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Abstract

We introduce a supervised machine learning approach with sparsity constraints for phylogenomics, referred to as
evolutionary sparse learning (ESL). ESL builds models with genomic loci—such as genes, proteins, genomic segments,
and positions—as parameters. Using the Least Absolute Shrinkage and Selection Operator, ESL selects only the most
important genomic loci to explain a given phylogenetic hypothesis or presence/absence of a trait. ESL models do not
directly involve conventional parameters such as rates of substitutions between nucleotides, rate variation among
positions, and phylogeny branch lengths. Instead, ESL directly employs the concordance of variation across sequences
in an alignment with the evolutionary hypothesis of interest. ESL provides a natural way to combine different molecular
and nonmolecular data types and incorporate biological and functional annotations of genomic loci in model building.
We propose positional, gene, function, and hypothesis sparsity scores, illustrate their use through an example, and
suggest several applications of ESL. The ESL framework has the potential to drive the development of a new class of
computational methods that will complement traditional approaches in evolutionary genomics, particularly for iden-
tifying influential loci and sequences given a phylogeny and building models to test hypotheses. ESL’s fast computational
times and small memory footprint will also help democratize big data analytics and improve scientific rigor in
phylogenomics.
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Introduction
Rapid acquisition and assembly of multigene and genomic

data sets have fast-tracked the discovery of natural patterns
and processes underlying the diversity of form and function.
Central to these successes are statistical and computational
methods for comparative analysis of molecular sequences,
needed for applications ranging from building the tree of
life to discovering the genomic loci underlying functional
evolution. These methods have revolutionized data-driven
discovery and hypothesis testing (BBSRC 2020; Kulathinal et
al. 2020). The growth of data has resulted in a tsunami of
information, putting data-driven biological research on ste-
roids. With such increasingly bigger data sets, the pattern-
matching paradigm of machine learning is poised to become
a useful approach, complementing computational molecular
evolution approaches based on stochastic models and evolu-
tionary process descriptions (Nei and Kumar 2000; Yang
2014).

Here, we introduce supervised machine learning with a
sparsity constraint for molecular evolutionary analysis
(Wrinch and Jeffreys 1921; Tibshirani 1996; Ye and Liu
2012). We refer to this framework as evolutionary sparse

learning (ESL). This approach treats the process of learning
similarly to model selection with genetic loci, including genes,
proteins, exons, introns, intergenic regions, individual geno-
mic positions, and many other possibilities, as parameters.
This feature contrasts with classical statistical methodologies
in which sophisticated mathematical models describe substi-
tutional and evolutionary processes to estimate parameters
of these models, branch lengths, and sequence phylogeny to
identify functionally important genomic loci and reconstruct
evolutionary relationships of sequences.

By applying sparse learning directly to a multiple sequence
alignment, ESL identifies the most important genetic loci
(parameters) that predict a phylogenetic hypothesis or the
presence or absence of a trait of interest. Alternative models
involving different combinations of model parameters are
automatically compared, and the model requiring the fewest
loci (the “sparse” solution) but offering the highest predictive
ability is preferred. Thus, this approach emphasizes building a
model with the fewest parameters while maximizing the
model fit, similarly to traditional molecular evolutionary anal-
yses investigating genomic features that drive a phylogenetic
inference or underlie a trait. However, ESL analysis does not
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necessitate estimating standard evolutionary parameters,
such as branch lengths, substitution rates between nucleoti-
des, or site-wise evolutionary rate variability.

The ESL framework introduced here is different from re-
cent machine learning applications in ecology and evolution
to classify species (Suvorov et al. 2020; Zou et al. 2020), ac-
celerate maximum likelihood phylogeny inference (Azouri et
al. 2021), detect genomic regions under selection (Schrider
and Kern 2016; Sugden et al. 2018), identify the best-fitting
model of substitutions (Abadi et al. 2020), and detect auto-
correlation of evolutionary rates in a phylogeny (Tao et al.
2019). These applications mainly focus on classification and
need to use synthetic (computer-simulated) data sets for
building predictive models. In ESL, no synthetic data are
used as the biological hypotheses or the traits of interest
are provided by the investigators to build models with the
most informative genomic loci through machine learning. Of
course, these ESL models can be used to make predictions as
well (explained below).

In the following, we first present the general ESL frame-
work, define several biologically relevant sparsity scores and
prediction metrics, and outline several useful potential

applications of ESL. We also introduce some examples to
demonstrate ESL’s pattern recognition approach and illus-
trate its modest computational demands that speed up
large-scale phylogenomics.

A General Framework for Evolutionary Sparse
Learning
ESL builds a logistic regression model that best maps the
input multiple sequence alignment (MSA, X) to the proba-
bility of output response categories Y (phylogeny or trait, fig.
1a). The logistic regression model is fðYÞ ¼ Xb(fig. 1b). The
input X consists of p positions (columns) and S sequences
(row), Y is the categorical states of rows in X, and fðYÞis the
logit link of class probabilities derived from Y. The b is the
column vector of logistic regression coefficients that specifies
the importance of positions (features) in predicting the out-
come (Qiao et al. 2017). ESL is supervised machine learning
because the outcome is provided in Y during ESL modeling
(fig. 1).

The learning part of ESL involves the estimation of impor-
tance (bi’s). Phylogenomic data sets contain thousands of
times more sites (positions) than the number of sequences

(a)

(b)

(c)

(d)

FIG. 1. A schematic representation of models in evolutionary sparse learning (ESL). (a) There are p positions in the sequence alignment, so the
regression model (b) can contain as many as p variables, that is, features in machine learning. The regression coefficient bi is the degree of
association between the base configuration at position i with the function of the outcome Y. The outcome is assigned to each sequence based on
the phylogenetic relationship or the presence/absence of a trait. (c) One-hot encoding of the sequence alignment in which a column of bits
represents each base. ESL estimates regression coefficient (biw) for every bit-column (w) for every position i. In the response vector, all sequences
belonging to the target clade (black) are represented byþ1. Those in the other clade (blue) are represented by�1. (d) Positions can be clustered
into groups (e.g., genes) for bilevel sparsity.
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(p � S), but only a subset of these positions have substi-
tutions that relate to the hypothesis. Therefore, a sparse so-
lution of biological parameters (positions, genes, and loci) is
usually appropriate to explain the phylogenomic hypothesis
of interest. This process is related to feature selection in ma-
chine learning, which finds the optimal number of parameters
(positions) for the model that minimizes the logistic loss.

A l1-regularized regression (Tibshirani 1996) (Least
Absolute Shrinkage and Selection Operator, LASSO) accom-
plishes this task by minimizing the sum of the difference
between the observed and the predicted output (e.g., logistic
loss, l bð Þ in eq. 1) and the cost of including positions in the
ESL model (overfitting penalty, second term in eq. 1)
(Tibshirani 2013).

L
0
bð Þ ¼ l bð Þ þ k1jbj1 Eq. 1

Here, the strength of association of the genetic variation at
position i with the phylogeny is captured in the magnitude of
the regression coefficients (bi’s), and b is a vector that con-

tains all bi’s. Here, jbj1 is defined as
Pp
i¼1

jbij.

We use logistic regression with l1 regularization (Logistic
lasso regression) because the outcome Y is a categorical var-
iable. k1 is the regularization parameter that controls the
sparsity of the model. This hyperparameter needs to be se-
lected judiciously, as the choice of the regularization param-
eter controls the number of positions (loci) included in the
model. When k1¼ 0, LASSO reduces to the standard statis-
tical regression analysis that is known to suffer from the over-
fitting problem (Meier et al. 2008). The choice of a large value
of k1 will select a highly sparse model in which only a few
(most important) positions will be included. That is, only a
few positions will receive nonzero regression coefficient
(bi 6¼ 0) and, thus, a sparse solution will be generated
(Hastie et al. 2015).

Bi-level Regularization
Phylogenomic data sets are often short-and-fat, that is, the
number of sequences is hundreds to thousands of times
smaller than the number of positions. This results in the
curse of dimensionality (Hastie et al. 2015) because the
number of model parameters (loci) is orders of magnitude
larger than the number of sequences. Additionally, the lo-
gistic regression with monolevel sparsity does not produce
a unique ESL model (unique solution) when X contains
columns of a categorical variable (bit columns for genomic
data, see below) (Meier et al. 2008; Tibshirani 2013; Hastie
et al. 2015). The problem is alleviated somewhat by using
LASSO with bilevel regularization. In bilevel regularization,
columns (positions) are grouped into predefined groups,
and the sparsity constraints are applied to groups and
positions within groups. The bilevel sparsity is more prac-
tical in phylogenomics because we have biological anno-
tations to cluster positions into groups. For example,
individual genomic positions belong to genomic and func-
tional groups, such as genes, exons, introns, intergenic
regions, and other types of genomic segments.

Furthermore, even noncontiguous positions may belong
to the same group, for example, groups of first codon
positions in a codon alignment and other genomic anno-
tations. Such information on groups of positions is used to
impose a bilevel sparsity (Breheny and Huang 2009; Simon
et al. 2013; Qiao et al. 2017). This is achieved by adding a
penalty term that penalizes the inclusion of groups along
with positions to accomplish a doubly sparse solution.

L
0
bð Þ ¼ l bð Þ þ k1jbj1 þ k2

XG

g¼1

wgjjbgjj2 Eq. 2

Here, k2 is the group regularization parameter, bg is the
vector of bi’s of positions belonging to group g, and wg is the
weight assigned to group g. The norm jjbgjj2 is defined as
PPðgÞ
i¼1

jbgij, where pðgÞ is the number of positions in group g

and bgi is the regression coefficients for a position within
group g. The second term in equation 2 controls the sparsity
for positions within the group. The third term controls the
sparsity for groups. In the ESL framework, we use wg ¼

ffiffiffiffiffi
pg
p

where pg is the length of the groupg, a common practice in
sparse group lasso regression analysis (Zou and Hastie 2005;
Simon et al. 2013; Hastie et al. 2015). Here, a large value for k2

will cause only a few groups to be included in the final ESL
model and a large k1 will allow only a few positions in each
selected group to be retained. In phylogenomic data sets, we
found small values of k1 and k2 to work well (see fig. 2), but
their selection needs to be done individually for each data set
(see later).

Statistically, bilevel sparsity is desirable because solutions
are invariant under group-wise orthogonal reparameteriza-
tions and statistically consistent when the number of groups
to be discovered is small, that is, a sparse solution is expected
(Meier et al. 2008; Simon et al. 2013). The sparse solution is
biologically realistic because only a (small) subset of positions
and groups contain information for uniting a group of
sequences when we wish to discover loci that are associated
the most with a given biological outcome.

Considering Functional and Biological Categories
ESL analysis enables direct consideration of functional fea-
tures of genes, such as GO annotations (Carbon et al.
2021). In this case, penalty terms are added in equation 2
to use a multilevel lasso, for example (Lozano and �Swirszcz
2012; Qiao et al. 2017). In fact, genomic loci may belong to
categories with overlapping compositions (e.g., the same gene
belonging to multiple functional categories), and categories
may even have hierarchical relationships. Such considerations
would enable the direct discovery of important functional
categories in ESL models, different from post hoc gene enrich-
ment approaches frequently employed in evolutionary and
functional genomics. In addition, a tree-structured group
lasso is also feasible in ESL to relax the common assumption
of independence among loci and groups (Liu and Ye 2010;
Qiao et al. 2017).
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Numerical Representation of the Input Data and Response
The process of model selection requires numerical represen-
tations of input data and evolutionary outcomes. For input
MSA (X), one-hot encoding is a common practice in machine
learning. In this approach, as many binary columns represent
each aligned position as the number of different bases found
at that position across sequences in MSA (fig. 1c). The one-
hot encoding in machine learning is reminiscent of bit-wise
representations used in molecular evolutionary analysis soft-
ware (e.g., MEGA; Kumar et al. 1993) for efficient implemen-
tation of Fitch’s parsimony algorithm (Fitch 1971) that
requires logical operations such as intersections [ANDs]
and unions [ORs]) to generate the most parsimonious count
of substitutions required at a position given a phylogeny.

The maximum number of bits (bit-columns) required by
any MSA position in X is four for nucleotides and 20 for
amino acids. One may encode alignment gaps as their own

bit-column if the presence/absence of gaps is meaningful. In
addition, multibase nucleotides and amino acid states in the
alignments may be encoded in bit-columns of their constit-
uent bases (e.g., nucleotides A and G bits for R). Ultimately,
one-hot encoding transforms a sequence alignment X into a
computer-friendly numerical format containing c bit-
columns and S rows. Each column maps to exactly one po-
sition in this matrix, and multiple columns may represent a
position. Generally, we reduce the memory requirements by
preprocessing the S � c matrix, particularly by excluding all
monomorphic bit-columns.

In ESL analysis, one-hot encoded data from different data
types can be directly combined for the same set of organisms.
For example, one-hot encoded amino acid and nucleotide
MSAs can be used together by simple concatenation to build
a super-matrixX. By one-hot encoding data such as the pres-
ence or absence of genes or other types of genomic

(a) (b) (c)

(d) (e) (f)

FIG. 2. ESL analysis of a multiple sequence alignment of plants species. (a) The plant phylogeny with the sequences in one focused clade marked as
þ1 (black) and the rest marked as�1 (blue) corresponding to the sequence assignment (branch #1). Two other branches are also highlighted (light
green and pink). (b) Genes included in the ESL model after using sparse group lasso and the ridge regression for branch #1. (c) The distributions of
GSS scores of 80 genes included in the ESL model for branch #1. (d) A violin plot showing the distribution of SSS for all the sequences using the ESL
model for branch #1. (e) ROC curve showing the tradeoff between the true positive rate and the false positive rate of classification of the ESL model
for the phylogenetic partition induced by branch #1 (black). ROC curves of two other branches are also shown (light green and pink lines). ESL
analyses were performed independently with similar settings for all three branches. ROC curves for different branches were calculated using genes
selected in each ESL model. The areas under ROC curves (AUC) are also presented. (f) Scatter plots showing the relationship between the
proportion of bootstrap ESL models in which a gene appeared and its GSS (brown) and the coefficient of variation (CV) of GSS. ESL models were
generated in the SLEP (Liu et al. 2011) software in MATLAB by analyzing a multiple sequence alignment of 620 genes (290,718 sites) from 103 Plant
species. The “sgLogisticR” function for bilevel logistic sparse group lasso regression was applied with starting feature regularization parameter (k1¼
0.1) and group regularization parameter (k2 ¼ 0.2). The square root of gene length was used as group weight. SLEP uses the Moreau–Yosida
Regularization algorithm, and we specified 100 iterations to obtain an optimal parameter. In these iterations, the regularization parameters (k1,k2)
were automatically optimized (0.0226 and 0.0129, respectively). We conducted Ridge regression analysis with l1=2regularization, the “gLogisticR”
functions for genes selected in b. The starting regularization parameter k ¼ 0:1 was used, and the square root of gene length was used as group
weight.
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annotations—such as methylation, post-translational modi-
fications, and breakpoints—we can naturally combine het-
erogeneous data sets. Also, other molecular and
nonmolecular characteristics of organisms can be one-hot
encoded and added to the input data matrix. Each of these
disparate data types can be assigned its own groups, enabling
ESL’s model-building to automatically compare the relative
importance of different data types and even subgroups within
each data type (e.g., nucleotide versus amino acid positions).

Numerical Representation of the Response
In ESL, each sequence j in X needs to be associated with an
outcome state (yj). Y is a column vector containing S binary
outcome elements (fig. 1c). We can set yj ¼ þ1 for sequences
with a given attribute (e.g., belonging to a cluster) and yj ¼ �
1 for those without that attribute. Numerical values represent
different categories, and their absolute values are chosen for
computational convenience and interpretation. Beyond bi-
nary outcomes, computational approaches exist for sparse
learning with multistate outcomes (multiclass LASSO) and
simultaneous consideration of multiple outcomes (multilabel
LASSO); for a review, see (Liu et al. 2011; Chen et al. 2019). In a
later section, we present different ways to specify the
responses (Y) to conduct a range of evolutionary analyses.

Regularization, Stability Selection, and Class Balance
In ESL, proper regularization is needed to obtain stable results.
Therefore, one may use stability selection through a subsam-
pling approach to make results robust to the regularization
parameters chosen (Meinshausen and Bühlmann 2010).
Stability selection yields finite sample family-wise error con-
trol and makes results robust to selecting regularization
parameters. Cross-validation is another widely used approach
for selecting optimal regularization parameters (Roberts and
Nowak 2014). In cross-validation, the data set is split into k
independent subsets of sequences. The regression models are
fitted to k � 1 subsets and a wide range of regularization
parameter values. The “left-out” subset is used to validate the
choice of regularization parameter values based on prediction
error and repeat these steps multiple times. We selected the
regularization parameter value for which the model has the
lowest average prediction error.

Moreover, machine learning is most effective with bal-
anced data sets, such that the number of sequences/species
with and without the given trait is the same. In ESL, we use
class weights, up-sampling with replacement of the minority
class, or down-sampling the majority class to achieve class
balance (Lunardon et al. 2014; Fabish et al. 2019). In the ex-
ample discussed below, we used weights based on the class
size for class balancing (Liu et al. 2011). This approach has the
same effect as the upsampling or down-sampling of sequen-
ces with replacement.

Robust Estimation of Regression Coefficients
After using lasso approaches in equations 1 and 2 to build an
ESL model, the Ridge regression (l2-norm) should be applied
for a more reliable estimation of b’s for the selected

parameters (Le Cessie and Van Houwelingen 1992; V�ag�o
and Kem�eny 2006). We can also use lasso (l1-norm) and
Ridge (l2-norm) penalties together during the model selec-
tion. One may use ElasticNet (Zou and Hastie 2005) to im-
prove the assignment of similar b values for strongly
correlated parameters (Demir-Kavuk et al. 2011) for greater
biological realism and model selection.

For estimating standard errors and confidence intervals of
b’s and their linear combinations (sparsity scores below),
both parametric and nonparametric approaches can be
used. The parametric tests have been developed based on
the distributional assumption of a test statistic, for example,
covariance test statistic computed from b (Halawa and El
Bassiouni 2000). Nonparametric statistical methods are also
available to test the significance of regression coefficients
(Cule et al. 2011; Lockhart et al. 2014). For example, we sug-
gest using a bootstrap approach in which sequences are
resampled with replacement within each class to build 100
(or more) bootstrap replicate data sets. Then, the bootstrap
support for a position or group can be calculated as the
proportion of bootstrap ESL models in which that position
or group appears. One could also build a bootstrap consensus
model from all the replicates. From this bootstrap procedure,
we can also calculate variances of the sparsity scores defined
below.

ESL Scores for Use in Phylogenomics
We define sparsity and prediction scores for individual posi-
tions and groups and overall hypotheses, which are linear
functions of bi

0s. These new scores are expected to be useful
for biological discoveries in molecular phylogenetics and
evolution.

Bit Sparsity Score (BSS) is the absolute value of b for the bit-
column corresponding to a specific character state at a par-
ticular position in the MSA. The score also represents the
strength of association between the specific base (or charac-
ter state) with the outcome (e.g., hypothesis). A vast majority
of bit-columns receive BSS ¼ 0 in the ESL analysis because
only a small fraction of sites are likely to experience substitu-
tions related to a hypothesis.

Position Sparsity Score (PSS) is the sum of absolute values
of b’s (BSS values) for all the bit-columns that map to that
position in the ESL analysis. Positions with nucleotide or
amino acid–base configuration across sequences with limited
or no concordance with the given hypothesis (Y) receive a
PSS ¼ 0. A large PSS indicates a high correlation with the
hypothesis of interest.

Group Sparsity Score (GSS) is the sum of PSS of all the

positions belonging to that group:GSS ¼
PpðgÞ
j¼1

PSSj, where pðgÞ

is the number of positions in group g and PSSj is the po-
sitional sparsity score for position j. Groups with limited or
no ability to explain the specified hypothesis (outcome Y)
receive GSS ¼ 0. A higher GSS indicates a group of posi-
tions that shows a strong relationship with the specified
hypothesis.
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Functional Sparsity Score (FSS) is the sum of sparsity scores
for all G groups belonging to the given biological cat-

egory:FSS ¼
PG

g ¼ 1
GSSg. If a genomic locus (say g) belongs

to multiple functional categories, it contributes to all relevant
FSS scores. Importantly, all the FSS values are estimated from
the same ESL analysis, so they have a common set of regu-
larization parameters.

Hypothesis Sparsity Score (HSS) is the sum of sparsity scores

for all G groups for the given hypothesis: HSS ¼
PG

g ¼ 1
GSSg.

We expect it to be useful as an optimality criterion to dis-
criminate among alternative phylogenetic hypotheses.

Sequence Prediction Score (SPS) is the predicted outcome
(bY) for a given sequence, which is computed by using the
logistic lasso regression model. SPS ¼ Sbb, where bb is a col-
umn matrix containing b’s, including the intercept of the
regression model b0. S is the one-hot encoded vector for
the sequence. Sequences with SPS greater than 0 are likely
to belong to the class encoded byþ1. In contrast, a value less
than 0 makes the sequence likely to belong to the class coded
by �1.

Sequence Prediction Probability (SPP) is the prediction
probability that a sequence belongs to a class encoded by
þ1. The probability is computed as SPP ¼ 1=ð1þ e�ðSPSÞÞ
for the logistic regression (Hosmer et al. 2013; Rao et al. 2016).
One may use a probability � 0.5 to classify a sequence into
the class encoded byþ1; otherwise, the sequence is classified
in the class encoded by�1. To determine the best probability
threshold for the highest accuracy level desired, we usually
draw a receiver operating characteristic curve (ROC) (Fawcett
2006). ROC provides the relationship between the true-
positive rate against the false-negative rate at different prob-
ability cutoffs (e.g., fig. 2d). This can be done for the data used
to build the model (training ROC) or during the cross-
validation procedure.

An Example Illustrating the Use of the ESL Framework
The ESL framework can be used to develop approaches for
several types of applications. For example, we can determine
positions and genes, along with their relative importance, in
uniting a class of sequences (clade) in a given phylogenetic
tree. In this case, yi ¼ þ1 for sequences that belong to the
given clade and�1 for the rest of the sequences in the MSA.
Figure 2a shows a phylogeny of 103 Plant species (Shen et al.
2017) in which the clade of interest is assigned yi ¼ þ1, and
the sequences not in that clade are assigned yi ¼ �1. It
corresponds to the branch #1, drawn with black lines, that
partitions the tree into black and blue classes. The multiple
sequence alignment consists of 290,718 sites that belong to
620 genes (Shen et al. 2017).

We applied the ESL framework to build a model that
identifies the most influential genes that are likely to contain
diagnostic substitutions. The ESL model was generated in the
SLEP software in MATLAB (Liu et al. 2011). The “sgLogisticR”
function with bilevel logistic sparse group lasso regression was
applied with starting feature regularization parameter (k1 ¼

0.1) and group regularization parameter (k2 ¼ 0.2) that were
selected by trial and error. These parameters are optimized
iteratively during the model fitting step, and coefficients (b’s)
are estimated (see fig. 2 legend). The square root of gene
length was used as group weight. The ESL model contained
only 80 genes, as GSS ¼ 0 for the other 540 genes (fig. 2b).
Therefore, only 12.9% of genes were selected, which is a sparse
solution (fig. 2c). This sparsity is evolutionarily reasonable
because not all genes are expected to have experienced a
significant number of substitutions on any given branch in
the phylogeny.

For these 80 genes, we used Ridge regression with l2 reg-
ularization to generate more accurate GSS; because
l1regularization is useful for initial model building (gene se-
lection) and the l2 regularization with starting parameter
value of 0.1. The resulting ESL model (l1=2) was used to esti-
mate sequence prediction scores (SPS), which is useful to
evaluate how well the ESL model can classify all the sequences
used in building the model. We found that all the sequences
in the black group received a positive SPS, whereas those in
the blue group received a negative SPS in training (fig. 2d).
Therefore, the ESL modeling works well. The training ROC
curve in fig. 2d shows the tradeoff between the true-positive
(TP) and false-positive (FP) rates of sequence classification at
different SPS thresholds. Based on the ROC curve, a TP rate of
100% and an FP rate of 0% are achieved with SPS ¼ 0 (black
curve). ESL models for phylogenetic partitions induced by
other branches (#2 and #3; fig. 2a) also showed very high
classification accuracies, with the Area Under the Curve
(AUC) greater than 0.99 (fig. 2e). Overall, we found high train-
ing AUC for deep and shallow clades as well as for small and
large clades (AUC > 0.99). Therefore, ESL prediction models
are likely to be useful in placing a new sequence in the phy-
logenetic tree, an application that we are currently
investigating.

The distribution of GSS values in the ESL model shows that
a vast majority of genes receive a rather small sparsity score
(fig. 2c). Therefore, we used a bootstrap site resampling anal-
ysis (100 replicates) to identify genes that significantly con-
tributed to the ESL model build using Ridge regression with
l1=2regularization. Only seven genes appeared in more than
95% of the bootstrap ESL models. Thus, the final bootstrap-
supported ESL solution was even more sparse and included
only 1.2% of the genes. Similarly, only 0.6% of the positions
(1,948) were included in more than 95% of the ESL models.
The bootstrap support for a gene’s inclusion in the ESL model
was highly correlated with its average GSS as well as the co-
efficient of variation (CV), which is the standard deviation of
bootstrap estimates of GSS divided by the average bootstrap
GSS (fig. 2f). We also examined the frequency with which
genes were included in ESL models built using data sets in
which responses in Y were assigned þ1 or �1 randomly. All
genes were included in 10–68% of these ESL models, with a
median of 39%. Therefore, random permutations of Y did not
produce a statistically supported ESL model, as no genes were
selected at a 95% significance level.

One well-known benefit of machine learning methods is
their computational efficiency (time and memory) for high-
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dimensional data sets. This expectation is realized in the ESL
analysis of the Plant data set, which required less than a
minute for all the analyses related to one branch on a personal
desktop computer, consuming only 400 MB of computer
memory for building any ESL model. The high computational
efficiency of ESL meant that we could quickly apply ESL to all
the nodes in this phylogeny and identify important node-
specific loci. Further, ESL does not require the specification
of within-group phylogenies when analyzing a specific branch
(e.g., within blue and black clades, fig. 2a). This is an interest-
ing property because uncertainty regarding within-group
phylogeny can create a need to integrate results over many
alternative hypotheses in standard phylogenetic analysis,
making them computationally very expensive for large data
sets.

Other Applications of ESL Analysis
In the above example, we partitioned all sequences in a phy-
logeny into two classes based on our interest in identifying
genes and positions that are diagnostic of a group’s mono-
phyly. In the interest of discovering positions that discrimi-
nate between sister clades, we can set yi¼ þ1 for sequences
in one clade (class) and �1 for sequences in the other clade.
In this case, we simply remove all other sequences from the
MSA while building the ESL model. The outcome is a list of
significant positions and corresponding genes in phyloge-
nomic analyses in which the focus is on phylogenetic
inference.

On the other hand, we seek a model in which positions or
domains that distinguish paralogous genes are revealed if the
divergence of two clades of interest corresponds to a gene
duplication event in a multigene family sequence alignment.
This would be useful in functional genomics investigations. In
fact, the two classes of sequences in ESL analyses can be
specified for any combination of clades, paralogs, and even
sequences. So, it is very flexible. For example, we are currently
investigating the effectiveness of ESL analysis to identify genes
and functional categories in which gene evolution underlies
the emergence of convergent traits.

We also envision a novel application of the ESL framework
in which models are built under two contrasting evolutionary
hypotheses. In this case, the relative importance of each locus
that distinguishes these hypotheses can be determined based
on the difference in their GSS for two hypotheses. We are
exploring this idea to develop an approach to identify genes
that may mislead phylogenomic inferences, which is quite
common, for example (Shen et al. 2017; Walker et al. 2018).

Similarities and Differences between the ESL and
Maximum Likelihood Analyses
Statistically, the model building in ESL using equations 1 and 2
is equivalent to maximizing the product of the likelihood and
a prior on the penalty (Breiman 1996; Tibshirani 1996; Fan
and Li 2001; Breheny and Huang 2009). The regression coef-
ficient, b, in ESL is comparable to the maximum a posteriori
estimate when considering a Gaussian likelihood function
and a Laplacian prior on b‘s (Figueiredo 2002). In this case,

bj � bk means that bit-column j is as much or more corre-
lated with the partial residual than position k (Frey 2018). The
same applies to sparsity scores of positions that contain these
two bit-columns, that is, PSSv � PSSw where bit-column j is
for position v and bit-column k is for position w. In the max-
imum likelihood analysis, lnLv � lnLw means that the likeli-
hood of position v is higher than position w for the given
phylogenetic hypothesis (Felsenstein 1992). All sparsity scores
defined here (PSS, GSS, FSS; and HSS) are linear sums of bit-
wise sparsity scores (BSS), so they have analogous statistical
interpretations.

However, there are many notable differences between ESL
and ML. For example, ESL analysis does not use traditional
substitution models that incorporate unequal rates of base
substitutions, compositional bias, and heterogeneity of evo-
lutionary rates and substitution patterns across positions.
Nonetheless, we would be incorrect in stating that ESL anal-
yses are agnostic to such biological features. For example, ESL
does not assume that all positions in the alignment and all
bases at a position follow the same evolutionary rate or have
equal importance. Instead, the best ESL model assigns differ-
ent weights to bases, positions, and groups, with many bases,
positions, and groups receiving a zero weight for the given
hypothesis. This is enabled by one-hot encoding that trans-
forms MSA in which alternative bases at each position are
separated into their binary columns.

Because of one-hot encoding, a composite of two-state
models (one for each bit-column) describes a position rather
than a single 4- or 20-state substitution model in traditional
analysis. This means that the same substitution model is not
assumed for all the positions in the alignment or all the
positions in a gene, unlike conventional methods.
Moreover, the complexity of the model is a function of dif-
ferent base types found at each position. That is, position-by-
position consideration of substitution matrices is intrinsic to
ESL, but not in the same way or extent as in classical molec-
ular phylogenetics. A major avenue of future research will be
to investigate the relationship of ESL, theoretically and em-
pirically, with maximum likelihood and other statistical meth-
ods in molecular evolutionary analysis. In particular, it will be
interesting to test the robustness of ESL methods as com-
pared to existing approaches to the nonstationarity, nonre-
versibility, nonindependence, and nonuniformity of
substitution models across lineages and positions in multiple
sequence alignments, as compared to traditional methods
that tend to make these assumptions for analytical
tractability.

Conclusions
Overall, we expect ESL to complement existing methods of
molecular evolutionary analyses because they serve different
purposes. For example, one would need classical methods
when the goal is to estimate branch lengths in a phylogeny,
instantaneous rates of different types of mutations and sub-
stitutions, neutrality index, and the degree of heterogeneity of
evolutionary rates among sites. They constitute fundamental
properties of the evolutionary processes and natural selection,
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which are best estimated using statistical methods that model
those properties. But, we may first use ESL to gain insights
about evolutionary relationships and functional loci and then
test them using currently standard statistical methods of
computational molecular evolution. We also envision hybrid
ESL approaches in which the input matrix contains estimates
of such properties for genetic loci alongside the sequence
alignments. Ultimately, we expect the utility of ESL to be
limited only by one’s imagination, as it provides a flexible
framework to construct approaches for de novo discovery
and hypothesis testing.

In conclusion, the power of machine learning in phyloge-
nomics has only begun to be harnessed. ESL brings time-
tested mature advances of sparse learning to phylogenomics.
It provides a new way of conducting evolutionary analysis and
enables a natural combination of heterogeneous data sets.
Our simple example establishes the premise of ESL for devel-
oping methods for evolutionary analysis, which should moti-
vate theoretical and computational investigations of the
powers and pitfalls of ESL.
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