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OVERVIEW

Dengue fever (DF), the most prevalent arthropod-borne viral illness in humans, is
caused by the dengue virus (DENV). The 4 serotypes of DENV (DENV 1-4) are trans-
mitted to humans primarily by the Aedes aegypti mosquito (Fig. 1).

DENV is a member of the Flaviviridae family and is related to the viruses that cause
yellow fever and the Japanese, St. Louis, and West Nile encephalitides.1 Infection by
DENV causes a spectrum of clinical diseases that range from an acute debilitating,
self-limited febrile illness, DF, to a life-threatening hemorrhagic and capillary leak
syndrome of dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). DENV
causes an estimated 25 to 100 million cases of DF and 250,000 cases of DHF per
year worldwide, with 2.5 billion people at risk of infection.2,3 At present, no approved
antiviral treatment or vaccine is in use, and therapy is supportive in nature (Fig. 2).

Epidemic DHF was first recognized in the 1950s in Southeast Asia, and by 1975 it
had become a leading cause of hospitalization and death among children in many
countries in that region. In the 1980s, DHF began a second expansion into Asia,
and in countries where DHF is endemic, the epidemics have become progressively
larger over the last 15 years (Box 1). In 1980, the first indigenous transmission of
dengue in the United States in more than 40 years occurred. Later, infections also
occurred in Texas. In 2001 to 2002, a dengue outbreak occurred in Hawaii spread
by Aedes albopictus mosquitoes.

The Americas have seen the most dramatic rise in the emergence of dengue cases
(Fig. 3). The mosquito vector for dengue was eradicated in most of the region as part
of the Pan American Health Organization’s yellow fever eradication campaign in the
1950s and 1960s. The A aegypti eradication program was officially discontinued in
the United States and other Western Hemisphere regions, leading to reinfestation of
the mosquito vector in most countries during the 1980s and 1990s. By 1997, the
geographic distribution of A aegypti was wider than its distribution before the eradica-
tion program. Dengue is now endemic in much of the Western Hemisphere.
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Fig. 1. The A aegypti mosquito is the most common epidemic vector for spread of dengue
virus. It can be identified by the white bands or scale patterns on its legs and thorax. (Cour-
tesy of Centers for Disease Control and Prevention (CDC), http://www.cdc.gov/ncidod/dvbid/
dengue.)
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Hyperendemicity, the presence of multiple circulating serotypes, is widespread in
most countries and epidemics caused by multiple serotypes are more frequent.

VIROLOGY

DENV is an enveloped virus with a single-stranded, positive-sense 10.7 kilobase RNA
genome,4 which is translated as a single polyprotein and then cleaved into 3 structural
proteins (capsid [C], premembrane/membrane [prM/M], and envelope [E]) and 7
nonstructural (NS) proteins by virus- and host-encoded proteases. The 3 structural
components are required for capsid formation (C) and assembly into viral particles
(prM and E). The NS proteins contain a serine protease and ATP-dependent helicase
(NS3), which is required for virus polyprotein processing, a methyltransferase and
RNA-dependent RNA polymerase (NS5), and a cofactor for the NS3 protease
(NS2B). NS4B has been implicated in blocking the interferon (IFN) response. NS1,
NS2A, and NS4A have either unknown or incompletely understood functions. All the
NS proteins appear to be necessary for efficient replication.

In primary DENV infection, the virus enters target cells after the E protein adheres to
cell surface receptors, such as dendritic cell-specific intercellular adhesion molecule-
3-grabbing non-integrin (DC-SIGN) on dendritic cells.5 Viral uptake occurs by
receptor-mediated endocytosis. Endosomal acidification induces a conformational
change in the E protein, resulting in fusion of the viral and endosomal membranes
and nucleocapsid release into the cytoplasm.6,7 Virus genome replication occurs in
discrete domains within the endoplasmic reticulum (ER). Virus assembly occurs at
the ER, and virions are exocytosed via Golgi-derived secretory vesicles.8

EPIDEMIOLOGY

Following the bite of a mosquito, usually A aegypti or A albopictus,2 DENV can cause
a range of mild-to-severe illnesses. The mosquito eradication program, which was
officially discontinued in the United States in 1970, gradually weakened elsewhere,
and the mosquito began to reinfest countries from which it had been eradicated.
Consequently, the geographic distribution of A aegypti in 2002 was much wider
than that before the eradication program and there was a corresponding increase in
dengue infections. There are 4 distinct serotypes of DENV. Primary infection with
one DENV serotype provides lifelong immunity to that specific serotype. However,
when an individual is infected with a different serotype of DENV, there is an increased
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Fig. 2. World map indicating regions with known risks of dengue infection. (Courtesy of CDC, available at: http://www.cdc.gov/ncidod/dvbid/dengue.)
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Box 1

Recent dengue virus infections in the United States

Texas:

1980: 23 cases, first locally acquired since 1945

1986: 9 cases

1995: 7 cases

1997: 3 cases

1998: 1 case

1999: 18 cases

2005: 25 cases

Hawaii:

2001 to 2002: 122 cases (first since 1944)
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risk of severe dengue disease.9 This can occur with all 4 serotypes; therefore, in
regions with multiple endemic serotypes, the risk of severe disease is higher.
PATHOGENESIS

The pathogenesis of DHF/DSS, the most severe form of DENV infection, reflects
a complex interplay of the host immune response and the viral determinants of viru-
lence.2,10,11 Epidemiologic studies have suggested an immune system linkage,
because there is an increased risk of DHF with secondary DENV infection and in
Fig. 3. Reinfestation of A aegypti in the Americas Unfortunately, the success of the eradica-
tion campaign was not sustained. Beginning in the early 1970s, it began to be disbanded,
and many countries channeled their limited resources into other areas. Consequently,
A aegypti began to reinfest the countries from which it had been eradicated. Comparing
the 1970 and 2006 maps, the mosquito is seen reestablishing itself throughout Central
America and most of South America. As the mosquito has spread, the number and
frequency of dengue epidemics have increased, as has dengue hemorrhagic fever activity
in the Americas. (Courtesy of CDC, available at: http://www.cdc.gov/ncidod/dvbid/dengue.)
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children within the first year of life born to DENV-immune mothers.12–15 From these
observations, the hypothesis of antibody-dependent immune enhancement (ADE) of
infection emerged. In support of the ADE pathogenesis concept, antibody enhance-
ment of DENV infection in monocytes in vitro correlated with increased risk of
DHF,15,16 and peak viremia was increased in patients with severe secondary DENV
infection.17,18 Differences in specific genetic determinants among viral isolates19–21

may also affect virulence, because some DENV strains fail to cause severe
disease.22,23 Finally, a pathologic cytokine response that occurs after extensive T-
cell activation may contribute to the capillary leak syndrome associated with DHF.11

Elevated levels of cytokines, including IFN-g, tumor necrosis factor (TNF)-g, and inter-
leukin (IL)-10, to some extent correlate with severe disease24–28; and disease severity
has been associated with activation of CD81 T cells and the expansion of serotype-
reactive low-affinity DENV-specific T cells that produce high levels of vasoactive cyto-
kines.29–33

CLINICAL PRESENTATIONS

Dengue fever may present in many forms: as an undifferentiated febrile illness with
a maculopapular rash, particularly in children, as flulike symptoms, or as classic
Dengue with 2 or more symptoms, such as fever, headache, bone or joint pain,
muscular pain, rash, pain behind the eyes, and petechial hemorrhaging. Often, there
is prolonged fatigue and depression. During dengue epidemics, hemorrhagic compli-
cations may also appear, such as bleeding from the gums, nosebleeds, and bruising.
Case fatalities due to DF are low, whereas DHF mortality is fairly high. There is no
specific treatment for dengue fever except for symptomatic treatment, rest, and rehy-
dration. Recognizing the warning signs and symptoms of dengue infection are critical
for appropriate diagnosis and treatment (Fig. 4).

DHF is characterized by spontaneous bleeding, plasma leakage, fever, and throm-
bocytopenia. Four clinical manifestations need to be observed to be classified as DHF.
These include (1) fever; (2) hemorrhagic episodes with the presence of at least one of
the following: a positive tourniquet test result (also called a capillary fragility test: a clin-
ical diagnostic method to determine a patient’s hemorrhagic tendency and assess
fragility of capillary walls); petechiae, ecchymoses, or purpura; or bleeding from
mucosa, gastrointestinal tract, injection sites, or others; (3) plasma leakage due to
increased capillary permeability; and (4) thrombocytopenia (100,000/mm3 or less).
Fig. 4. Warning signs of dengue infection. (Courtesy of CDC, available at: http://www.cdc.
gov/ncidod/dvbid/dengue.)
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Moderate-to-marked thrombocytopenia with concurrent hemoconcentration is
a distinctive clinical laboratory finding of DHF. However, to distinguish DHF from
DF, an observation of plasma leakage manifested by a rising hematocrit value (ie,
hemoconcentration) must be observed (Fig. 5).

The normal course of DHF lasts between 7 to 10 days, and with appropriate inten-
sive maintenance of the circulating fluid volume, mortality may be reduced to less than
1%. Only severe DF and DHF cases should be hospitalized. Serologic tests are neces-
sary to confirm cases of dengue. However, these tests may take several days.34,35

Developing countries may not have the resources to perform these expensive confir-
matory assays, and therefore, many suspected cases of dengue are not fully diag-
nosed. In severe cases of DHF, the patient’s condition may suddenly deteriorate
after a few days of fever; the temperature drops, followed by signs of circulatory
failure; and the patient may rapidly go into a critical state of shock (dengue shock
syndrome), dying within 12 to 24 hours or quickly recovering following appropriate
volume replacement therapy Box 2.

DSS is the most severe form of DHF and is characterized by the presence of all 4
DHF clinical manifestations and circulatory failure. All 3 manifestations of circulatory
failure must be present: rapid and weak pulse; narrow pulse pressure or hypotension
for the patient’s age; and cold, clammy skin and altered mental state.

DIAGNOSIS

Establishing a laboratory diagnosis of dengue infection is critical for diagnosis of
dengue. A major challenge for disease surveillance and case diagnosis is that the
dengue viruses produce asymptomatic infections and a spectrum of clinical illness
ranging from a mild, nonspecific febrile illness to fatal hemorrhagic disease. Important
risk factors of DHF include the strain and serotype of the infecting virus and the age,
immune status, and genetic predisposition of the patient. The most common method
of detecting the virus is to propagate virus from serum in cell culture or detect anti-
dengue antibodies by serology. Virus can be cultured in vitro or by detection of viral
RNA and specific dengue virus antigens. Countries that do not have access to sophis-
ticated laboratory tests rely on identification of early clinical or simple laboratory indi-
cators that can provide a reliable diagnosis of dengue before hospitalization. Early
distinction between dengue and other febrile illnesses could help identify patients
that should be monitored for signs of DHF.
Fig. 5. Petechial hemorrhages from a dengue infected patient. (Courtesy of CDC, available
at: http://www.cdc.gov/ncidod/dvbid/dengue.)

http://www.cdc.gov/ncidod/dvbid/dengue


Box 2

Grades of DHF

All 4 grades must be met for a diagnosis of DHF.

Grade 1: Fever and nonspecific constitutional symptoms and positive tourniquet test result

Grade 2: Grade 1 manifestations plus spontaneous bleeding.

Grade 3a: Incipient shock with signs of circulatory failure.

Grade 4a: Profound shock with undetectable pulse and blood pressure.

a Grades 3 and 4 are Dengue Shock Syndrome.
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DIFFERENTIAL DIAGNOSIS

Febrile illnesses, such as measles, typhoid fever, leptospirosis, and severe acute
respiratory syndrome (SARS), can produce symptoms similar to DF.36–41 At presenta-
tion, these illnesses may share similar clinical features, including headache, myalgia,
and rash Box 3.

TREATMENT AND LONG-TERM OUTCOMES

There are no specific antivirals that can eliminate the virus from an infected individual.
However, supportive care and treatment can be effective in treating DF. Paracetamol
and other antipyretics can be used to treat fever. Bone pain should be treated by anal-
gesics or painkilling tablets. During episodes of DHF/DSS, the mortality rate in the
absence of hospitalization can be as high as 50%. With proper treatment, such as
intravenous fluid replacement, the mortality rate is greatly reduced.

VACCINES AND IMMUNITY

Multiple correlates of protection have been described for dengue. However, the
primary correlate seems to be long-term homotypic protection.42,43 Most protective
antibodies are directed at the surface E glycoprotein.44,45 However, antibodies to
Box 3

Differential diagnosis of dengue infection

Influenza

Measles

Rubella

Malaria

Typhoid fever

Leptospirosis

Meningococcemia

Rickettsial infections

Bacterial sepsis

Other viral hemorrhagic fevers
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the M and NS1 proteins show some protective efficacy.46 Passively transferring anti-
bodies from seroconverted animals results in decreased infection and disease
following challenge.44,46 In addition, maternal antibodies decrease disease in
infants.15,47 Using in vitro neutralization assays, antibodies directed against the E
protein prevent virus infection.48 Antibodies that block viral attachment or prevent
fusion to target cells neutralize virus infection.49,50 In addition to neutralization, anti-
bodies that mediate cell-mediated cytotoxicity reduce virus infection in comple-
ment-independent51,52 and complement-dependent mechanisms.53 Cellular immune
responses are generally weakly protective.54 However, these responses are critical
for viral clearance.55,56 Innate immune responses directed against NS proteins,
such as NS4B (a putative IFN antagonist), seem to mediate viral escape.57

Currently, no DENV vaccine is approved by the US Food and Drug Administration
(FDA). Four related but serologically distinct DENVs can cause disease. Non-neutral-
izing, cross-reactive antibodies may contribute to DHF pathogenesis via antibody-
dependent enhancement. Therefore, an effective vaccine must induce high-titer
neutralizing antibodies against all 4 strains58,59; failure to do so could increase the
risk of severe disease on natural challenge. To circumvent this problem, tetravalent
live-attenuated candidate vaccines are in varying stages of development.60–64 In clin-
ical trials, tetravalent serologic responses were observed in some individuals, but
Table 1
Experimental dengue virus vaccines

Type Sponsor Stage of Development

Live attenuated

Tetravalent Mahidol University/Sanofi Pasteur Phase I

Tetravalent WRAIR/GSK Phase II

Chimeric

ChimeriVax (17D YF) Acambis/Sanofi Pasteur Phase I

DENV-2/4d30 (all serotypes) NIAID, NIH Phase I/II

DENV-1 US FDA Phase I

DENV-2 (16,681, PDK53) CDC/Inviragen Preclinical

DNA

Several approaches Various

(ie, Domain III, prM/E, NS1) NMRC/University of Pittsburgh Phase I/Preclinical

Inactivated

Several approaches WRAIR Preclinical

Subvirion particles/viruslike particles

Drosophila cells Hawaii Biotech Phase I

Baculovirus (E, NS1) Various Preclinical

Replication-defective AV (E) RepliVax-UTMB/Acambis Preclinical

Yeast (C/prM/E, E-IIBsAg) Various Preclinical

Escherichia coli (E, E-NS1) Various Preclinical

DNA University of Pittsburgh Preclinical

Subunit/recombinant Various Preclinical

Abbreviations: AV, adenovirus; CDC, Centers for Disease Control and Prevention; GSK, Glaxo-
SmithKline; NIAID, National Institute of Allergy and Infectious Diseases; NIH, National Institutes
of Health; UTMB, University of Texas Medical Branch; WRAIR, Walter Reed Army Institute of
Research; YF, yellow fever.
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many do not develop high titer neutralizing antibodies despite multiple immuniza-
tions.65,66 Additionally, each part of the tetravalent vaccine does not elicit high titer
immune response leading to immunodominance. Subunit-based vaccines, as purified
proteins or DNA plasmid, are alternative vaccine strategies. Repeated immunization of
purified recombinant DENV domain III of the E protein (DIII) or DIII-encoding plasmids
induced protective antibodies in mice, albeit at fairly low neutralizing titers.67–71

Live attenuated vaccines and nonreplicating vaccines, such as inactivated virus
vaccines, viruslike particles, and DNA vaccines, have been developed for dengue
(Table 1). These vaccines elicit protective neutralizing antibodies. These vaccines
can elicit long-lasting immunity against the specific serotype of DENV. However,
they are poorly cross-reactive against infection with another subtype of DENV.
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