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Identifying an efficient, thermally robust inorganic
phosphor host via machine learning
Ya Zhuo1, Aria Mansouri Tehrani1, Anton O. Oliynyk1, Anna C. Duke1 & Jakoah Brgoch 1

Rare-earth substituted inorganic phosphors are critical for solid state lighting. New phosphors

are traditionally identified through chemical intuition or trial and error synthesis, inhibiting the

discovery of potential high-performance materials. Here, we merge a support vector machine

regression model to predict a phosphor host crystal structure’s Debye temperature, which is

a proxy for photoluminescent quantum yield, with high-throughput density functional theory

calculations to evaluate the band gap. This platform allows the identification of phosphors

that may have otherwise been overlooked. Among the compounds with the highest Debye

temperature and largest band gap, NaBaB9O15 shows outstanding potential. Following its

synthesis and structural characterization, the structural rigidity is confirmed to stem from a

unique corner sharing [B3O7]5– polyanionic backbone. Substituting this material with Eu2+

yields UV excitation bands and a narrow violet emission at 416 nm with a full-width at half-

maximum of 34.5 nm. More importantly, NaBaB9O15:Eu2+ possesses a quantum yield of 95%

and excellent thermal stability.
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Inorganic phosphors are among the most significant compo-
nents in a light-emitting diode (LED)-based white light and
greatly influence the device’s overall efficacy1–3. These mate-

rials are composed of a host crystal structure, often an oxide,
halide, or nitride, that are substituted with a rare-earth lumi-
nescent center, typically Eu2+ or Ce3+4–7. The rare-earth ion
absorbs at least part of the LED emission and then re-emits a
photon at a longer wavelength. The combination of these emis-
sive lights cover the entire visible portion of the electromagnetic
spectrum and thus appears as white light3,8. The efficiency, color
quality, and compact size make these devices not only useful for
general illumination, but they are also essential for modern dis-
play applications9. Unfortunately, only a handful of the phos-
phors currently reported in the literature are able to perform the
down-conversion process efficiently, as measured by the photo-
luminescent quantum yield (Φ)10. Even then, some of the phos-
phors with a high luminescence quantum efficiency also suffer
from thermal quenching, where the optical properties, for
example, emission wavelength and intensity, change at elevated
temperature limiting their range of potential applications11–15.
Therefore, the continued improvement of LED-based lighting
requires the discovery of new efficient and thermally robust rare-
earth substituted inorganic phosphors.

In the search for new phosphors, research has shown one
viable method for identifying materials with a high Φ is to find
structurally rigid host compounds with high atomic con-
nectivity16. These characteristics enhance Φ by inhibiting soft
phonon modes that lead to non-radiative relaxation, thereby
increasing the propensity for photon emission. However, the
complex nature of chemical bonding in inorganic solids makes
clearly identifying connectivity and structural rigidity challenging,
and the comparison of rigidity between multiple solids proble-
matic. Alternatively, it is possible to use a proxy, which is a
quantifiable metric that scales with structural rigidity, to compare
different materials. Prior work has already shown that a material’s
Debye temperature (ΘD) is the most reliable proxy for structural
rigidity, and consequently useful for screening Φ17–19. Materials
with a higher ΘD tend to have higher-energy phonon modes that
decrease the probability of non-radiative relaxation increasing Φ,
whereas materials with a low ΘD tend to contain softer phonon
modes that can promote non-radiative relaxation. More impor-
tantly, ΘD can be estimated using density functional theory
(DFT), allowing for the potential of high-throughput screening20.
Nevertheless, this approach has numerous drawbacks; most
notably, calculating ΘD using DFT is computationally arduous.
DFT cannot easily account for atomic disorder like site sharing
which is common in complex inorganic solids, and it is currently
restricted to smaller unit cells, typically a few hundred atoms at
most. These limitations have permitted the elastic moduli, which
are necessary to estimate ΘD, to be calculated for only a few
thousand compounds, or <10% of the reported inorganic solids.

Advances in machine learning provides an avenue to sig-
nificantly expand the physical and mechanical properties of
inorganic solids and can push materials development beyond the
current capability of DFT alone21,22. For example, it is possible to
use a kernel ridge regression model to predict a myriad of elec-
tronic properties including dielectric constants, electron affinities,
formation energies, and even band gaps23,24. A more intricate
method employing a gradient boosting decision tree and uni-
versal fragment descriptors is able to predict the electronic as well
as mechanical properties, such as bulk and shear modulus, heat
capacity, and Debye temperature25. Machine learning has also
allowed researchers to predict glass formation26, study magne-
toelectric heterostructures27, and optimize microstructure28,29.
The great advantage of using statistical machine-learning meth-
ods is that predictions can be quickly made for any given

combination of elements, any stoichiometry, or any size unit cell.
We show here that it is also possible to use machine learning to
predict ΘD for a majority of compounds in the Pearson’s crystal
database (PCD)30 in seconds regardless of unit cell size, atomic
mixing, or electron correlation resulting in ~120,000 Debye
temperatures that can be used for screening inorganic phosphors.

Knowledge of a crystal structure’s ΘD alone is still not sufficient
to produce a high photoluminescence quantum efficiency inor-
ganic phosphor. A wide band gap (Eg) in the host crystal structure
is also crucial20. The size of the band gap sets the relative position
of the rare-earth 5d orbitals with respect to the host crystal’s
conduction band, which can influence the optical response. If the
band gap of the host is small, the excited-state 5d orbitals may be
close enough to the conduction band of the host crystal structure
to allow (temperature-induced) photoionization or charge
transfer. These non-radiative processes can both greatly diminish
Φ31,32. Therefore, it is essential to ensure that any potential host
also has a suitable band gap when screening for new phosphors.
These two properties can ultimately be optimized by plotting ΘD

as a function of DFT calculated Eg, which serves as a sorting
diagram. For example, phosphors hosts that fall in the bottom-left
corner of this sorting diagram have a low ΘD and a narrow Eg,
suggesting that they are likely not worth immediate exploration,
whereas compounds in the top-right corner of this plot are not
only structurally rigid but also have a wide enough band gap to
support rare-earth luminescence20. The success of this initial
sorting diagram has already supported the discovery of numerous
inorganic phosphors5.

This work establishes a new approach for phosphor screening
methods by constructing a more extensive sorting diagram that
merges supervised machine learning to predict ΘD with high-
throughput calculations using DFT for approximating band gap
(Eg,DFT). These scalable methods increase the number of potential
phosphor hosts contained on the new sorting diagram 50-fold
compared to the original approach; therefore, functioning as a
more robust guide for phosphor development. Here we use this
approach to identify one specific crystal structure that stands out
among the 2071 materials on our sorting diagram. NaBaB9O15

has a high predicted Debye temperature of 729 K, surprising
given the mostly ionic bonding and low-density crystal structure,
as well as a wide Eg,DFT of 5.5 eV, making it worthy of experi-
mental investigation. The subsequent synthesis of NaBaB9O15

substituted with Eu2+ indicates that this compound not only has
a Φ near unity but also shows minimal thermal quenching. These
results substantiate the effectiveness of using this sorting diagram
to direct the discovery of the next-generation rare-earth sub-
stituted inorganic phosphors.

Results
Machine learning for predicting Debye temperature and
screening inorganic phosphor hosts. The machine-learning
model to predict Debye temperature first requires training
using a large, diverse set of data. In this case, the 2610 DFT-based
bulk (BDFT) and shear (GDFT) moduli extracted from the Mate-
rials Project database can be converted into an approximate
Debye temperature (ΘD,DFT) based on the average sound velocity
(νm) following Eq. 1, where h is Planck constant, kB is Boltzmann
constant, n is the number of atoms per formula unit, NA is
Avogadro constant, ρ is the crystal structure’s density, M is the
molar mass, and νm is the average sound velocity33:

ΘD;DFT ¼ h
kB

3n
4π

NAρ

M

� �� �1
3

vm: ð1Þ

In a polycrystalline material, νm can be approximated following
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Eq. 2:

vm;DFT ¼ 1
3

2
v3T;DFT

þ 1
v3L;DFT

 !" #�1
3

; ð2Þ

where νL and νT are the longitudinal and transverse sound
velocity, respectively, which can be obtained from the DFT cal-
culated BDFT and GDFT using Eq. 3:

vL ¼
BDFT þ 4GDFT

3

ρ

 !1
2

and vT ¼ GDFT

ρ

� �1
2

: ð3Þ

Once ΘD,DFT was obtained for all 2610 compounds, a machine-
learning algorithm was developed to predict the Debye tem-
perature using support vector machine regression (SVR) (ΘD,

SVR). The 10-fold cross-validation regression analysis for ΘD,SVR

is plotted in Fig. 1a. The statistics of the cross-validated fit show
excellent agreement between the ΘD,DFT and the ΘD,SVR with a
root mean-squared error of cross-validation of 59.9 K and a mean
absolute error of 37.9 K. The coefficient of determination (r2) is
0.89 indicating that the descriptor set does an excellent job
expressing the materials Debye temperatures. Nearly all of the
data (97%) falls between 50 and 750 K, as highlighted by the
darker regions of the plot. The cross-validated ΘD,SVR tends to be
slightly underestimated, particularly for materials with extremely
high Debye temperatures (>1500 K), which is potentially due to
the lack of data with extremely high Debye temperature. In fact,
there are only four compounds, BN, Be2C, B6O, and LiB6C, that
fall notably below the expected ΘD,SVR, suggesting that our
machine-learning model does not capture the chemistry of these
very light compounds. Although there are a few incorrect pre-
dictions, Fig. 1b shows that more than 75% of the compounds are
predicted within ≈15% of the DFT calculated value.

Once the training set has been constructed, the machine-
learning algorithm can be used to estimate ΘD,SVR for compounds
compiled in crystallographic databases. The extraction of the
crystal structures from PCD followed the same criteria as listed
above, supplying 118,287 unique compounds for prediction. This
list includes 15,770 binary compounds, 56,266 ternary com-
pounds, and 46,251 quaternary compounds, of which 27,698
(23%) contain rare-earth elements that cannot be readily
calculated using conventional DFT and 19,384 (16%) have either
disordered positions or site mixing, which is also generally
inaccessible with DFT. From this extended list, the search for
potential phosphor hosts can be immediately reduced by adhering
to a few simple phosphor design criteria. First, knowledge of the
band gap is essential for screening phosphor hosts using the
sorting diagram, and each compound was further cross-
referenced against the Materials Project to ensure that the
(Perdew, Burke, and Ernzerhof (PBE)-level) Eg,DFT is available.
Additionally, a majority of rare-earth substituted phosphor hosts
contain at least three elements, that is, are ternary phases or
higher; therefore, in this study binary compounds are excluded.
These two basic requirements reduced the number of possible
compounds by 94% to 7504. The list of potential rare-earth
substituted inorganic phosphor hosts could be further honed
considering rare-earth substituted phosphor hosts are customarily
composed of only the elements highlighted by the blue boxes
shown in Fig. 2; any compound that does not follow this set of
composition requirements was therefore also removed from the
list of potential phosphors10. Finally, any compound following all
of these criteria but still calculated to be a metal, that is, Eg= 0,
was also removed from the list narrowing the final number of
possible phosphor hosts to 2071. The ΘD,SVR of these 2071
compositions was subsequently predicted with the machine-

learning model and associated with the DFT calculated band gap
(Eg,DFT). This entire dataset was used to screen potential
inorganic phosphor hosts and is provided as Supporting
Information.

Plotting the 2071 compounds’ Eg,DFT as a function of their
predicted ΘD,SVR, illustrated in Fig. 3a, creates an expanded
sorting diagram that is convenient for balancing these two
properties. The darker regions on this plot represent a higher
density of potential phosphor hosts. Some (8%) of the
compounds on the sorting diagram have very narrow (0 eV <
Eg,DFT ≤ 0.4 eV) PBE-level band gaps, suggesting that these phases
are not likely viable options as rare-earth substituted phosphor
hosts. There are also a considerable number (22%) with a ΘD,SVR

<250 K, indicating that these materials may not have the
structural rigidity necessary for a high Φ.
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Fig. 1 Cross-validation plots for the machine-learning model predicting
Debye temperatures. a Ten-fold cross-validation (CV) predicted Debye
temperature (ΘD,SVR) versus calculated Debye temperature (ΘD,DFT). The
ideal line is shown as dashed line and the fit line is shown as solid line.
b Fraction of compounds according to their percent error between CV
predicted ΘD,SVR and ΘD,DFT. The red curve shows the trend

Periodic table of the (phosphor) elements

Fig. 2 The elements that compose rare-earth substituted phosphor hosts.
Potential phosphor hosts were restricted to the highlighted elements. Any
compound containing any other element was excluded from the materials
screening diagram
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Decomposing the sorting diagram into the compositional
information indicates several trends related to the potential of
different phosphor hosts. For example, Fig. 3b shows that borates
tend to have wide band gaps and surprisingly high Debye
temperatures owing to boron’s small size that allows dense
polyhedral packing. Sulfides have a ΘD,SVR < 500 K and an Eg,DFT
only in the range of 0–4 eV, which suggests that any emission will
likely have a rather low Φ when substituted with a rare-earth ion.
Conversely, nitrides (Fig. 3c) have moderate band gaps (<4.5 eV),
but a generally high ΘD,SVR due to the covalently bonded, corner-
sharing [SiN4] tetrahedra. This allows the predicted Debye
temperature to surpass 600 K for many of the compounds and
supports the numerous efficient nitride based rare-earth inor-
ganic phosphors. Silicates (Fig. 3d) and aluminates (Fig. 3e),
which are perhaps the most common classes of phosphor hosts,
tend to have wide band gaps, but they also have a range of
prospective ΘD,SVR values. Experimentally there are many
silicates and aluminates with a high luminescence quantum
efficiency, most notably Y3Al5O12:Ce3+ or (Ba/Sr)2SiO4:Eu2+, as
well as numerous reports of materials that have low luminescence
quantum efficiency reinforcing the range of Debye temperatures
and band gaps14,17. In contrast, fluorides (Fig. 3d) all show very
wide band gaps ranging between 4 and 8 eV but low Debye
temperatures (<500 K) due to the ionic bonding in these phases.
Finally, phosphates (Fig. 3e) tend to have wide bandgaps >4 eV)
and moderate Debye temperatures (≈500 K) signifying there is
potential for continued development in this space. In fact, a
significant number of rare-earth substituted phosphates have
been recently reported such as Na3Sc2(PO4)3:Eu2+ 15, BaRbPO4:
Eu2+34, and LiSrPO4:Eu2+35, supporting the sorting diagram’s
suggestion.

Analyzing metadata-like composition is clearly indispensable
for directing the search for new materials, with the potential to
shift the search toward remarkable composition space, such as
focusing on borates. Indeed, a few high-efficiency borate
phosphors have already been reported. For example, Ce3+-sub-
stituted Ba2Y5B5O17 has a blue emission with an Φ of 70% at
room temperature that can be increased to nearly 90% by

substituting the harder cation Lu3+ for the comparatively softer
Y3+36,37. Similarly, NaSrBO3:Ce3+ and NaCaBO3:Ce3+ both have
a reported Φ of ≈75%38,39. Many of the borate phosphors
including K2Al2B2O7:Eu2+ are also thermally robust showing
minimal loss of luminescence at high temperature40. Although
the search for borate phosphors is directed based on the machine-
learning algorithm, the discovery of these materials was still
achieved through traditional means including isovalent substitu-
tion of known materials, rationally searching phase space, or
through serendipitous discovery.

The development of an enhanced sorting diagram also makes it
possible to target specific compounds as prospective high Φ
phosphors. For example, examining the sorting diagram shows
that CaAlB3O7 has a very high ΘD,SVR of 732 K and Eg,DFT of 5.3
eV due to the presence of alternating layers of [AlO6] octahedral
and [BO4] tetrahedra connected through edge and corner sharing,
with the Ca2+ decorated among the very dense anionic
network41. Li5Rb2B7O14 is also a phase of interest given that
ΘD,SVR is 703 K and Eg,DFT is 4.5 eV. This phase is a non-
centrosymmetric crystal structure that contains a three-
dimensional network of polyborate chains producing the
expected rigid crystal structure42. Both of these phases are viable
phosphor hosts and worth consideration. Additionally, perhaps
the most unique crystal structure suggested by the sorting
diagram is NaBaB9O15 (highlighted in Fig. 3b). This compound
stands out among the 2071 potential phosphors due to its high
ΘD,SVR of 729 K and Eg,DFT of 5.5 eV. NaBaB9O15 is a particularly
remarkable compound because the composition suggests that the
bonding should be primarily ionic and not a rigid crystal
structure as implied by the ΘD,SVR. Therefore, experimentally
investigating this unanticipated potential phosphor host will lend
support to the sorting diagram as a tool for identifying new high
Φ rare-earth substituted inorganic phosphors.

Phosphor synthesis and crystal structure refinement. The
synthesis of NaBaB9O15 yielded a phase pure product according
to laboratory (Cu Kα) powder X-ray diffraction. The structure of
the unsubstituted, that is, x= 0, sample was analyzed using high-
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intensity, high-resolution synchrotron X-ray powder diffraction
data, shown in Fig. 4. The crystal structure was obtained from the
Rietveld refinement with details provided in Table 1 and the
refined atomic coordinates and isotropic displacement para-
meters listed in Table 2.

NaBaB9O15 adopts the non-centrosymmetric trigonal space
group R3c (no. 161). As illustrated in Fig. 5, the crystal structure
contains a three-dimensional framework of [B3O7]5– subunits in
which two [BO3]3– trigonal planar units and one [BO4]5–

tetrahedron are linked by the vertices. The refined B–O bond
lengths within the trigonal planes range between 1.33 and 1.38 Å,
while the bond lengths within the [BO4]5– tetrahedron are slightly
longer (1.45–1.49 Å). The arrangement of the [B3O7]5– units
generates large tunnels along the [001] direction that are occupied
by Ba2+ and Na+. The Ba2+ ions are coordinated in a nine-vertex
distorted tri-capped trigonal prism, whereas six oxygen atoms
form a highly distorted trigonal antiprism surrounding the Na+

ions. This combination of corner sharing [B3O7]5– polyhedra is
remarkable because it constructs a network that is not especially
dense. In fact, the calculated density of NaBaB9O15 is only 2.669 g
cm–3 which is half the density of the other reported Na-Ba-B-O
phases43,44. Such a porous anionic network would not be
predicted to form a rigid crystal structure. However, the high
ΘD likely arises due to the presence of high-frequency vibrational
modes from the unique [B3O7]5− structural unit, which forms an
extended and intertwined polyanionic backbone. Moreover, the
high concentration of very light boron atoms also gives rise to the
presence of high-frequency phonon modes. This combination of
composition and crystal structure both contribute to the
anomalously high Debye temperature for NaBaB9O15. Because
machine learning has minimal bias, the prediction is undiscri-
minating in which crystal structures are suggested, highlighting
the importance of using this approach to identify phases that may
otherwise be disregarded.

Once the crystal structure is refined from high-resolution
scattering data, it is possible to experimentally estimate ΘD based
on the Debye–Waller theory as a confirmation of the machine-
learning prediction45,46. Although this is a considerable approx-
imation that assumes a single acoustic branch and ignores the
optical modes, it is still valuable for comparing the machine-
learning predicted Debye temperature to an experimental value.
Using the mean-square atomic displacement parameters, <u2eq>,
the ΘD,i can be calculated for each crystallographically indepen-
dent atom, i, following Eq. 4, where m is the atomic mass and ueq,i
is the atomic displacement parameter. The overall Debye
temperature (ΘD) can then be approximated by taking the
stoichiometrically weighted average of ΘD,i according to the
formula NaBaB9O15:

ΘD;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�h2TNA

mikBueq;i

s
: ð4Þ

Evaluating for ΘD using the refined <u2eq> (Table 2) suggests that
the Debye temperature should be ≈635 K, which is only 12%
lower than the machine learning predicted ΘD,SVR. This is in an
excellent agreement considering that the B and G values used in
the training set are derived from DFT using the Voigt–Reuss–Hill
approximation and neglects the temperature dependence of the
elastic moduli. Moreover, the scattering refinement data are based
on synchrotron X-ray diffraction, which is not particularly adept
at evaluating atomic displacement parameters. Nevertheless, the
small difference indicates that machine learning is indeed a viable
technique for quickly estimating ΘD,SVR.

Photoluminescent properties of the identified phosphor. The
high ΘD,SVR and wide PBE-level calculated band gap suggests that
NaBaB9O15 has strong potential as an inorganic phosphor host.
Considering that the PBE-level calculations significantly under-
estimate Eg, a HSE06 hybrid functional calculation was conducted
using the Vienna ab initio Simulation Package47–49 to ensure that
this compound has a sufficient band gap to tolerate the rare-
earth’s electronic transitions. The result confirms NaBaB9O15

indeed has a very wide calculated Eg,HSE of 7.3 eV. The phosphor
was then prepared by substituting Eu2+ as the luminescent center
for Ba2+ following NaBa1–xEuxB9O15 (x= 0, 0.005, 0.01, 0.02,
0.03, 0.04, and 0.05). The compound maintains phase purity
across the entire substitution range examined, as plotted in
Supplementary Figure 1. Measuring the photoluminescence
excitation spectrum indicates that Eu2+ has a broad ultra-violet
excitation band ranging from 230 to 385 nm, as shown in Fig. 6a.
The spectrum contains a main excitation peak centered at λex=
275 along with two shoulders at λex= 315 and λex= 365 nm. The
emission spectra collected by exciting at these three wavelengths
produces an identical emission peak with a maximum emission

kc
ou

nt
s

60

40

20

0

Q = 2�/d (Å–1)

1 2 3 4 5

Fig. 4 Rietveld refinement of NaBaB9O15 synchrotron X-ray powder
diffraction data. The observed data are colored black, the refinement is
colored red, and the difference is colored blue

Table 1 Rietveld refinement data of NaBaB9O15

Formula NaBaB9O15

Radiation type; λ (Å) Synchrotron radiation; 0.457667
2θ range (deg.) 0.5000–49.998
Temperature (K) 295
Space group; Z R3c; 6
Lattice parameters (Å) a= 11.10166(6)

c= 17.40089(4)
Unit cell volume (Å3) 1857.28(5)
Calculated mass density (g cm–3) 2.669
Formula weight (g mol–1) 497.595
Profile R-factor, Rp 0.0739
Weighted profile R-factor, Rwp 0.0907
χ2 2.820
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wavelength at 416 nm, indicating that the multiple excitation
peaks arise from the electronic transitions between the Eu2+ 4f
orbitals to multiple Eu2+ 5d orbital excited states. The emission
spectra can be fit by a single Gaussian peak, depicted in Fig. 6a
(and Supplementary Figure 2b), corresponding to the emission
from a single crystallographically independent Eu2+. This is in
agreement with the refined crystal structure that only contains
one substitution site, Ba(1). The single Eu2+ site was further
supported by measuring the photoluminescence lifetime (Sup-
plementary Figure 3). The data could be fit with a single expo-
nential function described in Eq. 5:

I ¼ I0 þ Ae
�t
τ ; ð5Þ

where I is the luminescent intensity, t is time, A is parameter, and
τ is the decay time, to reveal that the luminescence decay occurs
with a 0.842 μs decay time. The emission is a bright violet with

Commission Internationale de l'Eclairage (CIE) 1931 coordinate
of (0.1620, 0.01522) and has a very narrow full-width at half-
maximum (FWHM) of only 1962 cm–1 (34.5 nm). These
data show that this material eclipses the industry standard blue-
emitting phosphor BaMgAl10O17:Eu2+, which has a FWHM
of ≈2200 cm−1 (≈50 nm)50, but NaBaB9O15:Eu2+ is still broader
than the recently reported blue-emitting AELi2[Be4N6]:Eu2+

(AE= Sr, Ba) phosphors that have a FWHM of only ≈1200 cm−1

(≈25 nm)51.
Given that the crystal structure of NaBaB9O15 host is likely a

highly rigid phosphor host based on the predicted ΘD,SVR, the Φ
of NaBaB9O15:Eu2+ system was extensively analyzed. First, the
rare-earth concentration was optimized by varying the loading of
Eu2+. As shown in Fig. 6b, the 3 mol% Eu2+ concentration in
NaBaB9O15:Eu2+ has the highest Φ= 95(1)%, and increasing the
Eu2+ concentration causes an abrupt drop in Φ. Exciting the
phosphor at 340 nm shows the same optimized concentration of

Table 2 Unit-cell parameters determined using Rietveld refinement

Atom Wyckoff position x y z ueq (Å2)

Ba(1) 6a 0 0 0.00101(1) 0.0119(1)
Na(1) 6a 0 0 0.22197(9) 0.0152(7)
B(1) 18b 0.38819(4) 0.26465(7) 0.05556(1) 0.008(9)
B(2) 18b 0.45065(5) 0.39436(4) 0.17207(5) 0.0082(4)
B(3) 18b 0.22489(5) 0.32886(5) 0.11364(3) 0.0072(8)
O(1) 18b 0.48014(6) 0.32856(7) 0.11349(6) 0.0111(7)
O(2) 18b 0.25453(3) 0.24296(1) 0.06014(7) 0.0063(3)
O(3) 18b 0.20422(2) 0.4309(3) 0.0678(5) 0.0070(4)
O(4) 18b 0.34374(4) 0.41612(6) 0.16374(7) 0.004(1)
O(5) 18b 0.1069(8) 0.23238(5) 0.16009(1) 0.0077(8)
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Fig. 5 Crystal structure of NaBaB9O15. a Crystal structure of NaBaB9O15

viewed in [010] direction with the associated [BaO9], [NaO6], and [B3O7]
polyhedral subunits highlighted. b The arrangement of the [B3O7]5– units
generates large tunnels along the [001] direction, which are alternately
filled by Ba2+ and Na+
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Fig. 6 Photoluminescent properties of NaBa0.97Eu0.03B9O15. a Excitation
(dashed line) and emission (black solid line) spectra measured at room
temperature. The Gaussian fit of the emission spectrum is solid gray.
b Measured photoluminescent quantum yield (PLQY) of NaBaB9O15

substituted with varying concentrations of the rare-earth Eu2+ under
315 nm excitation. PLQY for each concentration was measured three times
and the error bar represents the standard deviation

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06625-z

6 NATURE COMMUNICATIONS |  (2018) 9:4377 | DOI: 10.1038/s41467-018-06625-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Eu2+ with a slight decrease in Φ to ≈75% with an increase in the
rare-earth content beyond 3 mol% again causing a drop in Φ. The
origin of the emission loss stems from an energy transfer process
between adjacent luminescence centers. The critical distance
between luminescent centers for this concentration quenching
process (RC) can be calculated following Eq. 6, where V is the
volume of the unit cell, xc is the optimized rare-earth
concentration, and N is the number of crystallographically
independent Eu2+ positions in a unit cell52. In NaBaB9O15:Eu2+,
using a volume of 1857.28 Å, an optimized concentration of x=
0.03, and six Eu2+ crystallographic sites, the critical distance is
approximately 27 Å. Such a large RC means that self-quenching is
not a very prominent mechanism for non-radiative relaxation in
this crystal structure, partly explaining the excellent Φ:

RC � 2
3V

4πxcN

� �1=3

: ð6Þ

Beyond concentration quenching, inorganic phosphors can
also undergo thermal quenching, where the luminescence
intensity is lost due to an increase in non-radiative relaxation.
Probing the temperature dependence of the emission spectrum
from 80 to 500 K (Supplementary Figure 4) reveals that
NaBa0.97Eu0.03EuB9O15 possesses an outstanding thermal
response. As shown in Fig. 7a, the emission spectrum broadens
slightly with increasing temperature going from FWHM= 32.5
nm (1849.5 cm–1) at 80 K to FWHM= 40.1 nm (2286.1 cm–1) at
500 K. This change can be attributed to increased
electron–phonon line broadening at elevated temperatures
associated with the excited state 5d orbitals of Eu2+5. More
importantly, the emission spectrum at high temperature does not
show any thermal quenching, which is the loss of luminescence
with increasing temperature, even as the temperature approaches
500 K (Fig. 7b). There is a slight loss of emission intensity once
the temperature is >360 K; however, this decrease is only by
≈15%. The integrated area of the emission peak shows no change
across the entire temperature range examined because the loss of
emission intensity is accompanied by a widening of the FWHM
of the emission spectrum, countering the loss of intensity and
leading to minimal thermal quenching up to 500 K.

Temperature-dependent powder X-ray diffraction data (Sup-
plementary Figure 5a) indicate that there is no structural
modification at elevated temperatures based on refining the
crystal structure’s unit cell volume as a function of temperature
(Supplementary Figure 5b). Thus, the origin of the outstanding
thermal properties in this phosphor can be explained by
evaluating the two classical non-radiative pathways that dominate
thermal quenching53. One process is through thermally induced
photoionization, where increasing the temperature can lead to the
excited-state electrons occupying the Eu2+ 5d orbitals being
thermally promoted into the phosphor host’s conduction band
preventing re-emission. The best method to restrict photoioniza-
tion is by ensuring that the phosphor host has strong crystal field
splitting and a very wide Eg. Separating the rare-earth orbitals
from the host conduction band mitigates the probability of
thermal excitation at any reasonable temperature, and, therefore,
prevents this quenching pathway. Although the crystal field
splitting is not considerable, bearing in mind that the borate
polyanion is a weak-field ligand, the Eg,HSE for NaBaB9O15:Eu2+

is still 7.3 eV. This sizeable band gap is likely sufficient to separate
rare-earth orbitals from the host conduction band, thereby
minimizing this quenching pathway.

The second non-radiative relaxation process occurs via
electron–phonon coupling of the ground state and excited state
potential energy surfaces53. In rare-earth substituted phosphors,
the excitation of an electron from the ground state to the excited

state causes a simultaneous relative displacement (Δr) of the
excited state nuclear coordinates with respect to the ground state
nuclear coordinates. If the Δr separating the potential energy
surfaces is large, then the two potential energy surfaces can cross
(interact), which supplies a mechanism for non-radiative
relaxation via electron–phonon coupling13. Conversely, in
systems where Δr is small, the potential energy surfaces do not
interact and the relaxation process can proceed uninhibited,
ideally by luminescence. Empirically the best approach for
preventing a large Δr, as it relates to changes in bond lengths,
might be to target rigid crystal structures13,54. However, recent
research has showed that ΘD, as a proxy for rigidity, is not always
predictive of thermal quenching55,56.

Alternatively, a method to probe Δr in a solid state material is
to estimate the electron–phonon coupling by ascertaining a
material’s Huang–Rhys factor S57,58. Experimentally, S can be
extracted by measuring the FWHM of the rare-earth substituted
phosphor’s emission peak as a function of temperature and fitting
these data with Eq. 7:

FWHMðTÞ ¼
ffiffiffiffiffiffiffiffiffiffi
8 ln2

p
�hω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S coth

�hω
2kBT

s
; ð7Þ

where ℏω is the mean phonon energy and kB is the Boltzmann
constant59,60. A system that has strong electron–phonon coupling
(large Δr) tends to have S > 5, whereas weak electron–phonon
coupling (small Δr) occurs when S < 1. Fitting the temperature-
dependent luminescence data for NaBaB9O15:Eu2+ (Supplemen-
tary Figure 6) reveals the Huang–Rhys factor is only 2.098,
indicating that this material is approaching the weak
electron–phonon coupling regime, and, therefore, should have a
relatively small Δr. The consequence is that the two potential
energy surfaces in this phosphor are not expected to intersect and
the electron–phonon coupling is predicted to be minimal. Thus,
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this mechanism is also not anticipated to be a primary
contributor to non-radiative relaxation in this phosphor. The
combination of limited concentration quenching, the absence of
photoionization as a quenching mechanism, and the lack of
overlap between the ground and excited state potential energy
surfaces leads to the robust thermal behavior for NaBaB9O15:
Eu2+.

Conclusions. In conclusion, the Debye temperature of 2071
potential phosphor hosts was predicted with the assistance of
machine learning and correlated with their (PBE-level) DFT
calculated band gaps. The construction of a sorting diagram based
on these two intrinsic material properties is suitable to navigate
vast phase space to identify classes of the next generation of
inorganic phosphors. For example, borates are worth significant
investigation due to their outstanding Debye temperatures and
wide (PBE-level) band gaps. One specific borate highlighted by
the sorting diagram is NaBaB9O15:Eu2+, which has a ΘD,SVR of
729 K and a Eg,DFT of 5.5 eV. The subsequent synthesis of this
phosphor via solid-state reaction showed that the material could
be readily prepared as a phase pure product with multiple heating
steps. The crystal structure was analyzed using high-resolution
synchrotron X-ray powder diffraction and showed a unique
polyanionic [B3O7]5– network, which generates a three-
dimensional backbone necessary for a structural rigidity. Sub-
stituting the compound with Eu2+ yields a violet emission at λmax

= 416 nm when excited with near-ultraviolet (UV) light (315 nm)
light, while the optimal Eu2+ concentration produces a maximum
Φ of 95%. Moreover, the FWHM of the emission is only 34.5 nm,
making NaBaB9O15:Eu2+ a narrow violet-emitting phosphor.
Temperature-dependent luminescent measurements indicate that
this compound is also extremely thermally robust with minimal
thermal quenching of up to 500 K due to the lack of non-radiative
relaxation pathways. These experimental results support that
machine learning is an indispensable tool necessary to direct the
search for next generation of rare-earth substituted inorganic
phosphors. Although the phosphor discovered in this work is not
immediately applicable in current LED-based white lighting
devices, it has great potential for use in other applications such as
UV-excited laser lighting. Furthermore, the excellent thermal
properties of this crystal structure suggest that it is an excellent
platform to modify the excitation/emission peaks through che-
mical substitution. Shifting the optical properties to longer
wavelength will make this material viable as a next-generation
rare-earth substituted inorganic phosphor.

Methods
Data extraction and machine-learning model. To develop the supervised
machine-learning model for predicting ΘD, the bulk modulus B and shear modulus
G of 3248 compounds were obtained from the Material Project database as well as
from our own calculations61. These values were then cross-referenced with PCD30

to ensure that all the compositions used for machine learning are experimentally
reported, that is, not a predicted crystal structure. Additionally, only binary,
ternary, and quaternary compositions were considered, and any compound con-
taining group 18 elements, hydrogen, Tc, or Z > 83 (except for U and Th), were
omitted. Finally, thin films, foils, or suspensions were excluded. These criteria
reduced the number of elastic moduli in our final training dataset to 2610 com-
pounds, including 1343 binary phases, 1229 ternary phases, and 38 quaternary
phases. To distinguish between the polymorphs, the materials were labeled as
“composition, space group number.”

The machine-learning model was then constructed based on an SVR analysis
using PLS_Toolbox (version 8.2.1) within the MATLAB® (R2017a) environment62.
The training set employed DFT calculated Debye temperatures obtained as
described below. Our SVR applied a radial basis function as the kernel function and
was optimized using venetian blinds cross-validation (CV) with 10-fold data splits.
The compounds considered by the machine-learning algorithm were evaluated
using a descriptor set of 34 distinct compositional variables along with four math
expressions including the difference, average, and the largest and smallest values, as
well as 14 crystal structure variables such as space group number, crystal system,
and electron density, among others. The full descriptor set is provided in

Supplementary Table 1. These 150 descriptors (as x-vector data) were used to build
the machine-learning training model, which was represented in a 2610 × 150
matrix that was normalized, mean-centered, and rescaled to the unit variance.
Calculated Debye temperature, ΘD, was used as y-vector data (or dependent
variable). This model used an optimized cost parameter (C) and gamma (γ)
functions of 32 and 0.0032, respectively, where C regulates the tradeoff between
minimization of error and maximization of the margins and γ is the kernel
parameter controlling the influence of each support vector. This SVR model was
then used to predict the Debye temperature of compounds contained within PCD.

Phosphor synthesis. One phosphor host of particular interest identified in PCD
by machine learning is NaBaB9O15

63,64. Therefore, NaBa1–xEuxB9O15 (x= 0, 0.005,
0.01, 0.02, 0.03, 0.04, 0.05) was prepared via solid-state reactions starting from
NaHCO3 (EM science, 99.7%), BaCO3 (Johnson Matthey, 98%), H3BO3 (Sigma-
Aldrich, 99.999%), and Eu2O3 (Materion Advanced Chemicals, 99.9%). The
starting materials were loaded in the requisite stoichiometric ratios, thoroughly
ground using an agate mortar and pestle, and subsequently sintered at 600 °C for 2
h in air to decompose the reagents and initiate the reaction. The samples were then
ground and heated at 700 °C for 15 h, followed by a second grinding and heating at
750 °C for 5 h to obtain a phase pure product. These two heating steps were
performed in alumina crucibles using a fused silica tube furnace under a reducing
atmosphere (5% H2/95% N2) with heating and cooling ramps of 3 °Cmin–1. The
products were finally ground in an agate mortar and pestle then sieved (<325
mesh) prior to characterization.

Crystal structure determination and optical characterization. The samples were
all checked for phase purity using powder X-ray diffraction on a PanAnalytical
X’Pert powder diffractometer equipped with Cu Kα radiation (λ= 1.54183 Å).
Additionally, powder synchrotron X-ray diffraction data was collected on
NaBaB9O15 at 295 K with a calibrated wavelength of 0.457667 Å (beamline 11-BM,
Advanced Photon Source, Argonne National Laboratory)65. The crystal structure
was refined based on the Rietveld method using the GSAS package with a shifted
Chebyshev function employed to describe the background and a pseudo-Voigt
function for determining peak shape66,67. The final crystal structure was visualized
using VESTA68.

Steady-state photoluminescent spectra were collected at room temperature on a
Photon Technology International fluorescence spectrophotometer with a 75W
xenon arc lamp for excitation. The samples were mixed into an optically
transparent silicone resin (GE Silicones, RTV615) and deposited on a quartz
substrate (Chemglass) for the room temperature measurements. Temperature-
dependent measurements required the sample to be mixed with KBr in a 10:1
molar ratio of KBr:NaBa0.97Eu0.03B9O15 and then pressed into a 13 mm pellet. The
temperature was controlled using a Janis liquid nitrogen cryostat (VPF-100) and
the emission spectra were collected from 80 to 500 K in 20 K increments using a
λex= 340 nm. The absolute (internal) photoluminescent quantum yield was
determined by placing the samples encapsulated in the silicone resin inside a
Spectralon-coated integrating sphere (150 mm diameter, Labsphere) and exciting at
315 nm69. The luminescence lifetime decay measurements were collected using a
Horiba DeltaFlex Lifetime System equipped with a NanoLED N-330 nm LED (λex
= 336 nm) and a 400 nm longpass filter. A total measurement length of 3.2 μs was
employed using a repetition rate of 250 kHz and a delay of 10 ns.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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