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Abstract
Coronavirus disease 2019 (COVID-19) due to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
has been an ongoing pandemic causing significant morbidity and mortality worldwide. The “cytokine storm” is a critical 
driving force in severe COVID-19 cases, leading to hyperinflammation, multi-system organ failure, and death. A paradigm 
shift is emerging in our understanding of the resolution of inflammation from a passive course to an active biochemical 
process driven by endogenous specialized pro-resolving mediators (SPMs), such as resolvins, protectins, lipoxins, and mares-
ins. SPMs stimulate macrophage-mediated debris clearance and counter pro-inflammatory cytokine production, a process 
collectively termed as the “resolution of inflammation.” Hyperinflammation is not unique to COVID-19 and also occurs in 
neoplastic conditions, putting individuals with underlying health conditions such as cancer at elevated risk of severe SARS-
CoV-2 infection. Despite approaches to block systemic inflammation, there are no current therapies designed to stimulate 
the resolution of inflammation in patients with COVID-19 or cancer. A non-immunosuppressive therapeutic approach that 
reduces the cytokine storm in patients with COVID-19 and cancer is urgently needed. SPMs are potent immunoresolvent 
and organ-protective lipid autacoids that stimulate the resolution of inflammation, facilitate clearance of infections, reduce 
thrombus burden, and promote a return to tissue homeostasis. Targeting endogenous lipid mediators, such as SPMs, offers 
an entirely novel approach to control SARS-CoV-2 infection and cancer by increasing the body’s natural reserve of pro-
resolving mediators without overt toxicity or immunosuppression.
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1 Introduction

Multiple human diseases, including coronavirus disease 
2019 (COVID-19) and cancer, are driven by unresolved 
inflammation [1, 2]. Self-limited, acute inflammation, 
when properly regulated, is a natural host response to 
injury or invading pathogens that helps restore homeosta-
sis. This coordinated and host-protective process is initi-
ated by the recognition of pathogen-associated molecular 
patterns (PAMPs) and damage-associated molecular pat-
terns (DAMPs) by host cells. PAMPs are common motifs 
found within classes of microbes, e.g., severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2), the 
virus that causes COVID-19, while DAMPs are mol-
ecules released following tissue injury from dying or 
damaged cells, e.g. cancer. PAMPs and DAMPs are both 
detected by pattern recognition receptors (PRRs), which 
include Toll-like receptors (TLRs), retinoic acid-induc-
ible gene I (RIG-I)–like receptors, nucleotide-binding 
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oligomerization domain (NOD)–like receptors, and C-type 
lectin receptors, expressed in innate and adaptive immune 
cells [3, 4]. Upon PRR activation, signal transduction 
pathways lead to the activation of transcription factors, 
including nuclear factor-κB (NF-κB), activator protein 1 
(AP-1), interferon-regulated genes (IRGs), and CCAAT 
enhancer-binding protein beta (C/EBPβ), which upregu-
late gene expression and the synthesis of pro-inflammatory 
mediators that coordinate the elimination of pathogens and 
infected or damaged cells. Inflammatory enzymes locally 
produce arachidonic acid–derived eicosanoids, such as 
prostaglandins (PG), leukotrienes (LT), and thrombox-
anes (TX), which mediate the generation of cytokines and 
chemokines contributing to a “cytokine storm.” Together, 
these eicosanoids and their downstream mediators contrib-
ute to the classical symptoms of inflammation [2, 5–8] first 
documented by Roman doctor Cornelius Celsus in the first 
century AD, which include redness (rubor), heat (calor), 
swelling (tumor), and pain (dolor), and later the addition 

of loss of function (function laesa) by Rudolph Virchow 
in the nineteenth century AD [9].

Phagocytosis of microbial invaders and cellular debris 
by macrophages should control and self-limit the acute 
inflammatory process, thereby allowing the damaged tis-
sue to begin regeneration and return to homeostasis [10]. 
However, if there is unsuccessful removal of noxious stim-
uli, macrophages continue to act as antigen-presenting cells 
for T cells, turning acute and physiological inflammation 
into chronic and pathological [11]. Without adequate clear-
ance, inflammasomes can become activated, triggering a 
macrophage-derived “eicosanoid storm” of endogenously 
produced lipid mediators that leads to a cytokine storm with 
the release of pro-inflammatory cytokines and chemokines, 
inducing a persistent hyperinflammatory state (Fig. 1) [12]. 
Hence, sustained pathologic inflammation can cause exces-
sive tissue damage and exacerbate the disease state beyond 
the acute inflammatory response associated with the initial 
infection or disease itself. This scenario has been observed 

Fig. 1  Hyperinflammation in 
COVID-19 and cancer occurs 
due to a cascade of events, 
including the activation of tran-
scription factors, the production 
of inflammatory enzymes, and 
the release of eicosanoids and 
pro-inflammatory cytokines. 
These mediators enhance ongo-
ing inflammation, contribut-
ing to disease progression 
and tissue destruction. SPMs, 
including resolvins, protec-
tins, lipoxins, and maresins, 
exert their pro-resolving and 
anti-inflammatory effects by 
stimulating clearance of nox-
ious stimuli (phagocytosis of 
SARS-CoV-2 and phagocytosis/
efferocytosis of cancer debris), 
countering the “cytokine 
storm,” and exhibiting anti-
thrombotic properties. Created 
with BioRender.com
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in cancer and COVID-19, both of which have caused wide-
spread morbidity and mortality. Early observations have 
identified an association between a hyperinflammatory 
cytokine storm and poor clinical outcomes among patients 
with COVID-19 [1, 13, 14]. Thus, the pro-inflammatory 
cytokine storm likely represents a critical driving force in 
severe COVID-19, potentially leading to sequela such as 
a systemic inflammatory response and multi-system organ 
failure in those infected with SARS-CoV-2 [1, 15, 16].

Historically, the resolution of inflammation was con-
sidered a passive process, resulting from the loss or dilu-
tion of pro-inflammatory mediators from the extracellular 
milieu [17]. Thus, anti-inflammatory therapies have focused 
on neutralizing pro-inflammatory mediators, including 
cytokines, eicosanoids, and their biosynthetic enzymes 
[18–20]. Despite approaches to block systemic inflamma-
tion, there are no current therapies designed to stimulate 
the resolution of inflammation in patients with COVID-19 
or cancer. Although previously believed to be passive, reso-
lution of inflammation is now known to be an active bio-
chemical process orchestrated by lipid autacoids known as 
specialized pro-resolving mediators (SPMs). SPMs, which 
include the lipoxin (LX), resolvin (Rv), protectin (PD), and 
maresin (MaR) families, are biosynthesized from polyun-
saturated fatty acids, including arachidonic acid, eicosap-
entaenoic acid (EPA), docosahexaenoic acid (DHA), and 
n-3 docosapentaenoic acid [21–23]. Through stereoselec-
tive activation of their specific G-protein-coupled receptors 
(GPCRs), SPMs evoke anti-inflammatory and pro-resolving 
processes without being immunosuppressive [2, 24]. Profes-
sor CN Serhan outlined the basics of the resolution response 
and mechanisms as well as the potential impact of resolu-
tion mediators in tissue regeneration in recent talks to the 
National Institute of Health (NIH) (https:// www. niams. nih. 
gov/ newsr oom/ featu red/ infla mmati on- resol ution- round 
table) and to the National Academies of Sciences, Engi-
neering, and Medicine (https:// www. natio nalac ademi es. org/ 
event/ 11- 02- 2021/ under stand ing- the- role- of- the- immune- 
system- in- impro ving- tissue- regen erati on-a- works hop). 
Notably, while some drugs can disrupt timely resolution, 
aspirin and statins trigger the production of epimeric forms 
of several SPMs, further promoting the resolution of inflam-
mation [22, 25–30].

Failure to resolve inflammation has been linked to path-
ologic inflammation in several diseases due to impaired 
biosynthesis of SPMs, including tuberculous meningitis,  
multiple sclerosis, and osteoarthritis [31–33]. In fact, within 
various hyperinflammatory diseases, eicosanoids, SPMs, 
and SPM/eicosanoid ratios in peripheral blood have been 
identified as novel serological biomarkers to monitor dis-
ease and treatment efficacy [34]. Dysregulated levels of 
SPMs with elevated eicosanoid patterns (e.g., reduced SPM/
eicosanoid ratio such as resolvin D1/leukotriene  B4) have 

been detected in human patients with various inflammatory 
diseases, including sepsis, chronic obstructive pulmonary 
disease (COPD), colon cancer, and leukemia [34]. Possible 
explanations for reduced SPM levels include reduced dietary 
intake of EPA and DHA as well as mutations in enzymes 
involved in synthesizing SPMs. Other mechanisms that may 
also disrupt inflammation resolution include mutations in the 
genes encoding SPM receptors, diminished expression of 
SPM receptors, dysfunctional SPM receptors, and abnormal 
post-SPM receptor intracellular signaling [35, 36]. Failure 
of resolution, sometimes termed a "resolution deficit,” can 
thus contribute to hyperinflammation in COVID-19 and 
cancer via uncontrolled eicosanoid and cytokine storms 
[13, 37, 38]. The direct activity of released cytokines and 
chemokines in COVID-19 and cancer can cause massive cell 
death that provokes an ongoing cascade of host responses, 
including the production of macrophage-derived eicosa-
noids, that potentiates a vicious cycle of eicosanoid and 
cytokine storms [2, 39, 40]. Although endogenously pro-
duced SPMs exhibit potent inflammation-resolving activi-
ties by controlling leukocyte trafficking and countering the 
production of cytokines and chemokines, absent or dimin-
ished SPM levels may allow for ongoing pro-inflammatory 
processes [2]. Here, building off of a previous review [16], 
we elucidate parallels between COVID-19 and cancer, high-
lighting how impaired endogenous pro-resolving pathways 
may contribute to the hyperinflammation seen in both dis-
ease pathologies and offering insight into possible therapeu-
tic interventions moving forward.

2  Inflammation in COVID‑19

A well-coordinated immune response is critical for defense 
against viral infections. Hence, dysregulation of the host 
response can lead to severe tissue damage, exacerbated 
microbial burden, and progressive disease pathology. The 
sequela of the inflammatory response that results from 
SARS-CoV-2 infection can have lasting health complica-
tions on patients of all ages, leading to multi-system inflam-
matory syndrome in children (MIS-C) [41] as well as acute 
respiratory distress syndrome (ARDS) and multi-system 
organ failure in adults [42]. The resulting impact on human 
life has been significant with over five million deaths attrib-
uted to COVID-19 globally as of December 2021 [43].

Increased levels of many cytokines and chemokines have 
previously been demonstrated in humans infected with 
SARS-associated coronavirus [44–47]. Elevated interleukin 
6 (IL-6), IL-10, IL-2 receptor, and tumor necrosis factor 
alpha (TNF-α) levels were recently reported in COVID-19 
patients and found to correlate with disease severity [48]. 
Notably, higher plasma levels of IL-2, IL-6, IL-7, IL-10, 
granulocyte colony-stimulating factor (G-CSF), interferon 
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gamma-induced protein 10 (IP-10), monocyte chemoattract-
ant protein-1 (MCP-1), macrophage-inflammatory protein 
1α (MIP-1α/CCL3), and TNF-α were identified in patients 
with confirmed SARS-CoV-2 infection requiring intensive 
care [13, 49]. In one retrospective multi-center study involv-
ing 150 hospitalized patients from Wuhan, China, significant 
differences were identified in plasma levels of inflamma-
tory markers, including IL-6 and C-reactive protein (CRP), 
between patients who died of COVID-19 versus those dis-
charged [50]. Additionally, increased expression of C–C 
motif chemokine receptor 5 (CCR5) has been identified in 
leukocytes of COVID-19 patients compared to healthy con-
trols [51]. These differences suggest that pro-inflammatory 
mediators can serve as prognostic indicators and should be 
considered when developing new therapeutic approaches for 
treating disease complications associated with SARS-CoV-2 
infection [50].

Preclinical studies have characterized the inflammatory 
response resulting from infection with SARS-CoV-2. In ani-
mal studies, SARS-CoV-2 has been shown to elicit a strong 
pro-inflammatory cytokine response after viral infection, 
culminating in a cytokine storm and reduced pulmonary 
function associated with lung infiltration by monocytes, neu-
trophils, and activated T cells [52]. Notably, host response 
to SARS-CoV-2 infection results in elevated production of 
chemokines and cytokines, specifically IL-6, while failing 
to launch a robust interferon (IFN)-I or IFN-III response 
[53]. Thus, hyperinflammation may result from delayed 
IFN-I signaling in the presence of rapid SARS-CoV-2 viral 
replication, allowing for accumulation of pathogenic mac-
rophages, elevated cytokine and chemokine levels, vascular 
leakage, and impaired T cell responses [54]. Cynomolgus 
macaques with various clinical conditions and ages infected 
with SARS-CoV-2 also demonstrated a difference in condi-
tion severity between young and older animals with under-
lying diseases [55]. Despite similar viral loads, the exces-
sive immune response seen in older animals corresponded 
with more severe lung injury. Of note, it has previously 
been shown that SARS-CoV-infected aged macaques had an 
exacerbated innate immune response relative to young adult 
macaques, which was associated with increased expression 
of inflammatory genes, such as NF-кB, and reduced expres-
sion of IFN-I [56]. In some patients with life-threatening 
COVID-19 pneumonia, genetic defects at loci involved in the 
induction and amplification of IFN-I as well as auto-antibod-
ies that neutralize IFN-I were identified [57, 58]. Therapeu-
tic approaches to COVID-19 must therefore account for the 
hyperinflammatory host response that results from infection 
with SARS-CoV-2, especially among those with loss of IFN-
I-dependent immunity [59].

The SARS-CoV spike (S) protein binds to the angiotensin-
converting enzyme 2 (ACE2) for viral entry into host cells 
[60]. The S protein has been shown to significantly induce 

endoplasmic reticulum (ER) stress and upregulate early 
expressed chemokines such as chemokine (C-X-C motif) 
ligand (CXCL2) in murine models (analogous to human 
IL-8) [61, 62]. Interestingly, coronavirus infection activates 
ER stress signaling and induces unfolded protein response 
(UPR) components at the mRNA level while suppressing 
them at the protein level [63]. Prolonged ER stress, with the 
accumulation of unfolded proteins and the consequent induc-
tion of UPR, can result in apoptotic cell death and promote 
an ongoing pro-inflammatory response [64]. Many groups 
have reported the effect of coronavirus infection on apop-
tosis over the last decade, and more recently, SARS-CoV-2 
has also been shown to induce apoptotic cell death. Ren and 
collaborators have shown that SARS-CoV-2 ORF3a protein 
can efficiently induce apoptosis in different cell lines [65, 
66]. Altogether, the delayed IFN-I response, increased ER 
stress, and the subsequent presence of apoptotic cellular 
debris lead to the development of hyperinflammation via a 
cytokine storm.

Signaling from cytokines and chemokines serves as an 
attractant for immune cells, such as neutrophils and mac-
rophages, whose infiltration can result in tissue injury and 
significant detriment to organs. For example, higher levels 
of pro-inflammatory cytokines in the urine of patients with 
COVID-19 have been shown to correlate with kidney tissue 
damage and acute kidney injury [67]. Other organs impacted 
by severe COVID-19 include the lungs, heart, spleen, lymph 
nodes, brain, liver, eyes, vasculature, and skin [68]. In the 
lungs, differences between moderate and severe COVID-19 
cases may result from immune cell extravasation and the 
presence of non-resident macrophages in the airway epithe-
lium over-expressing cytokines and chemokines. Interest-
ingly, single-cell sequencing analysis revealed stronger inter-
actions between epithelial and immune cells in the airway 
epithelium of critically ill COVID-19 patients compared to 
moderate cases, indicated by the profiles of ligand-receptor 
expression and activated immune cells. The airway epithe-
lium also contained inflammatory macrophages express-
ing high levels of C–C motif chemokine ligand 2 (CCL2), 
CCL3, CCL20, CXCL1, CXCL3, CXCL10, IL-8, IL-1β, and 
TNF-α [69]. This evidence suggests that a cytokine storm 
likely explains some of the pathologies associated with 
severe COVID-19 [1].

A broad array of inflammatory cytokines and chemokines 
is evident in COVID-19 pathogenesis, i.e., children suffer-
ing from MIS-C presented with elevated levels of soluble 
IL-2 receptor, IL-10, and IL-6 [70]. Thus, efforts to suppress 
hyperinflammation intrinsic to severe disease should ideally 
not only target specific inflammatory components but rather 
aim to resolve inflammation in its entirety. Of note, down-
regulation of systemic SPM concentrations has been linked 
with dysregulated phagocyte function and increased disease 
severity in COVID-19 [71]. Among hospitalized critically 
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ill COVID-19 patients, plasma SPMs levels were found to 
be significantly decreased in those who died of the disease 
compared to those who were discharged [72]. Therefore, 
the link between SPM and patient survival suggests that the 
hyperinflammation present in severe COVID-19 may reflect 
failed engagement of pro-resolving pathways in inflamma-
tion resolution. Thus, rescuing failed resolution may be an 
ideal approach to treat COVID-19.

3  Inflammation in cancer

Inflammation is now a well-recognized hallmark of cancer 
[73]. While initially believed to be anti-tumoral, the impact 
of a tumor-associated inflammatory response on tumorigen-
esis, cancer progression, and metastasis is now appreciated 
[73, 74]. At sites of inflammation, phagocytes produce reac-
tive oxygen and nitrogen species that can damage DNA, and 
chronically inflamed tissues promote cell proliferation, thus 
multiplying malignant cells [75]. In fact, several inflamma-
tory states have been linked to cancer, such as inflammatory 
bowel disease and colorectal cancer, bronchitis and lung 
cancer, and prostatitis and prostate cancer [76]. The infiltra-
tion of immune cells into the tumor stroma contributes to an 
inflammatory milieu similar to that seen in non-neoplastic 
processes [77], contributing to tumor progression [78–81]. 
Among recruited inflammatory cells, persistent activation of 
transcription factors such as NF-κB, signal transducer and 
activator of transcription 3 (STAT3), and hypoxia-inducible 
factor 1α (HIF-1α) results in the production of mediators 
including cytokines, chemokines, and cyclooxygenase 2 
(COX-2) [82]. A pathologic inflammatory cycle continues 
as the cytokines activate transcription factors in cells, lead-
ing to the continual production of inflammatory mediators.

Within this pro-inflammatory milieu, tumor cells can 
proliferate while circumventing death and invading new tis-
sues by releasing growth factors, survival factors, and pro-
angiogenic factors [39, 83–87]. Several pro-inflammatory 
mediators, such as TNF-α, IL-6, transforming growth factor 
beta (TGF-β), IL-10, CCL2, and CCL20, have been shown 
to attract macrophages and participate in both the initiation 
and progression of cancer [82, 88, 89]. Among in vitro cuta-
neous melanoma cells, secretion of IL-1 and TNF-α from 
macrophages has been shown to upregulate expression of the 
pro-angiogenic factors IL-8 and vascular endothelial growth 
factor (VEGF), thus promoting angiogenesis [90].

The cytokine storm is also critical to cancer progression 
and metastasis. In non-small cell lung cancer patients, ele-
vated IL-6 and TNF-α levels in tissue and serum samples 
were associated with metastasis and worsened tumor clinical 
stage, highlighting the critical role that cytokines play in 
tumor cell proliferation [91]. On the other hand, IL-1β inhib-
itors aimed to treat inflammation in myocardial infarction 

patients led to reduced cancer mortality, reinforcing that pro-
inflammatory IL-1β aids in the progression and invasive-
ness of cancers [92]. Studies involving murine models have 
revealed that chemokine receptors also aid in metastasis, as 
the expression of different receptors results in different meta-
static destinations [93]. In mouse models of B16 melanoma, 
cells overexpressing CCR7 metastasized to lymph nodes, 
whereas overexpression of CXCR4 increased metastasis to 
the lungs [94, 95]. Metastasis, however, can be controlled 
through eicosanoid receptor inhibition, as  PGE2 plays a role 
in suppressing immune responses. In mice deficient in the 
 PGE2 receptor subtype 2 (EP2), lung tumor multiplicity was 
significantly lower than in wild-type counterparts, suggest-
ing the  PGE2 signaling pathway as a potential therapeutic 
target [96].

Beyond the inflammatory nature of cancer itself, its treat-
ment also can generate debris that further fuels a hyperin-
flammatory state. Although previously believed to be inert 
or inhibitory of tumor growth [84, 97], the cellular debris 
generated by current cancer therapies, including radiation 
and chemotherapy, can stimulate ongoing inflammation. 
The Revesz effect, first described in 1956, demonstrates that 
tumor growth can be stimulated by radiation-induced cell 
death via an inflammatory response [98]. In fact, co-injec-
tion of cell debris with live tumor cells reduces the inoculum 
of tumor cells needed to produce tumors in animal models 
[98–100]. Numerous studies have since confirmed that radia-
tion-generated cellular debris drives tumorigenesis and have 
outlined similar effects from chemotherapy-induced cell 
death as well, linking this tumorigenesis to a hyperinflam-
matory state sustained by cytokine storms [99, 101–103]. 
Moreover, apoptotic cell death has been found to correlate 
with poor prognosis [104–108]. We recently demonstrated 
that cellular debris could also stimulate tumor dormancy 
escape via failure of resolution of inflammation and that 
resolvins prevent the chemotherapy-induced cytokine storm 
in cancer models [84]. Thus, a failure of inflammation reso-
lution within cancer permits a sustained hyperinflammatory 
state, triggering cancer initiation, progression, and metas-
tasis [85]. Given that the balance between pro- and anti-
inflammatory chemokines and cytokines governs neoplastic 
growth [88], this highlights the critical need to supplement 
current treatment practices with therapeutic approaches that 
counter inflammation and promote its resolution.

4  Cytokine storm in COVID‑19 and cancer

As outlined above, the cytokine storm is central to the patho-
genesis of both COVID-19 and cancer. Additionally, both 
involve cell death and the generation of cellular debris that 
can further contribute to the cytokine storm and hyperin-
flammation. Analyses of the cytokine storm mediators in 
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cancer reveal a broad overlap with those observed in the 
cytokine storm in COVID-19: IL-6, MCP-1, IL-8, TNFα, 
G-CSF, IL-2R, IL-1β, IFN-γ, IP-10, and IL-1 [1, 13, 39, 
109]. Thus, therapeutic strategies that promote resolution 
and work to counter a broad array of inflammatory mediators 
may be useful in controlling both COVID-19 and cancer.

5  Traditional approaches to counter 
inflammation

With both local and systemic inflammatory responses in 
COVID-19 and cancer, countering inflammation may be 
as critical as anti-SARS-CoV-2 or anti-cancer therapies 
themselves. Efforts to resolve inflammation date back 
to the ancient Greeks, who postulated that the redness 
in inflammation was due to an excess of red blood and 
practiced bloodletting as a means to reduce inflammation 
[110]. This theory remained in practice into the nineteenth 
century. Additional attempts to mitigate the pain and fever 
associated with inflammation were made, including Hip-
pocrates’ use of salicylates from willow bark trees in 400 
BC [111]. Yet it was not until 1897 that acetyl-salicylic 
acid (aspirin) was patented by Bayer & Co.’s chemist 
Felix Hoffmann [112]. Still, aspirin’s exact mechanism 
of action was not well elucidated until 1971, when Sir 
John Vane discovered that the inhibition of prostaglandin 
biosynthesis is the target of aspirin-like drugs [113, 114]. 
Within the arachidonic pathway, aspirin and non-steroidal 
anti-inflammatory drugs (NSAIDs) inhibit the activity of 
COX-1 and COX-2 (except for COX-2-selective NSAIDs 
like celecoxib), blocking the formation of PGs that cause 
inflammation, swelling, pain, and fever, therefore provid-
ing antipyretic, analgesic, and anti-inflammatory relief 
[114]. Subsequent therapeutic approaches to suppress 
inflammation and immune system activation similarly 
center on the blockade of individual enzymes or mediators 
rather than attempting to dampen the entire inflammatory 
response [85, 115].

Many current treatments for COVID-19, including ster-
oids, act through anti-inflammatory or immunomodula-
tory functions without prompting viral clearance [116]. 
Dexamethasone, a long-acting corticosteroid currently in 
use for COVID-19 patients requiring supplemental oxy-
gen or ventilatory support, binds to glucocorticoid recep-
tors in the cytoplasm, decreases the expression of pro-
inflammatory cytokines including IL-1, IL-2, IL-6, IL-8, 
TNF, and IFN-γ [117], and suppresses neutrophil migra-
tion [118]. One meta-analysis encompassing data from 
1,282 critically ill patients demonstrated a lower 28-day 
all-cause mortality in COVID-19 patients receiving sys-
temic dexamethasone compared to placebo [119]. How-
ever, the immunosuppressive nature of glucocorticoids 

can leave patients vulnerable to secondary bacterial, 
fungal, or Strongyloides superinfections [120]. Selective 
cytokine blockade has also been employed against severe 
COVID-19, including the IL-6 inhibitors tocilizumab 
[121] and sarilumab [122]. In a fixed-effects meta-anal-
ysis that included 10,930 participants from twenty-seven 
randomized controlled trials, IL-6 antagonists were asso-
ciated with a lower 28-day mortality among COVID-19 
cases compared to placebo (summary OR 0.86, 95% CI 
0.79–0.95, p = 0.003) [123]. Of note, a large percentage 
of COVID-19 patients within these trials had secondary 
infections by 28 days (21.9% of patients receiving IL-6 
antagonists versus 17.6% of patients receiving usual 
care or placebo) [123]. Despite some success, these anti-
inflammatory and immunomodulatory therapies leave 
much room for improvement as patients continue to suffer 
from profound morbidity due to immunosuppression and 
risk for secondary infections [124].

Although inflammation is fully recognized as one of 
the hallmarks of cancer, therapeutic approaches to counter 
cancer-associated inflammation have yet to be fully imple-
mented despite robust preclinical data [125]. For exam-
ple, the genetic ablation of COX or PGE synthases has 
been shown to shift the tumor inflammatory profile toward 
anti-cancer pathways. Yet therapeutic strategies targeting 
these mechanisms remain underutilized despite evidence 
that  PGE2 fuels tumor-promoting inflammation that leads 
to tumor growth in immunocompetent hosts [126]. While 
NSAIDs are starting to be clinically applied in cancer pre-
vention, including with the US Preventive Services Task 
Force’s recommendations on the use of aspirin to prevent 
colorectal cancer in adults aged 50 to 59 years, anti-inflam-
matory strategies are not yet included in the standard of care 
for anti-cancer regimens [127]. However, one analysis of five 
randomized controlled trials demonstrated that allocation to 
aspirin reduced the risk of cancer with distant metastases 
(hazard ratio 0.64, 95% CI 0.48–0.84, p = 0.001), suggest-
ing that patients with cancer may benefit from aspirin and 
its anti-metastatic properties [128]. Additionally, the intra-
operative administration of the NSAID ketorolac demon-
strated a statistically significant reduction in the incidence of 
distant recurrences of breast cancer [129]. Moreover, a sig-
nificant survival benefit from aspirin use has been observed 
for patients with esophageal, hepatobiliary, and colorectal 
cancers [130]. Currently, several clinical trials are underway  
to characterize the potential survival benefit of aspirin treat-
ment for patients with colorectal cancer [131–134]. In addi-
tion, other approaches that target inflammation, such as the 
inhibition of specific cytokines and chemokines, including 
IL-1α (MABp1) and TNF-α (etanercept and infliximab), 
are showing promising results in preclinical and clinical 
trials [135–138]. While these findings support the addition 
of anti-inflammatory therapeutics to standard treatment 
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regimens, their success may be limited due to their targeting 
of specific inflammatory markers rather than system-wide 
inflammation.

Importantly, multiple side effects and toxicities further 
confound the benefits of NSAID treatment for patients 
with cancer. Gastrointestinal complications can be severe, 
including mucosal ulceration leading to peptic ulcers, reflux 
esophagitis, and dyspepsia. In fact, aspirin has been shown 
to increase upper and lower gastrointestinal bleeding risk 
by 60% (multivariable hazard ratio 1.62, 95% CI 1.25–2.10, 
p < 0.001) in adults aged ≥ 70 years in the ASPirin in Reduc-
ing Events in the Elderly (ASPREE) trial [139]. Further-
more, COX inhibition decreases thromboxane A2 produc-
tion in platelets, which prolongs bleeding time and disrupts 
platelet aggregation. Additionally, the shift from the COX 
to the LOX pathway that occurs with NSAID use can lead to 
severe bronchoconstriction events in asthmatics [140]. Nota-
bly, while selective COX-2 inhibitors, such as celecoxib and 
rofecoxib, have been shown to prevent colorectal adenomas, 
their use is not routinely advised due to an increased risk 
of adverse cardiovascular events [141–143]. Therefore, the 
use of current anti-inflammatory therapies is complicated 
by their inability to effectively resolve inflammation as they 
only target specific components, and by the side effects and 
adverse events that occur following treatment. Approaches 
that address the entire pathologic process are urgently 
needed, especially for hyperinflammatory conditions such 
as COVID-19 and cancer.

6  Resolution of inflammation as a new 
therapeutic target

While traditional approaches to counter inflammation have 
focused on utilizing anti-inflammatory mechanisms, a new 
therapeutic direction involves harnessing the host’s endoge-
nous inflammation resolution processes, thereby eradicating 
the excessive inflammation rather than just dampening one 
component [144]. Despite some success with anti-inflamma-
tory treatment strategies that target individual enzymes or 
mediators, hyperinflammatory responses seen in COVID-19, 
cancer, and other inflammatory diseases may require more 
comprehensive pharmacologic options that act not only to 
counter inflammation but also to promote resolution. While 
dexamethasone has been found to induce DHA-derived SPM 
production, increasing levels of protectins PD1 and PDX, its 
immunosuppressive properties have important implications 
for viral clearance and potential bacterial superinfection, 
as mentioned above [145, 146]. In addition to many poten-
tial adverse events, NSAIDs also indiscriminately inhibit 
eicosanoid pathways, thereby preventing the production of 
pro-resolving mediators. Blockade of COX-2 can perpetuate 
rather than terminate inflammation as prostaglandins play 

critical roles in pro-resolution processes, including initiating 
lipid mediator class-switching [147, 148].

Moreover, using traditional anti-inflammatory treatments 
is further complicated by their inability to clear debris. 
SPMs, on the other hand, help to orchestrate the return to 
tissue homeostasis through the clearance of cellular debris 
by regulating neutrophil infiltration and stimulating effero-
cytosis through the non-phlogistic recruitment of mononu-
clear cells [35, 149]. Since debris is critical to COVID-19 
and cancer pathogenesis, it is imperative that SPMs be con-
sidered for clinical use in these pathologies. Additionally, 
given the cytokine storms associated with hyperinflamma-
tion in COVID-19 and cancer, it is important to note that 
SPMs promote inflammation resolution via downregulation 
of cytokine production by activated CD8 + cytotoxic T cells 
and CD4 + T helper (Th) 1 and Th17 cells [150]. In preclini-
cal studies focused on cancer, resolvins counter-regulated 
the macrophage secretion of IL-6, IL-8, CCL4, CCL5, and 
TNF-α when exposed to chemotherapy-generated cellular 
debris [84]. Interestingly, a targeted lipidomic analysis of 
bronchoalveolar lavage (BAL) fluid via tandem mass spec-
trometry identified an increase in both pro-inflammatory 
lipid mediators (PGs, LTs, and TX) as well as pro-resolving 
lipid mediators (Rv D-series, PDX) in severe COVID-19 
patients (n = 33) compared to healthy controls (n = 25) [151]. 
Similarly, the SARS-CoV-2 virion spike 1 glycoprotein (S1), 
a component of the spike protein, has been shown to increase 
chemokine and cytokine release, such as IL-8 and TNF-α, 
and trigger the biosynthesis of RvD1 in macrophages in vitro 
[152]. Despite this endogenous SPM production, treatment 
with RvD1 and RvD2 countered the S1-induced cytokine 
storm and hyperinflammation by significantly reducing both 
IL-8 and TNF-α [152], highlighting that an inflammatory 
milieu that is already producing resolvins may benefit from 
additional supplementation.

7  SPMs exhibit anti‑viral 
and anti‑thrombotic activities

SPMs, including RvE1, PD1, and PDX, have shown direct 
anti-viral activities [153–159]. Protectin D1 markedly attenu-
ated influenza (H5N1) viral replication by inhibiting nuclear 
export of influenza virus RNA and demonstrated a survival 
benefit in mice with severe influenza infection [153]. Thus, 
PD1 effectively restricts influenza replication, even when 
treatment was initiated 2 days post-viral infection [153, 159]. 
Moreover, topical RvE1 and PD1 reduced the severity and fre-
quency of herpes simplex virus (HSV)-1-induced inflamma-
tory ocular lesions in murine models by enhancing microbial 
clearance [157, 158]. The direct and indirect anti-viral activi-
ties of SPMs in various viral diseases in humans and animal 
models, including the production of anti-viral antibodies and 
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the stimulation of lymphocytic activity, highlight their poten-
tial use in the treatment of COVID-19 [154–157, 159]. Thus, 
utilizing SPMs or their precursors in combination with anti-
viral drugs or vaccines may be a novel, effective, and practical 
therapeutic approach to combat COVID-19.

Critically, in addition to being anti-viral, SPMs are organ-
protective and mitigate inflammation-driven lung injury. 
RvD1, PDX, and MaR1 injected intravenously 8 h after 
lipopolysaccharide-induced acute lung injury markedly stimu-
lated alveolar fluid clearance, ultimately resulting in decreased 
pulmonary edema within an in vivo model [160–162]. Also, 
in Escherichia coli–induced lung injury, aspirin-triggered 
(AT) 15-epi-LXA4 and 17-epi-RvD1 facilitated inflamma-
tion resolution by stimulating bacterial clearance and restor-
ing impaired phagocytosis [163]. Lung injury leading to  
ARDS has dire implications for the morbidity and mortality 
of patients with COVID-19 [164]; hence, SPMs may represent 
a novel treatment option given their preclinical success in such 
inflammatory lung conditions.

In addition to their anti-inflammatory, pro-resolving, and 
anti-viral properties, SPMs have also been shown to attenu-
ate the severity of pathological thrombosis, providing even 
more compelling evidence for their use in hypercoagulable 
conditions like cancer and COVID-19. In a cohort of 62 
patients, autopsies demonstrated that patients who died of 
COVID-19 complications had dysregulated immunothrom-
bosis, evidenced by the presence of neutrophil extracellu-
lar traps (NETs) associated with fibrin and platelets, which 
was not observed in autopsies of non-COVID-19 patients 
[165]. Moreover, lipid mediator metabololipidomic analy-
sis has demonstrated that RvD1, RvD2, RvD3, RvD5, and 
RvE1 as well as AT-RvD3 and AT-LXB4 were absent in 
patients with coronary artery disease but present in healthy 
individuals, suggesting that failed local resolution may lead 
to uncontrolled inflammation and subsequent thrombosis 
in these patients [166]. Notably, treatment with Lovaza, a 
pharmacologic preparation of the n-3 fatty acids EPA and 
DHA, resulted in significantly higher levels of combined AT-
RvD3, RvD6, AT-PD1, and AT-LXB4 in patients with coro-
nary artery disease compared to those not receiving Lovaza 
[166]. SPMs were subsequently shown to significantly 
increase macrophage phagocytosis of clots by an average of 
approximately 50% [166]. Similarly, in a murine model of 
deep venous thrombosis (DVT), RvD4 significantly reduced 
thrombus burden and decreased the release of NETs [167]. 

8  The application of SPMs in COVID‑19 
and cancer

A non-immunosuppressive therapeutic approach is urgently 
needed to stimulate the resolution of inflammation and 
reduce the cytokine storm in patients with COVID-19 and 

cancer. SPMs act selectively by promoting endogenous 
inflammation resolution, clearing inflammatory exudates, 
and promoting a return to tissue homeostasis, as demon-
strated in many inflammatory disease models. Therefore, 
SPMs are particularly well-suited for application to treat 
the hyperinflammation associated with cancer and COVID-
19 and may also provide an additional benefit of anti-viral 
and anti-thrombotic activity (Fig. 1). Notably, SPMs act at 
significantly lower doses compared with conventional anti-
inflammatory agents and are not immunosuppressive [2].

Risk factors for severe COVID-19 and cancer include 
comorbidities such as obesity and COPD [168], both of 
which have been hypothesized to confer more adverse out-
comes due to SPM dysregulation or deficiencies [169–171]. 
Importantly, failure of inflammation resolution can be res-
cued in humans, as evidenced by the increase in systemic 
resolvin levels and upregulation of resolvin receptors in 
women with obesity receiving omega-3 fatty acid supple-
mentation [172]. Similarly, parenteral fish oil emulsions and 
omega-3 fatty acid supplementations have been proposed 
to treat critically ill COVID-19 patients since the high con-
tents of SPM precursors EPA and DHA may subsequently 
aid in controlling the hyperinflammatory cytokine storm 
[173–176]. A randomized, double-blind, placebo-controlled 
study showed that oral administration of enriched marine oil 
increases SPM levels in peripheral blood [177]. Additionally, 
there is a critical unmet medical need to block the cytokine 
storm in COVID-19 patients who also require cancer chem-
otherapy. Establishing new models to investigate cancer 
therapy-mediated effects on COVID-19 is paramount for 
identifying new treatment modalities to prevent the cytokine 
storm with severe COVID-19 in cancer patients receiving 
cytotoxic cancer therapies. Simultaneously blocking the pro-
inflammatory response and activating endogenous resolution 
of inflammation programs before cancer therapy may elimi-
nate micrometastases, reduce tumor recurrence, and mitigate 
the cytokine storm in this patient subset [178].

In addition to SPMs, molecules known as conjugates in 
tissue regeneration, including maresin conjugates in tissue 
regeneration (MCTR), protectin conjugates in tissue regener-
ation (PCTR), and resolvin conjugates in tissue regeneration 
(RCTR), play a key role in promoting tissue regeneration 
beyond inflammation resolution [179]. Recent publications 
have shown that PCTR1 and PD1 are upregulated during 
respiratory syncytial virus (RSV) pneumonia, with overlap-
ping and distinct mechanisms for PCTR1 and PD1 during 
the resolution of viral infection and its associated inflamma-
tion [180]. Further research is needed to confirm the role of 
these novel mediators in hyperinflammatory conditions like 
cancer and COVID-19. Nonetheless, the direct application 
of SPMs is currently being studied as a therapeutic option 
for several diseases in humans, including COVID-19 and 
cancer [181–183].
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Importantly, SPMs have been in clinical trials for inflam-
matory diseases, including infantile eczema, asthma, and 
dry eye disease, highlighting their safety and potential for 
translation to patients suffering from COVID-19 and cancer 
[184, 185]. As already mentioned, treatment with SPMs in 
cancer mouse models has resulted in significant inhibition 
of tumor growth [84], and the preoperative administration 
of the NSAID ketorolac with resolvins has been shown to 
synergistically eradicate the occurrence of micrometastases 
after primary tumor resection [178]. Currently, plans are 
in development to begin clinical trials to test RvE1 in solid 
tumor neoplasms. While the application of SPMs has yet to 
be further studied in COVID-19, dysregulated lipid mediator 
profiles in patient sera have been found to differentiate mod-
erate from severe COVID-19 disease [186]. Thus, despite 
underlying etiological differences between SARS-CoV-2 
infection and cancer, the similar pathologic inflammatory 
response suggests that promoting the resolution of inflamma-
tion through the application of SPMs, either by inducing their 
endogenous production and/or supplementing with exoge-
nous administration, is an underutilized therapeutic option. 
Through their pro-resolving, anti-inflammatory, anti-viral, 
and anti-thrombotic properties, SPMs offer an entirely novel 
approach to control SARS-CoV-2 infection and cancer with 
limited side effects by increasing the body’s natural reserve 
of pro-resolving mediators.
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