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Background: The incidence of diffuse large B-cell lymphoma (DLBCL) in children is increasing globally. 
Due to the immature immune system in children, the prognosis of DLBCL is quite different from that of 
adults. We aim to use the multicenter large retrospective analysis for prognosis study of the disease. 
Methods: For our retrospective analysis, we retrieved data from the Surveillance, Epidemiology and End 
Results (SEER) database that included 836 DLBCL patients under 18 years old who were treated at 22 
central institutions between 2000 and 2019. The patients were randomly divided into a modeling group 
and a validation group based on the ratio of 7:3. Cox stepwise regression, generalized Cox regression and 
eXtreme Gradient Boosting (XGBoost) were used to screen all variables. The selected prognostic variables 
were used to construct a nomogram through Cox stepwise regression. The importance of variables was 
ranked using XGBoost. The predictive performance of the model was assessed by using C-index, area under 
the curve (AUC) of receiver operating characteristic (ROC) curve, sensitivity and specificity. The consistency 
of the model was evaluated by using a calibration curve. The clinical practicality of the model was verified 
through decision curve analysis (DCA).
Results: ROC curve demonstrated that all models except the non-proportional hazards and non-log 
linearity (NPHNLL) model, achieved AUC values above 0.7, indicating high accuracy. The calibration curve 
and DCA further confirmed strong predictive performance and clinical practicability. 
Conclusions: In this study, we successfully constructed a machine learning model by combining XGBoost 
with Cox and generalized Cox regression models. This integrated approach accurately predicts the prognosis 
of children with DLBCL from multiple dimensions. These findings provide a scientific basis for accurate 
clinical prognosis prediction.
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Introduction

Lymphoma is among the eight most common malignant 
tumors worldwide. Its incidence has been increasing 
annually. According to statistics from the World Health 
Organization, the annual growth rate of lymphoma 
incidence was 5% to 7% between 2000 and 2019 with over 
200,000 deaths occurring each year (1). Globally, diffuse 
large B-cell lymphoma (DLBCL) is the most prevalent 
form of non-Hodgkin lymphoma (NHL), accounting for 
20% of NHL in children (2). According to the data from 
the National Cancer Institute, the incidence of DLBCL in 
children showed an upward trend from 2011 to 2022. White 
children have the highest incidence of DLBCL, followed 
by black children and Asian children (3). A current study 
has revealed that DLBCL in children are more invasive 
and exhibits distinct prognosis differences (4). However, 
due to the relative rarity of children with DLBCL in 
clinical practice, a previous study only analyzed mixed cases 
involving both children and other kinds of DLBCL cases, 
introducing various confounding factors (5). Currently, 
the international prognostic index (IPI) has limited utility 
in guiding prognostic stratification of pediatric DLBCL 
patients (6). As a result, there is a lack of multicenter and 
extensive sample data to construct more refined prognostic 

models to aid in predicting the prognosis of such patients. 
Although the Cox regression model is a standard method 

for tumor prognosis analysis, more methods are needed to 
analyze the significance of prognostic factors and to conduct 
precision analysis of the model (7). The Cox regression 
calculates crude mortality and requires the following 
for constructing a prognostic model with continuous  
variables (8): (I) a linear relationship between the logarithm 
of the hazard ratio and the covariates; (II) independence of 
the logarithm of the risk ratio from time, with only a relation 
to the linear combination of covariates. In other words, 
Cox regression needs to satisfy the requirements of equal 
proportional hazards (PH) and log linearity (LL). However, 
in a real clinical study, DLBCL in children exhibits high 
heterogeneity and invasiveness (9). Data that meet both 
requirements of Cox regression are scarce. Therefore, there 
is an urgent need for more flexible models that accurately 
reflect the prognostic characteristics of childhood DLBCL 
in clinical practice. The generalized Cox regression offers a 
flexible modeling approach for relative survival. It allows for 
analysis of the nonlinear influence of variables on survival 
risk, especially for prognostic variables including continuous 
variables (8). This means that the data do not need to adhere 
strictly to the PH assumption or to the assumption of 
linearity on the logarithmic scale. Therefore, the constructed 
prognostic model is more consistent with the actual data. The 
eXtreme Gradient Boosting (XGBoost) model, as an efficient 
machine learning approach, is an integrated algorithm that 
has been widely used in artificial intelligence, data mining, 
and statistical analysis. It improves up on gradient boosting 
decision trees by offering loose data requirements, fast 
training speed and accurate training results (10). XGBoost is 
utilized to construct the prediction model. Once the boosting 
tree is created, the importance score of each attribute can 
be obtained quite directly (11). This allows for ranking the 
importance of prognostic variables. Based on the Surveillance, 
Epidemiology and End Results (SEER) database, this study 
aimed to enhance the prediction accuracy and precision 
of the model by analyzing the clinicopathological data of 
836 children with DLBCL through a multicenter big data 
approach. The multidimensional analysis was carried out 
by using traditional Cox and generalized Cox regression, 
combined with XGBoost algorithm to investigate the clinical 
data of children patients. Decision curve analysis (DCA) was 
also employed to evaluate the clinical effectiveness of the 
model, aiming to enhance the clinical workers’ awareness of 
the disease and to provide novel insights for clinical diagnosis 
and treatment of patients as well as the whole management 

Highlight box

Key findings
•	 Using regression analysis, we identified several independent 

prognostic factors for overall survival (OS) in children with diffuse 
large B-cell lymphoma (DLBCL) namely age, sex, surgery, primary 
surgical procedure, radiotherapy, chemotherapy, systemic therapy, 
Ann Arbor stage and time from diagnosis to treatment.

What is known and what is new? 
•	 The incidence of DLBCL in children is increasing globally. Due 

to the immature immune system in children, the prognosis of 
DLBCL is quite different from that of adults.

•	 By comparing our novel model to the traditional prognostic 
system, we used the decision curve analysis. The results indicated 
that within the threshold of 0.87, the net benefit rates of the novel 
models exceeded those of traditional international prognostic index 
prognostic score.

What is the implication, and what should change now? 
•	 It can be demonstrated that the novel model has better clinical 

value and utility in evaluating the OS of DLBCL in children when 
compared to the traditional prognostic system. We could use novel 
models to assist clinical practitioners in predicting more accurate 
prognoses for children DLBCL patients.
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of patients. We present this article in accordance with 
the TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-2358/rc).

Methods

Research subjects

We obtained authorization to collect clinicopathological 
data of patients diagnosed with DLBCL between 2000 
and 2019 using SEER*Stat software (version 8.4.0.1). The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). Finally, we gathered detailed 
clinicopathological and follow-up data from 832 patients 
who met the inclusion and exclusion criteria. Inclusion 
criteria: (I) patients with histopathological diagnosis of 
DLBCL; (II) under 18 years old; (III) the year of diagnosis 
was 2000–2019; (IV) follow-up information such as patient 
survival data was complete. Exclusion criteria: (I) patients 
older than 18 years; (II) those with unknown tumor size; (III) 
those with unknown tumor stage. 

Observation indicators 

Lots of meaningful variables were extracted for subsequent 
analysis. These variables included the patient’s age, sex, Ann 
Arbor stage, year of diagnosis, IPI, ethnicity, B-symptoms, 
histological grade, surgical method, primary tumor location, 
chemotherapy, radiotherapy, systemic therapy, time from 
diagnosis to treatment, survival, cause of death and survival 
time. The follow-up period was extended until December 31, 
2019. The primary outcome measure considered was overall 
survival (OS), which was defined as the interval from the time 
of the patient’s histopathological diagnosis until death. 

Cox regression model

The Cox PH regression model is currently the most 
commonly utilized semi-parametric model for conducting 
multivariate survival analysis. It has been widely used 
because it combines the advantages of both parametric and 
non-parametric models, which can analyze the influence 
of survival time for incomplete data. Survival analysis is 
the collective term for a series of methods dealing with the 
statistics of time to event and variables and is often used to 
study disease occurrence, outcome, recovery and death (12).  
Among the essential multivariate analysis techniques in 
survival analysis, the Cox PH regression model is extensively 

employed in identifying risk factor and predicting clinical 
outcomes by using follow-up data (8,12).

XGBoost model

XGBoost is an ensemble learning algorithm based on 
gradient boosting and its principle is to achieve precise 
classification effect through iterative computation of weak 
classifiers (13). It is an optimization model that combines 
both linear model and boosted tree model, providing the 
benefits of fast processing speed and superior performance. 
As a result, the XGBoost model is extensively utilized 
by experts in various domains such as machine learning, 
data mining, statistics, and other fields such as artificial 
intelligence, data analysis, and statistical learning (4,11,13).

Generalized Cox regression model

Generalized Cox regression is an advanced predictor model 
that exhibits great flexibility compared to Cox regression. 
Cox regression employs the assumption of PH and LL (8). 
First, Cox regression assumes a linear relationship between 
the logarithm of the hazard ratio and the covariates, known 
as the PH assumption. Second, Cox regression also assumes 
that the logarithm of the hazard ratio is independent 
of time and only relates to the linear combination of 
covariates, referred to as the LL assumption. On the other 
hand, generalized Cox regression employs three flexible 
models to fit the data, allowing for independent testing and 
relaxation of both the PH and LL assumptions (8). The first 
non-proportional hazards (NPH) model, relaxes the PH 
assumption and does not require prognostic data of DLBCL 
patients to satisfy the PH requirements (8). The second 
model, non-log linearity (NLL), relaxes the LL assumption 
and does not assume the hazard ratio to be linear on the 
logarithmic scale (8). The third model, NPHNLL, relaxes 
both PH and LL assumptions (8). As a result, generalized 
Cox regression is more widely used and provides a more 
precise fit to DLBCL prognostic data.

Statistical analysis

Statistical analysis was performed using the R software 
(version 4.1.3). Various packages were utilized, including 
flexrsurv, ggpubr, rms, survival, MASS, survminer, ggplot2, 
survivalROC, ggforest, ggDCA, Hmisc, lattice, Formula, 
XGBoost, etc. Multivariate Cox regression, Generalized 
Cox regression and XGBoost were used to screen out the 

https://tcr.amegroups.com/article/view/10.21037/tcr-23-2358/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-2358/rc
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prognostic characteristic variables of children with DLBCL 
respectively (Cox and Generalized Cox regression used 
the minimum Akaike Information Criterion as the basis 
for variable screening. The top ten characteristic variables 
were used as the basis for screening of XGBoost). Cox 
regression was used to construct the selected prognostic 
factors. XGBoost ranked the importance of prognostic 
feature variables. Generalized Cox regression determined 
the non-proportional risk and non-log-linear relationship 
between prognostic variables and survival risk. Receiver 
operating characteristic (ROC) curve, C-index, sensitivity 
and specificity were used to determine the predictive 
performance of model. Calibration curve and DCA were 
used to determine the consistency and clinical validity of 
the model. The analysis indicators were 1-, 3-, and 5-year 
OS of the tumor. The significance level was set at α=0.05.

Results 

Basic patient information 

There were 2,230 children diagnosed with DLBCL from 2000 
to 2019 obtained from the SEER database by using SEER*Stat 
software. The clinicopathological information mainly 
included patient age, race, year of diagnosis, primary tumor 

location, histological type, grade, Ann Arbor stage, surgical 
method, chemotherapy, radiotherapy, systematic treatment, 
time from diagnosis to treatment, IPI score, B symptoms, 
survival status, cause of death and survival time. The obtained 
patient information was screened several times according to 
the inclusion and exclusion criteria. Finally, 836 cases that 
met the study criteria were included, which were randomly 
divided into a modeling group (n=585) and a validation group 
(n=251) by using the “rms” package of R software at a ratio of 
7:3 according to a random number table method. The related 
detailed clinicopathological information is shown in Table 1.

Cox regression model results

To identify the key factors influencing survival in children with 
DLBCL, we conducted multivariate Cox stepwise regression 
analysis. This analysis helped us identify independent 
prognostic factors associated with OS. The findings revealed 
that Ann Arbor stages III and IV were significantly associated 
with poorer OS in patients aged under 18 years. Children 
aged under 2 years exhibited worse 3-, 5-year OS compared 
to those older than 2 years. In terms of treatment, patients 
who underwent chemotherapy or radiotherapy had a better 
prognosis than those who did not receive these treatments. 
In addition, Patients who received systemic therapy also had 

Table 1 Demographic and clinical data of 836 patients with children DLBCL (n=836)

Variable Modeling group (n=585) Verification group (n=251) P value

Age (years) 0.33

≤10 121 (20.7) 76 (30.3)

>10 464 (79.3) 175 (69.7)

Race 0.17

White 210 (35.9) 102 (40.6)

Black 186 (31.8) 41 (16.3)

Other 189 (32.3) 108 (43.1)

Site of disease 0.15

Left 221 (37.8) 134 (53.4)

Right 56 (9.6) 35 (13.9)

Bilateral 308 (52.6) 82 (32.7)

SEER stage 0.08

Localized 85 (14.5) 59 (23.5)

Regional 197 (33.7) 108 (43.0)

Distant 303 (47.8) 84 (33.5)

Table 1 (continued)
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Table 1 (continued)

Variable Modeling group (n=585) Verification group (n=251) P value

Ann Arbor stage 0.64

Stage I 64 (10.9) 36 (14.3)

Stage II 123 (21.0) 67 (26.7)

Stage III 183 (31.3) 55 (21.9)

Stage IV 215 (36.8) 93 (37.1)

Surgery 0.79

Yes 323 (55.2) 134 (53.4)

No 262 (44.8) 117 (46.6)

Radiotherapy 0.06

Yes 321 (54.9) 167 (66.5)

No 264 (45.1) 84 (33.5)

Radiotherapy type 0.13

No radiotherapy 241 (41.2) 84 (33.5)

Postoperative radiotherapy 161 (27.5) 67 (26.7)

Preoperative radiotherapy 89 (15.2) 32 (12.7)

Radiotherapy before and after surgery 94 (16.1) 68 (27.1)

Chemotherapy 0.11

Yes 486 (83.1) 177 (70.5)

No 99 (16.9) 74 (29.5)

Systematic therapy 0.08

Yes 209 (35.7) 121 (48.2)

No 376 (64.3) 130 (51.8)

Time from diagnosis to treatment (month) 0.21

1 241 (41.2) 86 (34.3)

2 190 (32.5) 79 (31.5)

3 93 (15.9) 54 (21.5)

4 61 (10.4) 32 (12.7)

IPI score 0.42

1 103 (17.6) 71 (28.3)

2 84 (14.4) 30 (11.9)

3 179 (30.6) 69 (27.5)

4 219 (37.4) 81 (32.3)

B symptom 0.09

Yes 390 (66.7) 183 (72.9)

No 195 (33.3) 68 (27.1)

DLBCL, diffuse large B-cell lymphoma; SEER, Surveillance, Epidemiology and End Results; IPI, international prognostic index.
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a more favorable prognosis. According to the multivariate 
Cox stepwise regression analysis, the OS of patients who only 
had primary tumor surgery did not gain prolonged extension. 
In addition, we analyzed social variables such as family 
income status and marital status, but they did not emerge as 
independent prognostic factors for OS.

Generalized Cox regression model results

To uncover intricate NLL relationships between prognostic 
variables and OS, we analyzed all variables using generalized 
Cox regression. NLL model indicated that age, surgery, 
chemotherapy, Ann Arbor stage, sex and radiotherapy for 
OS exhibited NLL relationships (P<0.05). ROC curves 
were employed to assess the generalized Cox regression. 
In the training cohort, the area under the curve (AUC) for 
NLL model was 0.870 [95% confidence interval (CI): 0.818, 

0.892]. In the validation cohort, the AUC for NLL was 
0.869 (95% CI: 0.830, 0.872). The NPH model suggested 
that age, Ann Arbor stage, radiotherapy and chemotherapy 
for OS demonstrated NPH relationships (P<0.05). We 
showed in detail the NLL and NPH relationships between 
age and OS (Figures 1,2). In the training cohort, the AUC 
for NPH model was 0.813 (95% CI: 0.808, 0.862). In the 
validation cohort, the AUC for NPH model was 0.871 
(95% CI: 0.860, 0.882). These findings demonstrated the 
exceptional effectiveness of NPH and NLL models in 
predicting the survival of children with DLBCL at OS. 
The NPHNLL model suggested that there were non-
proportional risk and non-log-linear relationship among 
age, surgery and chemotherapy for OS (P<0.05). In the 
training cohort, the AUC for the NPHNLL model was 
0.679 (95% CI: 0.308, 0.962). In the validation cohort, the 
AUC for the NPHNLL was 0.691 (95% CI: 0.460, 0.782).

Machine learning approach using XGBoost results

XGBoost analysis revealed the top 10 characteristic variables 
associated with OS in children with DLBCL. These 
prognostic factors were ranked based on their importance: 
age, systemic therapy, Ann Arbor stage, laterality, radiation 
type, stage, surgery type, chemotherapy, radiation, and 
time from diagnosis to treatment (Figure 3). Our XGBoost 
algorithm model demonstrated extraordinary efficiency in 
predicting OS in both the training and validation cohorts of 
children with DLBCL. Specifically, in the training cohort, 
the AUC was 0.892 (95% CI: 0.707, 0.939), and in the 
validation cohort, the AUC was 0.889 (95% CI: 0.801, 0.991). 
In comparison with other models, Cox regression model (train 
set AUC =0.799; test set AUC =0.770), NPH model (train 
set AUC =0.813; test set AUC =0.871), NLL model (train set 
AUC =0.870; test set AUC =0.869), NPHNLL model (train 
set AUC =0.679; test set AUC =0.691). The XGBoost model 
outperformed them all, demonstrating the best prediction 
performance.

Establishment and comparison of the prognostic models

The variables with P<0.05 in the multivariate Cox regression 
were incorporated into nomogram (Figure 4). The AUC 
under the ROC curve of the training group was 0.799, while 
the AUC under the ROC curve of the validation group 
was 0.770, both of which showed that the model had high 
prediction accuracy. The 1-, 3-, and 5-year calibration curves 
of the training cohort and the verification cohort (shown in 
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Figures 5-10) showed that the prediction model constructed 
in this study had a high consistency with the actual observed 
values. DCA curve analysis showed that the net benefit of 
the predictive model constructed in this study was generally 
superior to the traditional IPI prognostic model. It had high 
clinical practicability (Figures 11,12). Finally, we compared 
the predictive performance of all prognostic models (Table 2).

Discussion

Although children with DLBCL are rare, their incidence 
is gradually increasing (14). A growing number of studies 
have shown that the prognosis of DLBCL in children 
is quite different from that in adults (14,15). Therefore, 

more precise prognostic evaluation is needed for the 

individualized treatment of children with DLBCL. In this 

study, we constructed new prediction models for DLBCL in 
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children using XGBoost, Generalized Cox and Cox stepwise 
regression. These models can comprehensively, rapidly and 
accurately assess the prognosis of children patients. The IPI 
scoring system has been the main prognostic assessment 
tool used in clinics for children with DLBCL (16,17), but 
it has limitations as it does not consider other important 
factors that impact survival (18). However, our model can 
accurately predict the significance of prognostic factors and 
their non-proportional and non-linear relationship with 

survival outcomes. Our analysis and validation demonstrate 
the contribution and effect of each prognostic variable on 
survival risk.

Previous studies showed that sex, age, stage, chemotherapy, 
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Figure 9 Calibration curve for 3-year overall survival in the 
validation cohort.

Figure 8 Calibration curve for 1-year overall survival in the 
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Table 2 Performance of the prognostic models

Models
Training cohort Validation cohort

AUC Sensitivity Specificity AUC Sensitivity Specificity

Cox 0.799 0.799 0.801 0.770 0.799 0.748

NPH 0.813 0.871 0.819 0.871 0.802 0.847

NLL 0.870 0.872 0.871 0.869 0.868 0.876

NPHNLL 0.679 0.701 0.679 0.691 0.690 0.709

XGBoost 0.892 0.877 0.899 0.889 0.864 0.892

NPH, non-proportional hazards; NLL, non-log linearity; NPHNLL, non-proportional hazards and non-log linearity; XGBoost, extreme 
gradient boosting; AUC, area under curve.

B symptoms and large mass size were influencing factors for 
the prognosis of children with DLBCL (19,20). However, 
these studies were primarily retrospective analyses with 
small samples and being single-center. Our study collected 
data from 836 DLBCL patients of children, making it 
the largest multicenter retrospective study of DLBCL in 
children. Therefore, the findings were more accurate and 
comprehensive. Using regression analysis, we identified 
several independent prognostic factors for OS in children 
with DLBCL namely age, sex, surgery, primary surgical 
procedure, radiotherapy, chemotherapy, systemic therapy, 
Ann Arbor stage and time from diagnosis to treatment. 
Our predictive model demonstrated that male children 
with DLBCL, those who did not receive systemic 
therapy and those with a longer time from diagnosis to 
treatment experienced worse outcomes. Early detection 
and systematic diagnosis have been shown to be beneficial 
for treatments. Therefore, systemic therapy and a shorter 
time from diagnosis to treatment were associated with 
better prognosis. Earlier studies have also indicated that 
early detection and systemic treatment were independently 
associated with the 5-year relative survival of patients with 
DLBCL (21,22). Consistent with previous findings, our 
study found that male children with DLBCL generally had 
worse outcomes compared to their female counterparts 
(9,15,23). This difference in survival rates could be 
attributed to the genetic profiles and lifestyle habits that 
differ between males and females. We thought there 
might be a complex interaction among genetic factors, 
environmental factors, and cancer outcomes. In general, the 
results need to be verified with a large amount of research 
evidence from real-world data. 

In addition, we constructed a novel predictive nomogram 
and validated it with a 251 patients internal validation cohort. 

Our findings revealed that patients’ characteristics, such 
as age, sex, Ann Arbor stage, radiotherapy, chemotherapy, 
systemic therapy, and time from diagnosis to treatment were 
associated with prognosis. Additionally, this nomogram 
performed excellently as assessed by the calibration curve and 
AUC. Compared to the IPI scoring system, the calibration 
curve of the nomogram for predicting OS was more accurate 
both in the training and validation sets. Moreover, the AUC 
values of the nomogram for predicting 3- and 5-year OS were 
higher, providing clinicians with a more accurate prediction of 
individual patients. Furthermore, the DCA curve was used to 
identify high-risk patients to intervene while low-risk patients 
to avoid unnecessary intervention (24). This evaluation 
method allows us to assess the degree of patient benefit (25).  
Consequently, we utilized DCA curve to evaluate the clinical 
practicality of the newly constructed model. Our analysis 
of the modeling group revealed the predictive ability of the 
new nomogram for OS in children with DLBCL. In the 
validation group, the nomogram effectively incorporated 
clinical and demographic information. By comparing our 
novel model to the traditional IPI scoring system, we 
used the DCA curve. The results indicated that within the 
threshold of 0.87, the net benefit rates of the novel models 
exceeded those of traditional IPI prognostic score. It can be 
demonstrated that the novel model has better clinical value 
and utility in evaluating the OS of DLBCL in children when 
compared to the IPI scoring system.

In recent years, extensive retrospective studies have 
indicated that elderly patients are at high risk for DLBCL 
(26,27). Our research observed a complex nonlinear 
relationship between age and OS in children with DLBCL 
by using the generalized Cox regression. The NPH model 
suggested that there was a NPH relationship between age 
and OS. Hence, for age the PH assumption was relaxed. 
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The effect of the age variable on OS was not constant with 
time. Additionally, our NLL model suggested that there was 
a non-log-linear relationship between age and OS. That is 
to say, for age the LL assumption was relaxed. The effects of 
this variable were not constant with time and exhibited non-
linear relationships between this variable and the log-hazard 
of OS. Consequently, the generalized Cox regression allows 
for greater flexibility in capturing changes in the impact 
of a predictor variable on survival risk of children with 
DLBCL over time. Furthermore, our study showed that the 
younger the age, the higher the prognostic risk of DLBCL 
in children. Compared to adult patients, DLBCL patients 
aged 1 to 2 years had a greater survival risk. The NPHNLL 
model also suggested that age, Ann Arbor stage, surgery, sex 
and chemotherapy exhibited both NPH and non-log-linear 
relationships with OS. However, the AUC value of the 
NPHNLL model was less than 0.7, indicating that further 
validation of the relationship between the prognostic factors 
revealed by the model and OS was necessary. This finding 
provides a direction for future research. 

So far, XGBoost model has been widely utilized in 
the cancer field for survival analysis (28). However, its 
application in predicting the significance of prognostic 
factors in children with DLBCL has not been explored. 
In our study, we compared the predictive ability of Cox 
stepwise regression, generalized Cox regression and 
XGBoost, and found that XGBoost demonstrated the 
highest predictive accuracy in identifying prognostic 
factors in children with DLBCL. The XGBoost model was 
employed as an efficient machine learning tool to rank the 
significance of prognostic factors of DLBCL in children in 
our research. Interestingly, the model revealed that age was 
the most influential prognostic factor, validating its impact 
on DLBCL prognosis. Previous studies have indicated 
that the addition of radiotherapy to immunochemotherapy 
improves the prognosis of selected DLBCL patients  
(29-31). However, our XGBoost analysis did not identify 
chemotherapy and radiotherapy as the most important 
prognostic factors. Therefore, further research is required 
to confirm whether chemotherapy and radiotherapy are key 
prognostic factors for DLBCL in children.

Despite several promising findings, there are several 
limitations in our research. Firstly, the data from the 
SEER database were derived from retrospective studies, 
which might introduce selection bias and information bias. 
Secondly, there were missing data regarding chemotherapy 
regimens of patients and doses. As a result, we were unable 
to investigate the impact of specific chemotherapy regimens 

on OS of patients.

Conclusions

We constructed three novel models to predict DLBCL 
in children by using a large set of DLBCL samples from 
SEER database and an analysis of commonly used clinical 
indicators. These high-precision models effectively predict 
the intricate relationships between variables and survival 
risk in children with DLBCL. Our research aims to assist 
clinical practitioners in predicting more accurate prognoses 
for children DLBCL patients, enabling individual precision 
treatment and offering guidance for the management of 
patients.
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