org/10.1042/BST20170149
http://www.ncbi.nlm.nih.gov/pubmed/29487227
http://doi.org/10.1016/j.ejcb.2012.03.003
http://www.ncbi.nlm.nih.gov/pubmed/22555292
http://doi.org/10.1083/jcb.200411026
http://www.ncbi.nlm.nih.gov/pubmed/15767459
http://doi.org/10.1074/jbc.M703098200
http://doi.org/10.1007/s11010-014-2241-x
http://doi.org/10.3390/cells9051081

	Introduction 
	Results 
	Evaluation of Intracellular DMPK Protein Levels in DM1 Patient-Derived Fibroblasts 
	Evaluation of the Nuclear Profile in DM1 Patient-Derived Fibroblasts 
	Evaluation of Intracellular Levels and Localization of NE Proteins in DM1 Patient-Derived Fibroblasts 

	Discussion 
	Materials and Methods 
	Human Samples 
	Cell Culture 
	Antibodies 
	Immunoblotting 
	Immunocytochemistry 
	Morphological Analysis 
	Morphometric Analysis 

	Statistical Analysis 

	Conclusions 
	References

