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Abstract

Within-host adaptation is a hallmark of chronic bacterial infections, involving substantial genomic changes. Recent large-
scale genomic data from prolonged infections allow the examination of adaptive strategies employed by different
pathogens and open the door to investigate whether they converge toward similar strategies. Here, we compiled
extensive data of whole-genome sequences of bacterial isolates belonging to miscellaneous species sampled at sequential
time points during clinical infections. Analysis of these data revealed that different species share some common adaptive
strategies, achieved by mutating various genes. Although the same genes were often mutated in several strains within a
species, different genes related to the same pathway, structure, or function were changed in other species utilizing the
same adaptive strategy (e.g., mutating flagellar genes). Strategies exploited by various bacterial species were often
predicted to be driven by the host immune system, a powerful selective pressure that is not species specific.
Remarkably, we find adaptive strategies identified previously within single species to be ubiquitous. Two striking
examples are shifts from siderophore-based to heme-based iron scavenging (previously shown for Pseudomonas aerugi-
nosa) and changes in glycerol-phosphate metabolism (previously shown to decrease sensitivity to antibiotics in
Mycobacterium tuberculosis). Virulence factors were often adaptively affected in different species, indicating shifts
from acute to chronic virulence and virulence attenuation during infection. Our study presents a global view on common
within-host adaptive strategies employed by different bacterial species and provides a rich resource for further studying
these processes.
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Introduction
Despite the advent of antibiotics, bacterial infections con-
tinue to cause millions of deaths world-wide (Lozano et al.
2012). These infections can range from acute, lasting a few
days, to chronic, enduring over dozens of years. The host
environment constitutes a unique ecological niche, introduc-
ing pathogens to a wide array of challenges, with antibiotic
treatment and the host immune system being the most pro-
nounced. Also, although the host metabolic environment is
rich in nutrients, it exposes the bacteria to fierce competition
with the local microbiota (Frydenlund Michelsen et al. 2016).
Bacteria have been shown to evolve to meet these challenges
over the course of the infection, developing mechanisms of
immune evasion and even different forms of antibiotic resis-
tance via genetic changes. Recent developments in high-
throughput genomic technologies allow monitoring of geno-
mic changes in small time frames during chronic bacterial
infections (Didelot et al. 2016), enabling the tracing of geno-
mic and genetic changes. Most studies in this field have fo-
cused on the evolution of opportunistic pathogens that shift
between vastly different environments (Winstanley et al.
2016; Young et al. 2017; Chung et al. 2017). However, genetic

changes are also prominent in other bacteria as they shift
from initial to chronic infection (Marzel et al. 2016; Ley
et al. 2019) and as they move between different subniches
within the human host (Wylie et al. 2019).

Previous studies have demonstrated many mechanisms
utilized by specific bacterial species to overcome the pressures
and environmental changes they encounter (Alamro et al.
2014; Marvig, Sommer, et al. 2015; Didelot et al. 2016).
These include loss of nonessential metabolic functions
(Winstanley et al. 2016; Viberg et al. 2017), as well as tailoring
of the expression and activity of metabolic pathways (Didelot
et al. 2016; La Rosa et al. 2018). For example, Marvig et al.
(2014) identified mutations in Pseudomonas aeruginosa that
lead to reduced production of siderophores along with strong
upregulation of systems for iron scavenging from heme. This
phenomenon has been interpreted in the context of cheating
behavior and subsequent upregulation of noncooperative
iron uptake systems in bacterial populations (Andersen
et al. 2015, 2018). It has the additional beneficial effect of
downregulating the generally immunogenic siderophores
(Wandersman and Delepelaire 2004).

Although previous studies have characterized genes that
underwent loss of function or diversification during infection
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for specific pathogens and specific clinical contexts
(Lieberman et al. 2011; Marvig, Sommer, et al. 2015;
Brodrick et al. 2017), it is intriguing to find out whether dif-
ferent pathogens have converged toward similar strategies for
their adaptation within the host environment. Here, we take
advantage of the ample sequencing data of bacterial patho-
gens derived from prolonged infections to systematically ad-
dress this question in large scale, investigating convergent
evolution both within species and across species. Using a
statistical framework, we trace the evolution of different
pathogens within their hosts and assess the relationship be-
tween genes that underwent adaptive changes in the various
pathogens. Although in many cases there are no orthologous
relationships between the genes identified as undergoing
adaptive changes in the various species, it is remarkable
that often they are involved in parallel cellular processes,
suggesting that different bacterial species exploit common
strategies for their within-host adaptation.

Results

Constructing the Database
We compiled data from studies that conducted genome
sequencing of an infecting pathogen in at least two time
points during chronic infection or carriage (table 1).
Carriage is defined here as colonization by a pathogen
with no apparent symptoms over the entire period. The
database includes 1,421 patients infected with 29 bacterial
species encompassing 7,197 isolates (fig. 1a and supple-
mentary fig. 1a and b, Supplementary Material online). We
downloaded the sequencing reads of all isolates and as-
sembled them into genomes in a uniform manner
(Materials and Methods). To avoid biases due to species
infecting only few patients, we focused on 11 bacterial
pathogens for which ample data were available:
Pseudomonas aeruginosa (PA), Mycobacterium tuberculo-
sis (TB), Staphylococcus aureus (SA), Klebsiella pneumoniae
(KP), Salmonella enterica subsp. enterica serovar
Typhimurium (ST), Escherichia coli (EC), Enterococcus fae-
cium (EFci), Haemophilus influenzae (HI), Campylobacter
jejuni (CJ), Clostridioides difficile (CD), and Acinetobacter
baumannii (AB). The species we chose present a varied set
of pathogens, including both opportunistic pathogens
(PA, SA, KP, EC, EFci, CD, nontypable HI, and AB), and
strict pathogens (TB, ST, CJ, and encapsulated HI), infect-
ing the patients from a variety of sources including
patient-to-patient transmission (TB, HI, CD, and some
PA), contaminated food (CJ, ST), the hospital environ-
ment (PA, AB, and KP), and the patient’s own microbiome
(SA, EC, EFci, and KP).

Although the data include patients presenting one of two
clinical scenarios, infection or carriage, for most species nearly
all patients presented the same clinical scenario (either infec-
tion or carriage, fig 1b and supplementary table 1,
Supplementary Material online). For three species, SA, KP,
and EFci, the data were derived from both patients with in-
fection and patients with carriage.

Tracing the Phylogenetic Relationships between
Different Isolates
During infection, the infecting bacteria present a genetically
diversified population. Due to this within-host diversity, the
isolates from each patient are in fact samples from a diverse
population. This may introduce substantial sampling noise to
the data: two isolates sampled at sequential time points do
not necessarily have a progenitor–progeny relation, making
the assessment of within-host evolution challenging. To re-
duce this sampling noise and trace the in-patient progenitor–
progeny relationships of the isolates, we developed a two-
level pipeline, termed TRACE (fig. 1c).

First, we assessed whether the isolates from each patient
were derived from a monoclonal or polyclonal infection
(Materials and Methods) and found that for most of the
patients, all isolates were found on a single clade (supplemen-
tary fig. 1c, Supplementary Material online), hinting at a
monoclonal infection. To prevent bias due to studies that
did not choose the samples randomly, we repeated the above
analysis excluding studies suspected to have such biases,
reconfirming our previous observations regarding the domi-
nance of monoclonality (supplementary fig. 1d,
Supplementary Material online). We refer to all isolates
from a single patient as representative of the same “strain”
and to the ones that were found on the same clade as rep-
resentative of the same “clone.”

Second, we developed an algorithm to construct the phy-
logenetic relationships between the isolates. Phylogenetic
trees produced by previous construction methods include
internal nodes representing inferred common ancestors,
whereas in our data the ancestors were empirically sampled
at previous time points. Accordingly, our algorithm for the
construction of phylogenetic trees is parsimony-based and
utilizes both inferred and sampled internal nodes for the in-
ference of progenitor–progeny pairs (Materials and
Methods). We assessed the accuracy of TRACE using simu-
lated bacterial evolution (Worby and Read 2015) and discov-
ered that it has high accuracy that is associated with the
number of sampled isolates (supplementary fig. 2,
Supplementary Material online). The time intervals between
the different isolates were variable, being in the magnitude of
days for some species and of years for others (supplementary
fig. 3, Supplementary Material online).

Mutation Rates Are Higher at Earlier Stages of the
Infection
We used the breseq pipeline (Barrick et al. 2014; Deatherage
and Barrick 2014) to detect differences between the sequenc-
ing reads of each progenitor–progeny pair and annotated the
different types of changes and their potential impact using
SnpEff (Cingolani et al. 2012), while filtering out reads that
were mapped exclusively to repeating sequences. We did not
observe any biases in the composition of mutated nucleotides
or amino acids for most species (supplementary figs. 4 and 5,
Supplementary Material online). We noted a near ubiquitous
decrease in mutation rates throughout the infection (supple-
mentary fig. 6a, Supplementary Material online), indicating
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that most genomic changes occur at early stages of the in-
fection in accordance with previous findings for PA (Yang
et al. 2011; Bartell et al. 2019). These results were consistent
even when excluding the large fractions of hypermutator
clones found among the different strains in our database
(supplementary fig. 6b and c, Supplementary Material online).

Adaptive Changes and Loss of Function of Genes Are
Ubiquitous during Infections
We recorded variations likely leading to loss of function (com-
plete deletion of a gene, loss or gain of stop codon, loss of start
codon, and frameshift mutation), and variations leading to
nonsynonymous genetic changes of unknown significance

Table 1. Studies Used for Database Construction.

Bacterial Species Study

Acinetobacter baumannii Hornsey et al. (2011), Lesho et al. (2013), Snitkin et al. (2013), Wright
et al. (2016), Hua et al. (2017), Hawkey et al. (2018), Kim et al. (2018),
and Gerson et al. (2019)

Burkholderia dolosa Lieberman et al. (2011)
Burkholderia cenocepacia Hassan et al. (2017)
Burkholderia multivorans Silva et al. (2016) and Diaz Caballero et al. (2018)
Burkholderia pseudomallei Hayden et al. (2012), Price et al. (2013, 2015), Viberg et al. (2017), Webb

et al. (2017), and Sarovich et al. (2018)
Campylobacter jejuni Thomas et al. (2014) and Crofts et al. (2018)
Clostridioides difficile Sim et al. (2017) and Sachsenheimer et al. (2018)
Enterococcus faecalis Arias et al. (2011)
Enterococcus faecium Brodrick et al. (2016), Moradigaravand et al. (2017), and Raven et al.

(2018)
Escherichia coli Li et al. (2016), Brodrick et al. (2017), Gumpert et al. (2017), Porse et al.

(2017), Snesrud et al. (2017), and Ghalayini et al. (2018)
Fusobacterium nucleatum Bullman et al. (2017)
Haemophilus influenzae Garmendia et al. (2014), Moleres et al. (2018), and Pettigrew et al.

(2018)
Helicobacter pylori Kennemann et al. (2011)
Klebsiella aerogenes Philippe et al. (2015)
Klebsiella pneumoniae Cannatelli et al. (2014), Nielsen et al. (2014), Mathers et al. (2015, 2019),

Lynch et al. (2016), Martin et al. (2016), Gaibani et al. (2018), and
Simner et al. (2018)

Klebsiella quasipneumoniae Mathers et al. (2019)
Mycobacterium abscessus Bryant et al. (2013) and Kreutzfeldt et al. (2013)
Mycobacterium avium Kannan et al. (2019)
Mycobacterium leprae Stefani et al. (2017)
Mycobacterium tuberculosis Comas et al. (2012), Saunders et al. (2011), Sun et al. (2012), Clark et al.

(2013), Farhat et al. (2013), Merker et al. (2013), Eldholm et al.
(2014), P�erez-Lago et al. (2014), Liu et al. (2015), Meumann et al.
(2015), Datta et al. (2016), Korhonen et al. (2016), Lillebaek et al.
(2016), Herranz et al. (2017), Trauner et al. (2017), Wollenberg et al.
(2017), and Xu et al. (2018)

Neisseria meningitidis Omer et al. (2011)
Pandoraea apista Greninger et al. (2017)
Pseudomonas aeruginosa Cramer et al. (2011), Marvig, Jochumsen, et al. (2013), Marvig, Johansen,

et al. (2013), Feliziani et al. (2014), Markussen et al. (2014), Singh et al.
(2014), Stewart et al. (2014), Bianconi et al. (2015, 2019), Diaz
Caballero et al. (2015), Marvig, Dolce, et al. (2015), Marvig, Sommer,
et al. (2015), Sommer et al. (2016), Spilker and LiPuma (2016), van
Mansfeld et al. (2016), Beaume et al. (2017), L�opez-Causap�e et al.
(2017, 2018), Sherrard et al. (2017), Wang et al. (2017), Klockgether
et al. (2018), and Williams et al. (2018)

Salmonella enterica subsp. enterica serovar Enteritidis Klemm et al. (2016)
Salmonella enterica subsp. enterica serovar Typhimurium Marzel et al. (2016) and Octavia et al. (2017)
Serratia marcescens Mathers et al. (2019)
Staphylococcus aureus Mwangi et al. (2007), Howden et al. (2008, 2011), Bloemendaal et al.

(2010), Gao et al. (2010), McAdam et al. (2011), Cameron et al. (2012,
2015), Passalacqua et al. (2012), Peleg et al. (2012), Young et al. (2012,
2017), Van Hal et al. (2014); Chen et al. (2015), Gladman et al. (2015),
Tong et al. (2015), Azarian et al. (2016), Schwartbeck et al. (2016),
Trouillet-Assant et al. (2016), Ankrum and Hall (2017), Coll et al.
(2017), Price et al. (2017), Sabat et al. (2017), and Giulieri et al. (2018)

Stenotrophomonas maltophilia Pak et al. (2015) and Esposito et al. (2017)
Streptococcus pneumoniae Hiller et al. (2010) and Gladstone et al. (2015)
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FIG. 1. Overview of the study. (a) Number of strains of each bacterial species in the database. (b) Fraction of strains in each species isolated from
patients undergoing different clinical scenarios (infection/carriage). PA, Pseudomonas aeruginosa; TB, Mycobacterium tuberculosis; SA,
Staphylococcus aureus; KP, Klebsiella pneumoniae; ST, Salmonella enterica subsp. enterica serovar Typhimurium; EC, Escherichia coli; EFci,
Enterococcus faecium; HI, Haemophilus influenzae; CJ, Campylobacter jejuni; CD, Clostridioides difficile; AB, Acinetobacter baumannii. (c)
Analysis pipeline for extracting genes undergoing either loss of function or any change (including loss of function) in a strain. We constructed
assemblies for the different isolates using their respective sequencing reads and determined the reference genome closest to the isolates of each
strain using QUAST. We utilized TRACE to assess the phylogenetic relations between the different isolates to extract progenitor–progeny isolate
pairs (Materials and Methods). Breseq was then used to compare the sequencing reads of each isolate with the reference genome, and positions
that differed from the reference genome and varied between the progeny and progenitor were determined. These variations were analyzed by
SnpEff to define: 1) genes that underwent loss of function (based on high-impact variations appearing in the progeny isolate and not the
progenitor isolate, leading, e.g., to deletion of a gene or to a stop codon); 2) changed genes (based on variations of moderate or high impact
appearing in the progeny isolate and not the progenitor isolate, where moderate impact refers, e.g., to amino acid substitutions). The genes
determined as undergoing loss of function make up a subgroup of the genes determined as changed.
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(e.g., amino acid substitutions), based on the annotations
obtained by SnpEff (Cingolani et al. 2012). Many of the anal-
yses described below were performed separately for two
groups of genes: 1) all genes containing any genetic change
(changed genes) and 2) the subgroup of genes containing
variations likely leading to loss of function (genes undergoing
loss of function). Changed genes, including the genes that
underwent loss of function, were ubiquitous in our data
and varied in their degree among strains of different species
(fig. 2). The mutation burden of a strain during infection
depends on its mutation rate, genome size, and the duration
of the infection in generations (Drake 1991). In accordance
with this, a high number of genes underwent mutations, in-
cluding loss of function, in PA strains, which have large
genomes (Stover et al. 2000), long durations of infection,
and a high fraction of hypermutator clones (supplementary
fig. 6c, Supplementary Material online). Only a small number
of genes underwent genetic changes or loss of function in TB
and ST strains: In the former, probably due to its extremely
low mutation rate (Sherman and Gagneux 2011) and long
generation time; in the latter, due to its shorter duration of
infection, up to 120 days for all but one patient in our data
(supplementary table 1, Supplementary Material online).

Genetic changes identified in our analysis are not neces-
sarily the result of adaptive processes but may have occurred
randomly. To pinpoint genes that were possibly affected by
adaptive pressures, we searched for genes that repeatedly

underwent loss of function or repeatedly underwent changes
in different strains independently. We developed a statistical
framework to detect those genes that underwent loss of
function or any change above random expectation for each
species (Materials and Methods). For a gene that underwent
loss of function (any change) in k strains, we simulated the
probability for genes to undergo loss of function (any change)
in at least k strains by chance alone, based on the fraction of
genes that underwent loss of function (any change) in each
strain during the infection (supplementary fig. 7,
Supplementary Material online). A gene was defined as un-
dergoing adaptive loss of function (change) if the computed
probability was below a pre-defined statistical threshold
(Materials and Methods). An important distinction is that
although genes undergoing loss of function are a subset of
the changed genes, genes undergoing adaptive loss of func-
tion are not necessarily a subset of adaptively changed genes,
as they may pass the statistical threshold only in the analysis
of the subgroup of genes that underwent loss of function but
not in the analysis of all changed genes.

We found that genes undergoing adaptive change made
up a substantial fraction of the genes with any genetic change,
whereas genes undergoing adaptive loss of function made up
a much smaller fraction of this subset of genes (fig. 3 and
supplementary table 2, Supplementary Material online). The
mean fractions of genes undergoing adaptive change and loss
of function per species were correlated with the number of
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FIG. 2. Different species vary in the number of genes that underwent change or loss of function per strain. (a) Upper panel: Number of changed
genes per strain in the data for each bacterial species. Lower panel: Number of genes that underwent loss of function per strain in the data for each
bacterial species. Error bars represent standard error. Note that the group of genes that underwent loss of function is a subgroup of the changed
genes. (b) The same, with the result for each species normalized by the number of proteins in its reference proteome, scaled to 1,000 coding
sequences. Names of bacterial species are as in figure 1b. The number to the right of the bar represents the number of strains included for that
bacterial species. CJ was excluded from (b) to maintain scale.
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strains in the species in our data (Spearman correlation,
r¼ 0.66 and r¼ 0.63, respectively), suggesting there may be
additional genes undergoing adaptive change or loss of func-
tion that we lack the statistical power to detect. CJ and EC
had very high fractions of adaptively changed genes despite
low numbers of strains. For these two species, all or nearly all
strains originated from a single study and likely had similar
genetic background and were exposed to similar selective
pressures. This is reflected in high Jaccard indices between
the lists of genes undergoing change in different strains
(fig. 3a, Materials and Methods). This indicates that genes
undergoing adaptive change or loss of function in species
with a small number of studies may include false positives
related to the low variability between the different strains in
those studies. Interestingly, the fractions of adaptively
changed genes and of genes undergoing adaptive loss of

function did not seem to greatly differ between opportunistic
and strict pathogens or between pathogens with different
routes of transmission.

Close inspection of the results revealed that tran-
scription factors were prominent among genes under-
going adaptive change and among genes undergoing
adaptive loss of function (supplementary table 2,
Supplementary Material online), possibly indicating
considerable transcriptional changes during infections.
Additionally, genes related to antibiotic resistance were
prominent among all adaptive lists, highlighting the selec-
tive pressures exerted by these substances. We noticed
many important virulence factors that underwent loss of
function among many strains, including superantigen-like
proteins, fibrinogen-binding proteins, staphcoagulases, and
immune evasion protein Sbi of SA. In TB, many genes
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FIG. 3. The same genes of a bacterial species repeatedly undergo change or loss of function during infection by different strains. Our statistical
framework defines genes that undergo change or loss of function repeatedly in a statically significant number of strains as undergoing adaptive
change or loss of function, respectively. (a) Upper panel: Boxplots of the fractions of adaptively changed genes out of all changed genes in the
different strains of each species. The number above the bar represents the number of strains included for that bacterial species. Lower panel: The
mean similarity between the lists of genes undergoing change or loss of function in different strains of each species as measured by the Mean
Jaccard Index (Materials and Methods). The number above the bar represents the number of studies included for that bacterial species. (b) Upper
panel and lower panel as in (a), for genes undergoing loss of function. For most strains, there is no relationship between the fraction of genes
undergoing adaptive change/loss of function and the similarity between strains of a species. Names of bacterial species are as in figure 1b.
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undergoing adaptive change or loss of function belonged to
the PE/PPE families, suspected of being involved in antigenic
variation.

Genes Undergoing Adaptive Change Are Generally
under Positive Selection and Are Not Associated with
Lower Evolutionary Conservation, Specific Genomic
Regions, or Clinical Scenarios
To study the selection acting on adaptively changed genes,
we compared their dN/dS ratios with the rest of the genes in
the genome. We found that nonadaptively changed genes are
generally under purifying selection (dN/dS < 1.0), and that
dN/dS values for adaptively changed genes are statistically
significantly higher by Mann–Whitney U test (one tailed, P
value � 0.05). Many of the adaptively changed genes are
under positive selection (dN/dS > 1.0), but there is a large
variance between the different genes (supplementary fig. 8,
Supplementary Material online). Most interestingly, this does
not hold for PA where nearly the entire proteome seems to
be under positive selection.

We found that both genes undergoing adaptive change
and genes undergoing adaptive loss of function were only
weakly associated with low evolutionary conservation (sup-
plementary fig. 9, Supplementary Material online), demon-
strating that the changes we discovered with our statistical
framework are likely derived from adaptive processes within
the host environment. We detected a small number of geno-
mic regions that were enriched with genes undergoing adap-
tive change or loss of function (supplementary table 3,
Supplementary Material online), these regions were mostly
associated with operons and mobile genetic elements. Since
different patients may present different clinical scenarios (car-
riage or infection), we assessed the results in view of this
aspect. This analysis was irrelevant for most species, as nearly
all patients presented a single common clinical scenario. EFci
was excluded from this analysis due to lack of genes passing
the statistical threshold. For SA, there were minimal differ-
ences in the genes identified in the different clinical scenarios.
For KP however, we noted that there was little overlap be-
tween genes that underwent adaptive change or loss of func-
tion in the different clinical scenarios (supplementary fig. 10,
Supplementary Material online). This indicates that although
genes that undergo host adaptation in SA are generalizable
between different clinical scenarios, for KP they are scenario
specific. This finding may be related to the small number of
strains in each clinical scenario for KP. Increasing the number
of strains in the different scenarios will allow us to detect
additional genes as adaptively changing and may increase
the overlap between the different scenarios.

To reinforce the results of our automatic pipeline we ver-
ified its performance using several approaches: 1) Simulations
were used to validate the performance of the statistical frame-
work, discovering it has extremely high specificity and high
sensitivity (Supplementary Material online). 2) Comparison of
the pipeline results to the original studies that sequenced the
genomes demonstrated that our pipeline rediscovered 72% of
the genes reported to undergo mutation in the original stud-
ies (Supplementary Material online). Notably, we only had

26% overlap when comparing our list of adaptively changed
genes against a previously published list for PA (Marvig,
Sommer, et al. 2015). Nearly all previously designated adap-
tively changed genes were identified by us as accumulating
genetic changes in multiple strains within our data, but many
of them did not pass our statistical threshold. This indicates
the stringency of our statistical framework, which may ham-
per the detection of some genes that are under selective
pressure to undergo mutation during the infection. 3)
Assuming that the genes we detect as undergoing loss of
function are indeed not functional in the progeny isolates,
it is unlikely that the bacteria could survive if these genes
included known essential genes. Indeed, we found that 96%
of the essential proteins reported in a recent proteomic study
of PA (Poulsen et al. 2019) were not identified as undergoing
loss of function in any of the PA strains in our data
(Supplementary Material online, see also supplementary fig.
11, Supplementary Material online). 4) Finally, as our pipeline
is based on the mapping of sequencing reads against a refer-
ence genome, we compared its results with results obtained
by an alternative approach based on de novo assembly and
annotation of the different isolates using SPAdes (Bankevich
et al. 2012) and prokka (Seemann 2014) (Supplementary
Material online). We found the de novo assembly-based pipe-
line was extremely prone to incorrectly identifying genetic
changes during the infections due to assembly errors.
Accordingly, a consistent small fraction of the genes under-
going change or loss of function in the de novo assembly-
based pipeline were rediscovered in our reference-based pipe-
line (supplementary fig. 12a and b, Supplementary Material
online). In contrast, the fraction of genes undergoing change
or loss of function by our pipeline that were rediscovered by
the de novo assembly-based pipeline was quite variable be-
tween different bacterial species and strains, ranging between
0.0 and 0.2 for changed genes in CD to 0.5–1.0 for genes
undergoing loss of function in PA (supplementary fig. 12c
and d, Supplementary Material online). Importantly, the
main conclusions derived by applying the two pipelines are
consistent (see below and in Supplementary Material online).

Frameshift Mechanisms with Distinct Nucleotide
Biases Underlie Adaptive Loss of Function
We used the algorithm SnpEff (Cingolani et al. 2012) to pre-
dict the molecular mechanisms underlying loss of function in
our data (e.g., deletion, frameshift, or nonsense mutations
that lead to loss of function). Comprehensive analysis of
the distributions of different mechanisms leading to loss of
function of genes in different bacterial strains and species
demonstrated that frameshift mutations were the most com-
mon molecular mechanism of adaptive loss of function
events in all bacterial species except CD and ST (fig. 4a).
Frameshift mutations require only the change of a small num-
ber of nucleotides to induce loss of function and are easily
reversible (Hu and Ng 2012), making them useful tools for
evolution by loss of function. We noted that frameshifts were
usually minimal, with only a single nucleotide inserted or
deleted, and had distinct nucleotide biases in different species,
diverging from the standard %GC of the respective organism
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(fig. 4b). Since frameshift mutations are related to insertion
and deletion events (INDELs), we compared the predicted
INDELs with the results of the de novo assembly-based pipe-
line and found that 85.8% of predicted INDELs were reaf-
firmed (Materials and Methods).

Flagellar Assembly, Lipooligosaccharide Sialylation,
and Pore Formation Are Adaptively Changed in
Different Species
It is intriguing to find out whether orthologs in different
species have been identified as undergoing adaptive change
or loss of function. We predicted orthologs for all genes within
all species using reciprocal BlastP (Materials and Methods)
and found three pairs of orthologous genes undergoing adap-
tive loss of function in multiple species. In addition, two
triplets and 15 pairs of orthologous genes were identified as
undergoing adaptive change (supplementary table 4,

Supplementary Material online). For most genes undergoing
adaptive change or loss of function during within-host adap-
tation of different species, we did not identify orthologous
relationships, despite using extremely lenient thresholds for
BlastP. To inspect whether these genes can be classified by
similar functions or similar pathways they take part in, we
assigned all genes undergoing adaptive change or loss of func-
tion their respective KEGG pathways (Kanehisa and Goto
2000) and gene ontology (GO) annotations (Ashburner
et al. 2000). We established an additional statistical frame-
work to assess those pathways and functions in which genes
were adaptively affected in more species than expected at
random (Materials and Methods). After correction for testing
of multiple hypotheses, we found that genes related to the
flagellum filament, to N-acylneuraminate cytidylyltransferase
activity and to pore formation were adaptively changed in
more species than expected at random (supplementary table
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FIG. 4. Adaptive loss of function is mostly mediated by frameshift mutations. (a) The number of adaptive loss of function events due to different
loss of function mechanisms, normalized by the number of progenitor–progeny pairs in each species. (b) %GC in insertions or deletions leading to
frameshift events underlying adaptive loss of function, normalized by the %GC of the entire genome of each species. Asterisks denote %GC that
statistically significantly differs from the %GC of the entire genome by binomial test. *P� 0.05, **P� 0.01, and ***P� 0.001. Names of bacterial
species are as in figure 1b. The numbers above the bars represent the number of strains included for that bacterial species.
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5, Supplementary Material online). Genes related to flagellar
assembly were in fact adaptively changed in all flagellated
species except ST (fig. 5a) and in a remarkable 70–90% of
strains. Mutations negatively affecting the function of these
genes may cause the loss of the immunogenic flagella com-
plex and a switch to nonmotile lifestyles, which has previously

been demonstrated for some of the species during host in-
fection (Marvig, Sommer, et al. 2015; Bloomfield et al. 2018;
Aziz et al. 2019).

N-Acylneuraminate cytidylyltransferase activity is required
in both HI and CJ for sialylation of lipooligosaccharide (LOS), a
key process in the pathogenesis of both these species. Its
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FIG. 5. Convergent adaptation of different pathogens is evident at the pathway and functional levels (a) Flagella pathway. A schematic illustration
of the bacterial flagella. Parts that include genes that underwent adaptive change or loss of function in different bacterial species are denoted. (b)
Rifampicin resistance. Locations of mutations in the RRDR of RNAP in TB, PA, and SA strains are denoted. The numbers denote the corresponding
residues on the RpoB of TB, which were affected by the mutations. Color indicates rifampicin treatment: dark green—confirmed treatment by
rifampicin; bright green—likely treated by rifampicin based on conventional medical indications for the use of the drug; light orange—likely not
treated by rifampicin based on conventional medical indications for the use of the drug; dark orange—not treated by rifampicin. (c) Glycerol-3-
phosphate synthesis. Genes involved in glycerol-3-phosphate synthesis that underwent change/loss of function in a large fraction of the strains in
different bacterial species. X marks the gene encoding the relevant protein that underwent adaptive change or loss of function, with the color of
X indicating the species. PRPP: phosphoribosyl pyrophosphate. Names of bacterial species are as in figure 1b. Shapes represent chemical
compounds: orange circle—phosphate, blank circle—glycerol, blank square—glycerone, blue pentagon—imidazole, blank triangle—ribose or
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experimental loss ex vivo has been linked to increased immu-
nogenicity and decreased resistance to mammalian serum
(Guerry et al. 2000). neuA is the only gene related to this
activity, and surprisingly it was mutated in most of the HI
and CJ strains, most often in particular positions. hddC, a key
component in the synthesis of an additional capsular polysac-
charide, was also mutated in all CJ strains. This reaffirms and
generalizes the results of Pettigrew et al. (2018), who noted
sialyltransferase mutations in HI during infection of patients
suffering from chronic obstructive pulmonary disease.

Genes related to pore formation underwent adaptive loss
of function in most Gram-negative bacteria in our data, for
which it is known that small hydrophilic drugs, such as b-
lactams, use the pore-forming porins to gain access to the cell
interior (Ghai I and Ghai S 2018). This generalizes results by
previous studies, included in our data, which identified muta-
tions in specific genes related to pore formation occurring
during host adaptation in specific bacterial species (Porse
et al. 2017; Sherrard et al. 2017; Gaibani et al. 2018;
Pettigrew et al. 2018). The consistent mutations in these
genes across many species may be related to decreased sus-
ceptibility to these antibiotics.

Further Convergent Changes in KEGG Pathways Are
Evident in Genes Undergoing Nonadaptive Changes
or Loss of Function
The previous analyses were restricted to genes that we deter-
mined as undergoing adaptive change or loss of function in

the various species. In the next analysis, we assigned KEGG
pathways to all genes that underwent change or loss of func-
tion in our data to assess whether we can detect convergent
adaptation at the pathway level. We developed a statistical
framework to assess which pathways were affected more than
expected at random in the strains of each bacterial species
and in all strains across all species jointly (Materials and
Methods). This analysis was carried out to detect statistically
significantly overrepresented pathways among genes under-
going change and among genes undergoing loss of function.
Most overrepresented pathways were unique to single spe-
cies, but some pathways stood out in multiple species (fig. 6a
and supplementary table 6, Supplementary Material online).
No pathway was overrepresented among genes undergoing
change or loss of function at the whole-data set level alone.
Most prominently, the Flagellar assembly and Bacterial che-
motaxis pathways were overrepresented among changed
genes in the same species as in the previous analysis, support-
ing a possible shift to nonmotility during infection. Pathways
related to amino acid synthesis and metabolism were over-
represented among genes undergoing change and among
genes undergoing loss of function in multiple species, a find-
ing which could be related to adaptation to the amino acid-
rich host environment.

Some of the other pathways that were overrepresented in
multiple species are likely related to antibiotic pressures
(fig. 6a and supplementary table 6, Supplementary Material
online). For example, Beta-lactam resistance and Two-

(a) (b)
KEGG pathways GO Annota�ons

FIG. 6. Selected KEGG pathways and GO annotations that were overrepresented among genes undergoing change or loss of function in different
bacterial species. (a) Each row represents a different pathway: Rows with light orange background—overrepresented pathways among changed
genes; rows with light blue background—overrepresented pathways among genes undergoing loss of function. Dark boxes indicate that the
pathway was overrepresented in the species appearing on the column. The rightmost column indicates whether the pathway was overrepresented
when considering all strains of all species together. (b) As in (a) for GO annotations. Names of bacterial species are as in figure 1b.
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component system, which are related to b-lactam antibiotics
and colistin, respectively, with resistance to the latter emerg-
ing in AB via the PmrAB two-component system. Another
remarkable example is the RNA polymerase (RNAP) complex.
We detected adaptive changes in RNAP in both TB and PA
strains (fig. 6a), as well as in the b-subunit of SA (supplemen-
tary table 2, Supplementary Material online). Close inspection
of these mutations revealed many missense mutations within
the rifampicin-resistance determining region (RRDR, supple-
mentary fig. 13, Supplementary Material online) (Telenti et al.
1993; Andre et al. 2017), which has also been linked to de-
creased sensitivity to other antibiotics (Gu�erillot et al. 2018).
Indeed, most PA and SA-infected patients with RRDR muta-
tions in our data have no evidence of rifampicin exposure
(fig. 5b), raising the possibility that these mutations might be
selected due to treatment by other drugs. For in-depth anal-
ysis of RNAP mutations, see Supplementary Material online.

Common Changes in the Uptake of Iron and Other
Metals
We performed a similar analysis to assess which GO annota-
tions were statistically significantly overrepresented within
the gene groups that underwent change or loss of function
in the strains of each species and in all strains across all species
jointly (fig. 6b and supplementary table 7, Supplementary
Material online). We identified various GO annotations as
overrepresented among genes undergoing change and
among genes undergoing loss of function in multiple species,
including GO annotations related to cell surface structures,
such as flagella, pili, lipopolysaccharide (LPS), and peptidogly-
cans, alongside several GO annotations related to iron me-
tabolism. Genes related to uptake or synthesis of siderophores
were changed or underwent loss of function in most Gram-
negative species, suggesting a possible shift from siderophore-
based to heme-based iron scavenging or the development of
cheating behavior, as has been shown for PA (Marvig et al.
2014; Andersen et al. 2015). Surprisingly, we found that the
phuR, hasR, and isdB heme uptake systems were also mutated
in some PA and SA strains. Since phu operon mutations in PA
have been shown to lead to increased expression of the phu
heme uptake system during chronic infections (Marvig et al.
2014), it is possible that these mutations do not impair heme
uptake. Nevertheless, the phu system has been shown to be
detrimental in high heme concentrations, so mutations
impairing heme uptake may also confer an advantage in
the host environment (Andersen et al. 2018). Heme biosyn-
thesis was additionally overrepresented among changed
genes in SA, supporting the exogenous uptake of this prod-
uct. This result is also in line with overrepresentation among
changed genes of the KEGG pathway Porphyrin and chloro-
phyll metabolism in AB (fig. 6a). Although iron metabolism
was the most prominent, GO annotations related to the
metabolism and uptake of other trace elements were also
overrepresented among changed genes during the infection
of multiple pathogens, including molybdenum, zinc, nickel,
and copper, a finding which may suggest that modulation of
metal scavenging may be a general adaptive mechanism dur-
ing infections.

Many GO annotations were again linked to antibiotic
resistance. Among those stood out the changes in
glycerol-3-phosphate metabolism. A recent paper by
Bellerose et al. (2019) revealed that changes in the TB glycerol
kinase glpK reduce sensitivity to multiple antibiotics. In our
data, we detected not only glpK as adaptively changed in TB
but also several GO annotations related to glycerol-3-
phosphate metabolism in three additional species. These results
could indicate that changes in glycerol-phosphate metabolism
may lead to reduced sensitivity to antibiotics in additional spe-
cies, a possible global mechanism for reduced antibiotic sensi-
tivity. Furthermore, all processes have similar products, possibly
implicating the decrease in glycerol-3-phosphate itself as the
adaptive process, as hypothesized by Bellerose et al. for TB
(Bellerose et al. 2019) (fig. 5c). Mutations in the TB glpK during
host adaptation were also noted by Trauner et al. (2017).

As noted above, many genes undergoing adaptive change
or loss of function encode known virulence factors. Our anal-
ysis of GO annotations further supported this conclusion,
with multiple annotations related to bacterial virulence over-
represented among genes undergoing change and among
genes undergoing loss of function (fig. 6b). This may indicate
decreased virulence during chronic infections or a shift from
acute virulence to chronic virulence, as has been previously
suggested for PA (Hauser et al. 2011; Winstanley et al. 2016).
SA and Burkholderia pseudomallei have also been suggested
to attenuate their virulence during certain chronic infections
(Viberg et al. 2017; Suligoy et al. 2018).

To assess our conclusions, we applied our statistical frame-
work to genes identified by the de novo assembly-based pipe-
line as undergoing change or loss of function, in order to
identify among them genes that were adaptively changed
or adaptively underwent loss of function. We found that
many of our conclusions stay firm for this set of genes
(Supplementary Material online).

Discussion
In this work, we took a global approach to study within-host
adaptation of bacterial pathogens. We investigated 11 differ-
ent taxa of bacterial pathogens, representing much of the
variety of bacterial pathogens causing chronic disease in
humans. We showed that these pathogens undergo genetic
changes during infections, including loss of function muta-
tions. Many identical changes were discovered independently
in different strains belonging to the same bacterial species,
infecting different patients, indicating adaptive evolution.

Although we found little orthologous relationship be-
tween genes undergoing adaptive change or loss of function
in different species, analysis of meta-categories including
KEGG pathways and GO annotations demonstrated that
genes passing the statistical threshold for determining adap-
tive change or loss of function in different pathogens were
often related to similar pathways, structures, and biological
functions. Furthermore, when broadening the scope of our
analysis beyond genes undergoing adaptive change or loss of
function to genes which did not pass the statistical threshold,
we unveiled pathways and functions that were consistently
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affected in many strains of unrelated species via different
genes. This demonstrates remarkable convergent evolution
between different pathogens during host infection, despite
distinct lifestyles and pressures.

Previous studies examined adaptation in the context of a
single species and a single clinical presentation. In this study,
we included data of multiple bacterial species, from different
tissues, causing different clinical presentations, treated with
different antimicrobial drugs, originating from different geo-
graphical regions and studied by variable laboratory techni-
ques. DNA was extracted from single colonies, from multiple
colonies or even directly from patient samples in the different
studies. Additionally, the different studies employed different
sequencing machines and approaches (long-read sequencing,
single-end sequencing, paired-end sequencing, etc.). The joint
analysis of these different data limits our ability to detect
specific signals that may relate to specific clinical presenta-
tions associated with different symptoms or treatments.
Rather, our approach allows us to detect global convergent
adaptation, which is not limited to a specific scenario. Indeed,
we detected substantial convergence despite these differen-
ces by using large numbers of patients and stringent statistical
frameworks. Expansion of our framework with additional
data could allow the detection of further convergent adaptive
trends and overcoming nongeneralizable results for species
with strains originating from a single study. Also, although we
focused on protein-coding genes appearing in reference pro-
teomes, applying similar methodologies to additional geno-
mic elements/regions could lead to additional insights
regarding within-host evolution (Khademi et al. 2019). It
should be also possible to study subgroups of patients from
our database to focus on specific treatments or clinical pre-
sentations associated with specific sets of symptoms.

Adaptive changes occurring in multiple species were fre-
quently associated with common antigens recognized by the
human immune apparatus, including flagellar filament, sub-
strate of TLR5; LOS/LPS, substrates of TLR4; peptidoglycans,
substrates of TLR2; iron acquisition systems, considered highly
immunogenic (Wandersman and Delepelaire 2004). Many
adaptive changes also relate to antibiotic persistence/resis-
tance, especially evident in RNAP. Rifampicin is an antimicro-
bial agent acting by the inhibition of RNAP. Bacterial
resistance to rifampicin is common and usually arises by
mutations in the residues of the rifampicin binding site of
RNAP (Campbell et al. 2001). The region where the mutations
most commonly arise has been termed the RRDR (Telenti
et al. 1993). We showed that RNAP accumulates mutations in
PA, SA, and TB during infections, frequently located in the
RRDR (supplementary fig. 13, Supplementary Material on-
line). These mutations appear in many strains with no evi-
dence of exposure to rifampicin, although we cannot rule out
exposure to rifampicin administered for concurrent infections
by other pathogens. Strong selective forces acting on genes
linked to antibiotic resistance had clear mutational patterns,
with mutations at the same positions recurring indepen-
dently in different strains (fig. 5b). Similar patterns identified
in genes that are not currently linked with antibiotic persis-
tence/resistance, may hint at their involvement in these

processes (Supplementary Material online). This is supported
by our independent detection of glpK frameshift mutations,
which were recently linked to antibiotic resistance in TB
(Bellerose et al. 2019) (fig. 5c). We suggest that similar mech-
anisms may be involved in antibiotic resistance in additional
bacterial species. It is not surprising that the innate immune
system and antibiotic treatment seem to be major drivers of
convergent within-host adaptation in different species, as
both exert powerful general selective pressures on bacterial
pathogens that are usually not confined to specific species.

The adaptive mutations we detect arise repeatedly in in-
dependent infections, indicating that they may confer advan-
tages within the host environment. It is fascinating to ponder
why these mutations arise repeatedly in organisms that un-
dergo patient-to-patient transmission rather than remain
fixed across the species. Bacteria encounter stringent bottle-
necks when infecting new patients (Moxon and Kussell 2017).
We hypothesize that adaptive changes become disadvanta-
geous in the context of these bottlenecks and are therefore
subject to repeated cycles of negative and positive selection.
The mutations might persist within small subpopulations or
independently arise within each infective cycle as bacteria re-
encounter their chronic niches. This theory is supported by
genes undergoing adaptive change or loss of function that are
of vital importance for acute virulence, including the ESX-1
secretion system of TB (Gröschel et al. 2016) as well as the
flagella in CJ (Black et al. 1988).

Changes in virulence factors during infection have also
been hypothesized to relate to virulence attenuation during
chronic infections and to a shift from acute virulence to
chronic virulence (Hauser et al. 2011; Winstanley et al.
2016). We believe these interpretations are not mutually ex-
clusive, as bacteria employing acute infection strategies can
be extremely virulent, leading to death within hours or days.
The loss of factors required for acute virulence disarms the
pathogen of these deadly weapons and underlies a shift to-
ward lesser virulence (Furukawa et al. 2006). Indeed, patho-
gens isolated from established chronic infections are less
cytotoxic than earlier isolates from the same patients
(Gellatly and Hancock 2013). Therefore, the change or loss
of function of acute virulence factors may underlie both an
attenuation of virulence and a shift toward chronic virulence.

Finally, we believe our results to be an important resource
for screening candidate antivirulence targets. Antivirulence
therapy is an emerging strategy of antimicrobial treatment
employing agents targeting virulence factors to reduce the
virulence of infecting pathogens rather than eliminating
them, thus avoiding the exertion of selective pressures for
resistance. A major limitation of this paradigm is that target-
ing virulence factors, which are beneficial in vivo, leads to
reduced fitness of the pathogen and creates evolutionary
constraints inducing resistance (Allen et al. 2014). Our results
offer a rich resource of antivirulence targets that are non-
beneficial in vivo and could therefore prove to be effective
targets for disarming infecting bacteria. Conversely, targeting
virulence factors that frequently accumulate genetic
changes during infections may lead to development of anti-
biotic resistance, as evolution of those genes is possibly
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less constrained within the host environment (Rezzoagli et al.
2018). The rich resource of data that we provide establishes
the foundation to further study the basic principles of within-
host adaptation and their exploitation in antibacterial
therapy.

Materials and Methods

Data Organization
Compiling the Database
Whole-genome sequencing data of bacterial pathogens dur-
ing infection were curated by searching NCBI’s databases for
relevant studies using several search terms, such as “within-
host adaptation,” “intrahost evolution,” “infectious episode
AND WGS,” “longitudinal AND sequencing,”
“microevolution,” “serial isolates,” and “genomic adaptation.”
Relevant studies were defined as ones including whole-
genome sequencing data of bacterial isolates sampled in at
least two time points during a single infection of at least a
single human host with a single bacterial pathogen (table 1,
coinfections with other pathogens during the time period
were allowed). NCBI Assembly accession numbers were col-
lected when available, and otherwise NCBI SRA Run accession
numbers were used. The database can be found in supple-
mentary table 1, Supplementary Material online.

Most of the studies in our database included a single se-
quenced colony for each sample, and a single sample for each
time point, with a subset of the studies including multiple
colonies or samples for each time point. Another subset of
the studies included data directly sequenced from patient
samples, without the isolation of a clone beforehand. For
simplicity, we refer to the sequencing results of a single colony
as an isolate throughout the paper.

Downloading and Processing the Data
Data were downloaded using the SRA Toolkit (Leinonen et al.
2011) and assembled using the SPAdes Assembler v.3.10.1
(Bankevich et al. 2012). When assemblies were already avail-
able, they were directly downloaded. Reference or represen-
tative genomes were determined using NCBI’s E-Direct
command line utilities v.5.80 (Kans 2019). When several ref-
erence genomes were available, the closest one to the assem-
blies was determined by a custom script exploiting QUAST
v.4.5 (Gurevich et al. 2013) and Mash v.2.1 (Ondov et al. 2016).
We chose the reference genomes where the highest fraction
of the genome was aligned to contigs of the different assem-
blies and the average Mash distance to the assemblies was the
smallest. Notably, for most species only a single reference
genome was available, and for E. coli and for A. baumannii
one reference genome was found to be the closest to all
strains. Furthermore, for each strain the difference between
the Mash distances of any two assemblies to the reference
genome, was nearly always 0.0.

Determining the Phylogenetic Relationship between Isolates
We developed the TRACE algorithm to determine the phy-
logenetic relationship between the isolates from each patient
as follows (fig. 1c):

(1) Isolates from each patient are divided to clones based
on phylogenetic trees: kSNP v.3.1 (Gardner and Hall
2013; Gardner et al. 2015) is used to construct core
single-nucleotide polymorphism (SNP) matrices
based on the assemblies of the isolates of each patient
and up to 100 complete genomes for the relevant
bacterial species from NCBI’s Assembly database.
PAUP v.4.0 (Swofford 2003) is then used to construct
maximum likelihood trees out of the matrices, picking
each consensus tree out of 1,000 bootstrapped sam-
ples. Finally, we inspect the location of the isolates on
the constructed tree, and consider isolates found on a
single clade to originate from the same clone. For ad-
ditional validation, the MLST profile (Maiden et al.
1998) for each isolate is also predicted using mlst
v.2.16 (Jolley and Maiden 2010; Seeman 2017) and
isolates within the same clone, which differ in their
profiles, are split to separate clones (Supplementary
Material online).

(2) In order to determine which isolates may share a direct
progenitor–progeny phylogenetic link, TRACE then con-
structs the phylogenetic relationships between the iso-
lates of each clone. kSNP v.3.1 (Gardner and Hall 2013;
Gardner et al. 2015) and breseq v.0.32 (Barrick et al. 2014;
Deatherage and Barrick 2014) are utilized to construct
SNP matrices between the isolates and custom scripts
are used to assess the least parsimonious path possible
between the isolates in which each isolate is derived from
an earlier time point isolate. In cases where two isolates of
the same time point are available, an artificial common
ancestor is constructed as the intersection of the SNP
profiles of the two isolates, and trees including this isolate
are additionally inspected. Clones with three or more
isolates sampled at the same time point were excluded.
Finally, TRACE defines pairs of progenitor and progeny
isolates in each tree and assigns each pair a confidence
level based on its frequency among the 1% highest scoring
trees for that clone. We assessed the performance of the
TRACE pipeline using both simulated and empirical data,
verifying its high accuracy under a broad range of param-
eters (Supplementary Material online).

Analysis of Genetic Changes
Determining the Variation between Isolates
Breseq v.0.32 (Barrick et al. 2014; Deatherage and Barrick
2014) was used to call genetic and genomic differences
between each isolate and the respective reference ge-
nome of the species by mapping the sequencing reads
to the reference genome and identifying discrepancies
between the aligned reads and the reference genome se-
quence. Sequence repeats were detected using Vmatch
package (http://www.vmatch.de, last accessed
November 16, 2020) and excluded from all analyses. The
differences between the isolate and the reference genome
were then compared within each progenitor–progeny
pair using the COMPARE function of gdtools
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(Deatherage and Barrick 2014) to determine genetic and
genomic variations within the pair.

Defining Changed Genes and Genes Undergoing Loss of

Function
We used SnpEff v.4.1 (Cingolani et al. 2012) to classify the
impact of the above differences as low (e.g., synonymous
substitutions), moderate (e.g., nonsynonymous substitu-
tions), high (e.g., frameshift mutations), or modifier (e.g.,
mutations upstream to the coding sequence [CDS]). A
gene with variations of moderate effect that were found in
the progeny strain and not the progenitor strain was deter-
mined as changed within the progenitor–progeny pair. A
gene with high-impact variations that were found in the
progeny strain and not the progenitor strain was determined
both as undergoing change and as undergoing loss of func-
tion within the progenitor–progeny pair. Genes with high-
impact mutations in the progenitor strain were excluded as
we considered them as putative pseudogenes.

A gene that underwent change or loss of function in at
least one of progenitor–progeny isolate pairs of a strain was
determined as a gene that underwent change or loss of func-
tion, respectively, in that strain. Additionally, each gene was
assigned a score between 0.0 and 1.0 that reflects its loss of
function across all progenitor–progeny isolate pairs of the
strain. A similar score was determined for changed genes.
The score is defined as the fraction of progenitor–progeny
pairs in which the gene was affected out of all possible pairs.
Possible pairs are defined as all pairs except the ones where
the progenitor isolate is downstream in the tree (based on the
results of TRACE) to a progenitor–progeny pair in which the
gene was affected. For example, in case of two progenitor–
progeny pairs a -> b and b -> c, and a gene undergoing loss
of function between a and b, the pair b -> c should not be
regarded as a possible pair for loss of function of this gene
because the gene underwent loss of function upstream in the
tree. Note that change or loss of function events that are
predicted by TRACE to occur between a progenitor isolate
and a common theoretical ancestor of two progeny isolates
sampled at the same time point, are counted only once de-
spite appearing in two progenitor–progeny pairs.

Statistical Framework to Assess Adaptive Change and Loss of

Function
After assigning scores per strain to genes that underwent loss
of function, we assigned gene scores at the species level. Each
gene g in the reference genome of each species was assigned a
score, Lg, which is the sum of its per-strain scores across all
strains in which it underwent loss of function. This score
reflects the number of strains in which the gene underwent
loss of function, while taking into account the fraction of
progenitor–progeny pairs in which these events occurred
per strain. In further computations, we take the floor function
of Lg, which is the greatest integer less than or equal to Lg

(bLgc), as the number of strains in which the gene underwent
loss of function.

To evaluate if the repeated loss of function of a gene in
several strains was statistically significant, we determined
whether bLgc is greater than expected at random by random
simulations. To create the random simulations, we first
assigned each strain i a probability of loss Pi:

Pi ¼
sum of scores of genes undergoing loss of function in strain i

number of genes in genome
:

Note that here also we do not simply count the number of
genes that underwent loss of function in the strain, but take
into account the fractions of progenitor–progeny pairs in
which they underwent loss of function (their scores per
strain). We then simulated loss of function in 106 genes, de-
termining for each gene at random whether it did or did not
undergo loss of function. The probability for each simulated
gene to undergo loss of function in each strain is equal to the
strain’s loss probability, Pi. We counted the number of strains
in which each gene underwent loss of function in the simu-
lations and described the distribution of the number of genes
that underwent loss of function in each number of strains
(supplementary fig. 7, Supplementary Material online).
Finally, based on this distribution, we treated the fraction of
genes that underwent loss of function in at least bLgc strains
based on the simulations as the P value for a gene g whose
total score across all strains for loss of function was bLgc.
Genes with adjusted P value� 0.1 after correcting for testing
of multiple hypotheses by the Benjamini–Hochberg method
(Benjamini and Hochberg 1995) were determined to undergo
loss of function above random expectation and their loss of
function was therefore considered as putatively adaptive. We
conducted a similar statistical test for changed genes to de-
tect adaptively changed genes, replacing Lg with Cg, a similar
score for each gene that was determined as changed.

Computation of Mutation Rates
Mutation rates were calculated for strains with isolates sam-
pled at three or more time points. For each isolate, we
extracted the time point in which it was isolated and counted
the number of SNPs that do not appear in isolates sampled at
the very first time point for the strain. We then fitted a
second-degree polynomial for each strain based on the
time points and numbers of SNPs of the different isolates
and extracted its first derivative (mutation rate) and second
derivative (rate of change for the mutation rate).

Calculating dN/dS Ratios
dN/dS ratios were calculated using the raw counts of non-
synonymous/synonymous mutations across all progenitor–
progeny pairs of each strain.

Determining Hypermutator Clones
We defined hypermutator clones as clones with at least one
isolate with a complete deletion or loss of function mutation
in one of the genes of the DNA mismatch repair system,
where mutations have been shown to confer a strong or a
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very strong hypermutator effect in E. coli. We also included
isolates with mutations in one of the genes of the GO system,
where mutations have been shown to confer a weak to strong
hypermutator effect in E. coli (Oliver and Mena 2010). For
M. tuberculosis, we also included mutations in the nucS gene,
which is required for mismatch repair in this organism
(Casta~neda-Garc�ıa et al. 2017). Orthologs in the different spe-
cies were determined using BlastP v.2.4.0þ.

Determining the Similarity in the Lists of Genes Undergoing

Change or Loss of Function between the Different Isolates
To determine the similarity between different strains of each
species, we compared their lists of changed genes. We com-
puted the Jaccard index between the changed gene lists of
each two strains in each species and finally calculated the
mean of this measure across all strain pairs. A similar calcu-
lation was performed for the lists of genes that underwent
loss of function.

Characterizing the Genomic Variations
Assessing Mechanisms of Adaptive Loss of Function
We calculated the relative frequency of different mechanisms
underlying adaptive loss of function in the different species as
determined by SnpEff v.4.1 (Cingolani et al. 2012). The num-
ber of events of genes undergoing adaptive loss of function
caused by each mechanism was normalized by the number of
progenitor–progeny pairs in the respective species.

Examining %GC in Frameshift Mutations
In order to characterize the nucleotides that were inserted or
deleted in frameshift mutations, we compared the number of
observed inserted/deleted G/C bases with the expected value
based on the %GC of the entire genome by a binomial test.

Confirming INDELs by the De Novo Assembly-Based Pipeline
Frameshift mutations during the infection are caused by
INDELs in the CDS of the gene. Since we found that frame-
shifts constitute the major mechanism underlying loss of
function during the infection, we validated INDEL mutations
predicted by our pipeline using the de novo assembly-based
pipeline (Supplementary Material online). To test the pres-
ence of INDELs in the de novo assembly-based pipeline, we
extracted the gene in which each INDEL was found and
searched for CDS with the same annotation in the progenitor
and progeny isolates for the respective pair in which the
INDEL was determined. We chose cases where only a single
CDS in both the progenitor and progeny isolates had the
same annotation as the gene hosting the INDEL. We searched
for matches between the progenitor and progeny sequences,
where five nucleotides before and after the site of the pre-
dicted INDEL remained identical, and the INDEL site itself
underwent the expected insertion or deletion. The result
may be an underestimation due to SNPs or other variations
in the preceding or succeeding nucleotides.

Detecting Genomic Regions That Are Enriched with Genes

Undergoing Adaptive Change or Loss of Function
We performed hypergeometric tests for genomic regions of
size 10,000 base pairs to detect regions that are enriched with
genes undergoing adaptive change or loss of function in their
respective genomes by considering the number of genes in
the region, the number of genes undergoing adaptive change
or loss of function, and the respective numbers for the entire
genome. Regions with adjusted P value� 0.1 after correction
for testing of multiple hypotheses using the Benjamini–
Hochberg method (Benjamini and Hochberg 1995) were con-
sidered statistically significantly enriched with genes that
underwent adaptive change or loss of function.

Calling Orthologs Undergoing Adaptive Change or Loss of

Function
Determination of orthologs between different species was
based on reciprocal BLAST, defining orthologs as the best
BLAST hits with an extremely lenient E-value cutoff of
100.0, with the aligned region covering at least 30% of the
query and the BLAST score being at least 10% of the BLAST
score of a perfect match for the query.

Analysis of Pathways and Functions Affected by the

Mutations
We analyzed common pathways and functions affected by
mutations in different species by two analyses, the first fo-
cused on genes undergoing adaptive change or loss of func-
tion and the second included all genes undergoing change or
loss of function. For these analyses, we assigned each gene the
pathways to which it belongs using KEGG (Kanehisa and
Goto 2000) and its GO annotations using QuickGO
(Ashburner et al. 2000; Binns et al. 2009; Gene Ontology
Consortium 2019).

Assessing KEGG Pathways and GO Annotations for Genes

That Underwent Adaptive Change or Loss of Function. To
assess whether genes related to similar pathways or functions
underwent adaptive change or loss of function in different
species, we counted in how many species each pathway or
annotation included genes that underwent adaptive change
or loss of function. As a control, we performed 100,000 sim-
ulations, where in each simulation we chose random genes as
undergoing adaptive loss of function (change) in each species
according to the actual number of genes that underwent
adaptive loss of function (change) in that species, respectively.
The P value for each pathway or annotation was the fraction
of simulations where genes of the pathway underwent adap-
tive loss of function (change) in at least as many species as in
the actual results. Finally, we corrected the P values for testing
of multiple hypotheses using the Benjamini–Hochberg
method (Benjamini and Hochberg 1995). The use of simula-
tions controls for differences in the number of genes in dif-
ferent pathways.

Assessing KEGG Pathways and GO Annotations That Are

Overrepresented among Genes Undergoing Change or Loss

of Function. It is possible that there are genes in various strains
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that underwent change or loss of function that were not
determined as adaptive but are still involved in common
pathways. To this end, we assessed the enrichment of specific
KEGG pathways or GO annotations in the data of all genes
undergoing change or loss of function in a strain by simula-
tions. As a basis for the simulations, we used the number of
genes Ni undergoing loss of function (change) in each strain i.
We carried out 100,000 simulations of all our strains. In each
simulation, we randomly chose Ni genes to undergo loss of
function (change) in each strain i and counted in how many
strains each KEGG pathway or GO annotation was affected.
The P value for each pathway or annotation was the fraction
of simulations where it underwent loss of function (change)
in at least as many strains as in the actual results. Finally, we
considered all pathways with adjusted P value � 0.1 after
correcting for testing of multiple hypotheses by the
Benjamini–Hochberg method (Benjamini and Hochberg
1995) to be overrepresented among genes undergoing loss
of function (change). This process was carried out for the
strains of each bacterial species and for all the strains across
all species jointly. We carried out a similar analysis for GO
annotations.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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