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ABSTRACT The lack of Oxalobacter formigenes colonization of the human gut has
been correlated with the formation of calcium oxalate kidney stones and also with
the number of recurrent kidney stone episodes. Here, we present the genome se-
quence of HC-1, a human strain isolated from an individual residing in Iowa, USA.

An anaerobe, with a substrate-specificity for oxalate, was isolated from human and
other animal feces and a new genus and species Oxalobacter formigenes, was

established (1). Individuals forming oxalate kidney stones who are Oxalobacter-negative
have significantly higher urinary oxalate and stone episodes correlate with the lack of
Oxalobacter (2). Colonization of a mouse model of the genetic disease primary hyper-
oxaluria, type 1 with Oxalobacter resulted in a normalization of both hyperoxaluria and
hyperoxalemia exhibited in noncolonized counterparts (3, 4). Since a human strain,
HC-1, was tested in some small human clinical trials (5–7), the present study was
undertaken to determine the complete genome sequence of the HC-1 strain which was
archived in the Hatch laboratory, notated as HC-1MH, since 2011.

A genomic DNA library was prepared following the protocol specified by Pacific
Biosciences (Menlo Park, CA). Briefly, genomic DNA was sheared to an average fragment
length of 20 kb, using the SAGE ELF (Sage Science, Beverly, MA), end-repaired, and
single-molecule real-time (SMRT) bell oligonucleotide adaptors blunt-end ligated to
construct a DNA fragment library for sequencing on the Pacific Biosciences RSII
platform. A single SMRT cell produced a total of 1.58 Gb in 93,480 polymerase reads
having an N50 of 19.7 kb and a subread N50 is 9.9 kb. The HC-1 genome was assembled
using HGAP version 3 (8), and annotated using RAST (http://rast.nmpdr.org) (9–11).

The complete HC-1MH genome contains a single contig of 2,468,871 bp and has an
average G�C content of 49.6%. A total of 2,599 genes were annotated by RAST,
including 47 tRNAs, 7 ribosomal RNAs, and 2,545 predicted coding sequences (CDSs).
RAST annotation assigns 1,062 (42%) of the 2,545 HC-1 CDSs as members of 336
categorized subsystems. Subsystems are defined as a set of functional roles imple-
menting specific biological process or structure (12). In general, subsystems may be
considered biological pathways. The most abundant subsystem classifications include
203 genes involved in protein metabolism; 169 involved in metabolism of cofactors,
vitamins, prosthetic groups, and pigments; 205 in amino acid and derivative metabo-
lism; and 108 in carbohydrate metabolism. A total of 1,483 CDSs (58%) are not assigned
to specific subsystems.

The annotated HC-1MH genome was compared to O. formigenes CC13 (NCBI
accession no. NZ_ACDQ00000000) and O. formigenes HOxBLS (accession no.
NZ_ACDP00000000). At the protein level, 2,473 of 2,545 (97%) HC-1 CDSs have greater
than 99% identity with CDSs identified in CC13. The genome of HC-1MH contains 54
CDSs not present in CC13, the majority of which (42 CDSs) are identified as hypothetical
proteins. The remaining 12 CDSs identified in HC-1MH but absent from CC13 largely
represent phage-associated proteins, primarily clustered in a ~35 kb region of the
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HC-1MH genome. Only 260 (10%) HC-1MH CDSs share greater than 90% amino acid
identity with HOxBLS CDSs. Compared to HOxBLS, 713 CDSs appear exclusively in the
HC-1MH genome, of which 533 are annotated as hypothetical proteins and the remain-
ing 180 CDS annotations include proteins characterized as ABC and other transporters,
bacteriophage-related proteins, transcriptional regulators, large subunit ribosomal pro-
teins, and a small cluster of clustered regularly interspaced short palindromic repeat
(CRISPR)-associated proteins.

Accession number(s). This genome sequencing project was deposited in GenBank
under accession no. CP018787. The version described is the first version.
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