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Abstract

Background: To date, 60 genetic variants have been robustly associated with

birthweight. It is unclear whether these associations represent the effect of an

individual’s own genotype on their birthweight, their mother’s genotype, or both.

Methods: We demonstrate how structural equation modelling (SEM) can be used to

estimate both maternal and fetal effects when phenotype information is present for

individuals in two generations and genotype information is available on the older individ-

ual. We conduct an extensive simulation study to assess the bias, power and type 1 error

rates of the SEM and also apply the SEM to birthweight data in the UK Biobank study.

Results: Unlike simple regression models, our approach is unbiased when there is both a

maternal and a fetal effect. The method can be used when either the individual’s own

phenotype or the phenotype of their offspring is not available, and allows the inclusion

of summary statistics from additional cohorts where raw data cannot be shared. We

show that the type 1 error rate of the method is appropriate, and that there is substantial

statistical power to detect a genetic variant that has a moderate effect on the phenotype

and reasonable power to detect whether it is a fetal and/or a maternal effect. We also

identify a subset of birthweight-associated single nucleotide polymorphisms (SNPs) that

have opposing maternal and fetal effects in the UK Biobank.

Conclusions: Our results show that SEM can be used to estimate parameters that would

be difficult to quantify using simple statistical methods alone.
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Introduction

Birthweight is a complex trait, and low birthweight is ro-

bustly associated with increased risk of a range of cardio-

metabolic diseases in later life.1 It has long been known

that birthweight is under the influence of both maternal

and fetal genetic sources of variation. Using a large sample

consisting of the offspring of twins, Magnus illustrated

that more than 50% of the variation in birthweight is

caused by fetal genes and less than 20% was caused by ma-

ternal genes.2 Subsequent studies have reported lower pro-

portions of the variance explained by both fetal and

maternal genes, but all have shown that the fetal contribu-

tion is larger than the maternal contribution.3,4 Using a

method that partitions trait variance into components due

to the maternal and fetal genomes,5 we reported that com-

mon genetic variants in the fetal genome explained

approximately 28% of the variation in birthweight,

whereas common genetic variants in the maternal genome

only explained approximately 8% of the total variance.6

We and others have begun to investigate the specific

regions of the genome that influence fetal growth, using

genome-wide association studies (GWAS). In a recent

GWAS meta-analysis combining data from the Early

Growth Genetics consortium (EGG; http://egg-consortium.

org/) and the UK Biobank,7 we identified 60 single nucleo-

tide polymorphisms (SNPs) associated with birthweight at

genome-wide levels of significance.6 One difficulty we

faced in interpreting our results was that it was often not

clear whether genetic associations reflected the effect of an

individual’s own genotype on their birthweight, an effect

of their mother’s genotype on their birthweight (i.e. mater-

nal genotype mediated through the intrauterine effect) or

some combination of both. For example, rare mutations in

the GCK gene, which cause a defect in the sensing of glu-

cose by the pancreas, have radically different associations

with birthweight according to their parent of origin.

If inherited paternally, birthweight is lower due to reduced

glucose sensing and consequent reduced insulin secretion,

which results in reduced growth. But if maternally in-

herited (i.e. present in both mother and fetus), birthweight

is close to the population average because the maternal

hyperglycaemia compensates for the fetal defect in glucose

sensing. In the case that the mother has hyperglycaemia

due to a GCK mutation, but the fetus does not inherit the

mutation, the birthweight is higher due to normal glucose

sensing and thus above-average insulin secretion. This ex-

ample reflects contrasting effects mediated through the

intrauterine environment (i.e. maternal effects) and direct

effects of the offspring’s genotype.8

In an attempt to resolve this question, in Horikoshi

et al.6 we first performed a simple linear regression of an

individual’s self-reported birthweight on their own geno-

type; and then for the UK Biobank women, we performed

a linear regression of the birthweight of their firstborn

child on their own genotype. We then compared the ma-

ternal and fetal effect sizes to get an idea of whether the

locus was operating through the maternal or the individ-

ual’s own genotype. However, this approach was subopti-

mal since it did not consider the correlation between

maternal and offspring genotypes, and therefore did not

accurately estimate the relative importance of these two

potential sources of variation. We also examined the gen-

etic associations with birthweight in cohorts that had

genotype information on both mother and offspring.

Performing an analysis of offspring birthweight on mater-

nal genotype and conditioning on offspring genotype

Key Messages

• We describe a structural equation model to estimate both maternal and fetal effects when phenotype information is

present for individuals in two generations and genotype information is available on the older individual.

• Using simulation, we show that our approach is unbiased when there is both a maternal and fetal effect, unlike sim-

ple linear regression models. Additionally, we illustrate that the structural equation model is largely robust to random

measurement error and missing data for either the individual’s own phenotype or the phenotype of their offspring.

• We describe how the flexibility of the structural equation modelling framework will allow the inclusion of summary

statistics from studies that are unable to share raw data.

• Using the structural equation model to estimate the maternal and fetal effects of known birthweight-associated loci in

the UK Biobank, we identify three loci that have primary effects through the maternal genome and six loci that have

opposite effects in the maternal and fetal genomes.
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should yield an unbiased estimate of the mother’s genetic

influence on her child’s birthweight, and likewise a regres-

sion of offspring birthweight on offspring genotype condi-

tioning on maternal genotype should produce an unbiased

estimate of the fetal contribution on birthweight. The dif-

ficulty however is that there is a paucity of cohorts in the

world that have birthweight data as well as genotype data

on both mothers and children, meaning that such an ana-

lysis is likely to have low power to resolve maternal and

fetal effects.

To better estimate the maternal and fetal genetic contri-

butions to birthweight for each of the 60 genome-wide sig-

nificant variants reported in Horikoshi et al.6 we used a

structural equation modelling (SEM) approach with birth-

weight data from the UK Biobank. Our method enables us

to model both grand-maternal and offspring genotypes

(which were absent in the UK Biobank) as latent factors,

and to estimate maternal and fetal effects on birthweight in

the same statistical model. To investigate the properties of

our approach, we first performed a series of simulations to:

(i) quantify any bias in the effect estimates for the maternal

and fetal effects; and (ii) estimate power to detect maternal

and fetal effects and type 1 error. We also assessed the ef-

fect of allele frequency and measurement error in birth-

weight (which can often be an issue with self-report) on

our estimates. We show that our method provides accurate

estimates of maternal and fetal effects under a range of dif-

ferent scenarios, and increased power to detect genetic

association when maternal and fetal effects operate in op-

posite directions. We also show how our framework can

easily combine summary results data from additional co-

horts, including previous large scale GWAS meta-analyses,

involving either maternal or offspring phenotypes. Using

the UK Biobank data,7 we provide strong evidence to sug-

gest that several of the known birthweight-associated SNPs

exert effects acting in opposite directions on birthweight

through the maternal and fetal genotypes.

Methods

Simulations

We performed simulations to investigate the bias, power and

type one error rate of the SEM for modelling both the indi-

vidual’s own genetic effect (referred to as the ‘fetal effect’)

and maternal genetic effects on birthweight. The model we

used for generating the data is illustrated in Figure 1, and the

R code used for performing these simulations is provided in

the Supplementary material (available as Supplementary

data at IJE online).

For each scenario, we generated 10 000 replicates of

30 000 maternal-offspring pairs. For each replicate we gen-

erated grandparental (on the maternal side) and paternal

genotypes at a single locus. Assuming autosomal Mendelian

inheritance, additivity and unit variance, latent variables for

the genotype of the individual’s mother (i.e. grand-maternal

Figure 1. Diagram of the structural equation model (SEM) used for the simulation study and the UK Biobank analysis of birthweight. The three observed

variables (in squares) are the birthweight of the individual (BW), the birthweight of their offspring (BWO) and the genotype of the individual (SNP). The

latent variables (in circles) are the genotypes for the individual’s mother (GG) and the genotype of the individual’s first offspring (GO). The total variance

of the latent genotypes for the individual’s mother (GG) and offspring (GO) and for the observed SNP variable is set to U [i.e. variance(GG) ¼ U, variance

(SNP) ¼ 0.75U þ 0.25U, variance (GO) ¼ 0.75U þ 0.25U]. The m and f path coefficients refer to maternal and fetal effects, respectively. The residual error

terms for the birthweight of the individual and their offspring are represented by E and EO, respectively, and we estimate the variance of both of these

terms in the SEM. The covariance between residual genetic and environmental sources of variation is given by q.
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genotype; GG), the individual’s own genotype (SNP) and

offspring’s genotype (GO) were generated. The individual’s

own birthweight variable (BW), for each family i, was

generated using the following equation:

BWi ¼
ffiffiffiffiffiffiffi
VM

p
�GGi þ

ffiffiffiffiffiffiffi
VO

p
� SNPi þ bU �Ui þ ei

where VM denotes the variance in birthweight explained by

the maternal genotype (‘maternal effect’), GG is a latent vari-

able indexing the genotype of the individual’s mother, VO is

the variance in birthweight explained by the individual’s

own genotype (‘fetal effect’), SNP is the genotype of the indi-

vidual, U is a standard normal random variable representing

all residual genetic and environmental sources of similarity

between mother and offspring, bU is the total effect of U on

the individual’s own birthweight and E is a random normal

variable with mean zero and variance needed to ensure that

BW has unit variance asymptotically.

Similarly, offspring birthweight (BWO), for each family

i, was generated using the following equation:

BWOi ¼
ffiffiffiffiffiffiffi
VM

p
� SNPi þ

ffiffiffiffiffiffiffi
VO

p
�GOi þ bUO �Ui þ eOi

where GO is a latent variable indexing the offspring geno-

type, bUO is the total effect of U on offspring birthweight and

EO is a random normal variable with mean zero and variance

needed to ensure that BWO has unit variance asymptotically.

In all simulations, the regression of phenotype on residual

shared genetic and environmental factors was set to 0.5

(i.e. bU ¼ bUO ¼ 0.5). We considered the effects of: allele fre-

quency (p ¼ 0.99, p ¼ 0.90 or p ¼ 0.5); the strength of the

fetal genetic effect on birthweight (VO ¼ 0%, VO ¼ 0.02% or

VO ¼ 0.04%); and the strength of the maternal genetic effect

on birthweight (VM ¼ 0%, VM ¼ 0.01% or VM ¼ 0.02%).

We simulated the fetal and maternal genetic effects to have

both increasing and decreasing effects on birthweight.

For each simulated dataset we fit a series of models:

i. linear models regressing either the individual’s own

birthweight or, for the women, the birthweight of their

offspring on the SNP (individual’s own genotype),

which respectively estimate the fetal and maternal gen-

etic effects on birthweight; this is equivalent to the

model typically used in genetic studies of birthweight6

and was used for comparison purposes;

ii. SEM estimating both maternal and fetal effects as illus-

trated in Figure 1; P-values were calculated using

Wald tests;

iii. SEM estimating only the fetal effect; this model was fit

to conduct a likelihood ratio test for the maternal ef-

fect and the likelihood ratio test P-value was compared

with the Wald test P-value for the fetal effect;

iv. SEM estimating only the maternal effect, to conduct a

likelihood ratio test for the fetal effect; this likelihood

ratio test P-value was compared with the Wald test

P-value for the maternal effect;

v. SEM with neither fetal nor maternal paths (i.e. both

fixed to zero); this model was fit to conduct a

likelihood ratio test of the overall SNP effect, and the

P-value from this test is referred to as the two degrees

of freedom (2DF) test P-value.

Bias was defined as the mean difference between the

estimated SNP effect and the true parameter across the

10 000 simulations, and was calculated for both the ma-

ternal and fetal effects. A 95% confidence interval was

calculated around the bias to give an indication of the un-

certainty in the estimate. Power was defined as the propor-

tion of tests that reached P < 0.05 under the alternative

hypothesis, and type 1 error rate the proportion of tests

that reached P < 0.05 under the null hypothesis.

Additional simulations investigating

measurement error

In the UK Biobank, female participants were asked to re-

port the birthweight of their first offspring to the nearest

pound. After appropriate data cleaning, this left six

discrete birthweight values for the offspring (see below).

We therefore conducted a second set of simulations to in-

vestigate the effect of this type of measurement error, using

the same method as described above but rounding the

birthweight of the offspring to the nearest unit.

Given that birthweights of both individuals and their

offspring are self-reported in the UK Biobank, we also as-

sessed the potential effect of measurement error on both

variables. To do this, we added a normally distributed error

component to both simulated birthweight measurements,

which is referred to as discrimination or classical measure-

ment error.9 For example, an individual’s own birthweight

with measurement error was generated as follows:

BW�
i ¼ BWi þ si; si � Nð0; d�Þ

where d* was chosen to produce a specific R2 value for the

regression of BW* on BW, using the following equation:

R2 ¼ VarðBWÞ
Var BWð Þ þ VarðsÞ

BW�
oi

was generated in the same way. We varied the value

of R2 (1.00, 0.75, 0.50, 0.25), where lower values of R2 repre-

sent increasing measurement error. We used a subset of mater-

nal and fetal effect sizes to get an idea of whether the impact

of measurement error is influenced by effect size; neither a

1232 International Journal of Epidemiology, 2018, Vol. 47, No. 4



maternal or fetal effect (VO ¼ 0% ¼ VM), large fetal effect

and no maternal effect (VO ¼ 0.04%, VM ¼ 0%), no fetal ef-

fect and a large maternal effect (VO ¼ 0%, VM ¼ 0.02%),

large fetal and maternal effect (VO ¼ 0.04%, VM ¼ 0.02%)

and large fetal and maternal effect in opposite directions.

All simulations were conducted with an allele frequency of

p ¼ 0.5.

Additional simulations investigating missing data

We also assessed the impact of when individuals did not have

both their own and their offspring birthweight available.

Supplementary Figure 1 (available as Supplementary data at

IJE online) illustrates the three components of the SEM used

to incorporate individuals with missing data; the first compo-

nent models individuals with complete data, the second

component models genotyped individuals who report their

own phenotype but not their offspring’s, and the third com-

ponent models genotyped mothers who report their offspring

phenotype data but not their own. These three components

are fit to the three subsets of data and then the likelihoods

from each model are combined. Modelling the data in this

way avoids list-wise deletion of cases due to missing pheno-

type information and makes maximum use of the observed

data. If data are missing at random then our full information

maximum likelihood approach returns asymptotically un-

biased parameter estimates, and the most precise estimates

that have this property.10 We simulated four additional scen-

arios, all with minor allele frequency of p ¼ 0.5 and a total

sample size of 30 000 individuals: (i) 15 000 individuals

with both their own and their offspring’s birthweight and

15 000 individuals with their own birthweight only; (ii)

15 000 individuals with both their own and their offspring’s

birthweight and 15 000 individuals with their offspring’s

birthweight only; (iii) 15 000 individuals with both their own

and their offspring’s birthweight, 7500 individuals with their

own birthweight only and 7500 individuals with their off-

spring’s birthweight only; and (iv) 15 000 individuals with

their own birthweight only and 15 000 individuals with their

offspring’s birthweight only (i.e. no individuals with both

birthweight measures, and therefore only the second and

third components of Supplementary Figure 1 are fit and the

term q in Figure 1 can not be estimated). Given that we

observed very close correspondence between the likelihood

ratio and Wald tests, we only conducted Wald tests because

these were computationally easier to perform.

UK Biobank

UK Biobank phenotype data were available on 502 643 indi-

viduals, of whom 279 959 reported their own birthweight at

either the baseline or follow-up visits. There were 7693

individuals who were part of multiple births and were excluded

from the analyses. Of the 9034 individuals who reported their

own birthweight at both baseline and follow-up, 401 (4% of

individuals with repeat birthweight reports) were excluded be-

cause the two values differed by more than 0.5 kg. For those

individuals who reported different values between baseline and

follow-up (<0.5 kg) we took the baseline measure for the ana-

lyses. Finally, we excluded individuals who reported their

own birthweight to be <2.5 kg or >4.5 kg [24 138 (9%)

individuals with birthweight <2.5 kg and 14 065 (5%)

individuals with birthweight >4.5 kg], as these are implausible

for live term births before 1970. In total, 233 662 individuals

had data on their own birthweight matching our inclusion

criteria.

Women in the UK Biobank were also asked to report the

birthweight of their first child to the nearest pound. We used

the same inclusion criteria as for their own birthweight, leav-

ing 210 405 individuals with birthweight of their first child

[51 (0.6%) excluded because the multiple reports of off-

spring birthweight differed by >0.5 kg; 5838 (3%) excluded

with offspring birthweight <2.5 kg; and 473 (0.2%)

excluded with offspring birthweight >4.5 kg], 109 205 of

whom had also reported their own birthweight.

Genotype data from the May 2015 release were available

on a subset of 152 248 individuals. In addition to the quality

control metrics performed centrally by the UK Biobank, we

excluded individuals who were related. We defined a subset of

‘White European’ ancestry samples using a K-means (K ¼ 4)

clustering approach based on the first four genetically deter-

mined principal components. A subset of 89 296 unrelated

individuals with genotype data, a valid birthweight for them-

selves or their first child and genetically of ‘White European’

ancestry were included in the analysis. Of these, 24 962 were

men who only reported their own birthweight. Among the

women, 8723 reported only their own birthweight, 24645 re-

ported only that of their first child and 30966 reported both.

We adjusted both the individual’s own birthweight and the

birthweight of their first child for the principal components

that were associated with birthweight, adjusted the individ-

ual’s own birthweight for sex (sex was not reported for the

offspring) and then created z-scores. A subset of 58 autosomal

SNPs out of the 60 birthweight-associated SNPs6 were ex-

tracted from the imputed files provided by UK Biobank and

aligned to the birthweight-increasing allele (rs62240962 was

not available and rs11096402 is on the X chromosome).

We fit the SEM to the data from each of these 58 autosomal

SNPs to estimate the maternal and fetal genetic effects on

birthweight. To confirm our results, we compared them with

those from a conditional linear regression model in a subset

of 12909 individuals with both maternal and offspring

genotype data from the EGG consortium, as presented in

Horikoshi et al.6 Specifically, Horikoshi et al.6 reported:
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(i) the association between maternal genotype and offspring

birthweight after conditioning on offspring genotype (i.e.

their estimate of the maternal effect); and (ii) the association

between offspring genotype and offspring birthweight after

conditioning on maternal genotype (i.e. their estimate of the

fetal effect).

Results

Bias

Figure 2 shows the bias calculated from the simulations for

the linear model and the SEM in the simulations with allele

frequency of 0.5 and all 30 000 individuals whom had com-

plete data for both their own birthweight and the birth-

weight of their offspring. The fetal effect estimates from the

standard linear model are biased wherever there is a mater-

nal effect that is not being modelled. For example, in the

scenarios where there is both a fetal and maternal effect, the

estimated fetal effect approximately equals the true fetal ef-

fect plus half the true maternal effect. In other words, the

bias of the estimated fetal effect is approximately half the

true maternal effect. In the scenarios where there is no

maternal effect, then the fetal effect estimated from the lin-

ear model is unbiased. The same pattern of bias occurs for

the maternal effect estimates. Conversely, the SEM is un-

biased for both the maternal and fetal effects as it simultan-

eously models both effects. The bias and 95% confidence

intervals for all simulation results are presented in

Supplementary Table 1 (available as Supplementary data at

IJE online).

When there was measurement error in either the

individual’s own birthweight or the birthweight of their

offspring, the estimates of maternal and fetal effects were

unbiased (Table 1 for abridged results, and full results in

Supplementary Table 2, available as Supplementary data

at IJE online). However, there was a decrease in the preci-

sion of the estimate (i.e. increase in the standard error) as

the measurement error increased (Table 1 for abridged re-

sults, and full results in Supplementary Table 2). For a

small number of scenarios where the birthweight of the

offspring was distributed as it is in the UK Biobank, a

small bias was introduced from the SEM (Supplementary

Table 3, available as Supplementary data at IJE online);

this bias differed across allele frequency and true effect size

Figure 2. Bias in effect estimates with an allele frequency of 0.5 and varying maternal and fetal effect sizes using two linear models that assess the

maternal and fetal effects independently (left panel), or the structural equation model (SEM, right panel) assessing both the maternal and fetal effects

simultaneously.
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for both the maternal and fetal effects, and no clear pattern

was observed. The bias was less than 4% of the true value

in all scenarios and substantially lower than the bias intro-

duced in the linear models.

In simulations where either the individual’s own birth-

weight or that of their offspring was missing, the SEM con-

tinued to produce unbiased estimates (Supplementary Table

1). However, in the simulations where all individuals only

had their own birthweight or the birthweight of their off-

spring (i.e. no individuals had both birthweight measures),

we detected a small bias in the maternal effect estimate (bias

approximately�0.0003, or less than 3% of the true value).

Power/type 1 error

The power and type 1 error results for all simulations from

the SEM and the linear models for the fetal and maternal

effects are presented in Supplementary Table 1.

The linear model has greater power than the Wald test

in the SEM when the SNP has either a fetal or maternal

effect only (i.e. when the effect estimate is unbiased;

Supplementary Table 1). For example, the power is greater

for the fetal effect estimated using the linear model over

the Wald test from the SEM when the maternal effect is

zero. Nevertheless, there is still substantial power to detect

an effect using the Wald test in the SEM with a ¼ 0.05,

with 74% power to detect a variant that explains 0.04%

of the variance, 45% power for one explaining 0.02% of

the variance and 25% power for one explaining 0.01%

of the variance, in a sample of 30 000 individuals with

both their own and their offspring’s birthweight. However,

the two degrees of freedom test has very similar power to

the linear model when the SNP had either a fetal or mater-

nal effect only, and greater power in most scenarios than

testing either maternal or fetal effects individually using

the Wald test (Figure 3 and Supplementary Table 1). It is

worth nothing that the power estimates from the linear

models are artificially inflated due to the bias introduced in

the linear models; however, we have included them in the

figure as they give an indication of what the power of a

standard genetic analysis would be. This indicates that the

SEM can detect when a SNP affects birthweight, but it has

Figure 3. Power of the two degrees of freedom test using the structural equation model (SEM) assessing both the maternal and fetal effects simultan-

eously, and power of the two linear models (LM) that assess the maternal and fetal effects independently. Note, power from the linear models is artifi-

cially inflated due to the bias in the effect estimate, but they are presented here as a comparison with what would be provided from a standard

genetic analysis of birthweight. Power is presented for simulations with a minor allele frequency of 0.5.
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lower power to detect whether the effect is driven by the

mother or the offspring. For example, when the variant ex-

plains 0.04% of the variance using the individual’s own

genotype and 0.02% of the variance using the mother’s

genotype, with a ¼ 0.05, the SEM has 74% power to de-

tect the fetal effect, 45% power to detect the maternal ef-

fect and 100% power to detect any effect of the variant

using the two degrees of freedom test in a sample of 30 000

individuals with both their own and their offspring’s birth-

weight. Similarly, with a ¼ 0.05 and 30 000 individuals

with complete data, when the variant explains 0.02% of

the variance using the individual’s own genotype and

0.01% of the variance using the mother’s genotype, the

SEM has 45% power to detect the fetal effect, 25% power

to detect the maternal effect and 95% power to detect any

effect of the variant using the two degrees of freedom test.

Power for both fetal and maternal effects is reduced when

there is measurement error in either the individual’s own birth-

weight or the birthweight of their offspring, due to the de-

crease in precision of the estimate (Table 1 and Supplementary

Table 2). This decrease in power was the same across the dif-

ferent true effect sizes for the fetal and maternal effects.

Figure 4 shows the power when not all individuals have

complete data for both maternal and offspring birthweight.

Power is greatest when information is available on both the

individual’s own and their offspring’s birthweight; however,

there is only a small decrease in power to detect the fetal effect

when information on the offspring birthweight is not available

in 50% of the individuals, and for power to detect the mater-

nal effect when the individual’s own birthweight is not avail-

able in 50% of the individuals. Interestingly, the SEM can still

be used to estimate maternal and fetal effects when the sample

consists of some individuals only measured on their own

birthweight, and others who have only reported the birth-

weight of their offspring. However, the power to detect either

a fetal or a maternal effect is approximately half of that when

birthweight data are available on both individuals in the pair.

As expected, the type 1 error from the linear model is

inflated in situations where the estimated effect is biased

(Supplementary Table 1). However, the type 1 error is well

controlled when using the SEM. It remains controlled

when birthweight of the offspring is distributed as in the

UK Biobank (Supplementary Table 3), when there is meas-

urement error in either the individual’s own birthweight or

the birthweight of their offspring (Table 1, Supplementary

Table 2) or when data are not available on both the indi-

viduals own birthweight and their offspring’s birthweight

(Supplementary Table 1).

The difference between P-values estimated using the

Wald test and the likelihood ratio test in the SEM was neg-

ligible (Supplementary Table 1 for mean difference), indi-

cating that the Wald test was adequate.

Figure 4. Power from the structural equation model (SEM) with different combinations of individuals reporting their own birthweight (BW) or their off-

spring’s birthweight (BWO). Power for the fetal effect is presented from the simulations where there is no maternal effect; however, similar estimates

were obtained when there was a maternal effect (see Supplementary Table 1 for full results). Similarly, for the maternal effect, results are presented

from simulations where there is no fetal effect. Power is presented for simulations with a minor allele frequency of 0.5.
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Timing

The SEM can be fitted with either the raw data or observed

covariance matrices. As seen in Supplementary Figure 2

(available as Supplementary data at IJE online), the compu-

tational time is approximately 100 times faster using the co-

variance matrices than the raw data. There is not a

substantial difference in computational time between

datasets with different amounts of missing data for the

phenotype of the individual or their offspring when fitting

the model using the raw data, but there is a difference for

variants with lower minor allele frequencies which take lon-

ger to run than common variants. When using covariance

matrices, however, it takes slightly longer to fit the model

when data are missing for either the individual or their off-

spring, because the model fits two or three sub-models sim-

ultaneously (i.e. one for each of the complete data subsets:

one for individuals with both phenotypes, one for indi-

viduals with their own phenotype only and one for individ-

uals with their offspring’s phenotype only). The estimates

from the model fit with the raw data are the same as those

using with covariance matrices. In comparison with a linear

model, the SEM using covariance matrices takes about three

times as long to compute with a sample size of 30 000 indi-

viduals (Supplementary Figure 2).

UK Biobank

Figure 5 presents the results from the SEM for each of the

58 birthweight-associated SNPs in the UK Biobank. It is

evident that most of the 58 SNPs only have evidence for a

fetal effect, which is unsurprising given how the SNPs were

selected. Three SNPs primarily have a maternal effect

(EBF1, ACTL9 and MTNR1B) and eight SNPs have

evidence for both. Perhaps the most interesting SNPs are

those where the birthweight-increasing allele identified in

Horikoshi et al.6 has opposite effects on birthweight

through the fetal and maternal genotype, half of which are

known type 2 diabetes loci (HHEX-IDE, CDKAL1,

ADCY5 and ANK1-NXK6-3).

Supplementary Table 4 and Supplementary Figure 3 (avail-

able as Supplementary data at IJE online) present the full re-

sults from the two linear models (fetal and maternal effects)

and the SEM. These results show that for SNPs where the ma-

ternal and fetal effects go in opposite directions (for example,

the HHEX-IDE, CDKAL1, ADCY5 and ANK1-NKX6-3

loci), the fetal effect estimated in the GWAS6 would have

been reported to be smaller than its true effect.

To confirm our results, we compared estimates of mater-

nal and fetal effects obtained from the SEM with those from

the conditional linear regression model implemented in

Horikoshi et al.6 in the subset of EGG cohorts with both ma-

ternal and fetal genotype data (N ¼ 12 909 individuals).

Supplementary Figure 4 (available as Supplementary data at

IJE online) displays forest plots for the maternal and fetal ef-

fects for each of the 58 birthweight-associated SNPs, using

both the SEM in the UK Biobank and conditional linear re-

gression in the EGG cohorts. The confidence intervals sur-

rounding the estimates from the conditional linear regression

analyses are larger than those from the SEM, due to the

smaller sample size in the former study (12 909 individuals

in the conditional regression analysis versus 89 296 individ-

uals in the SEM). Estimates obtained using both procedures

were similar for most SNPs. Formally, after Bonferroni cor-

rection for the 58 tests, no significant heterogeneity was de-

tected between estimates from the SEM and estimates from

the conditional linear regression for either the maternal or

the fetal effects (heterogeneity P > 0.05/58 ¼ 9 x 1 0�4). The

largest heterogeneity between the SEM and the conditional

regression for the maternal effect was at the ACTL9 locus

(I2 ¼ 90.2%, P ¼ 0.001), where the conditional linear re-

gression resulted in a (non-significant) negative estimate of

the effect of the maternal T allele on offspring birthweight,

whereas the SEM resulted in a positive estimate of the effect

of the same allele on offspring birthweight. However, the

result from the maternal GWAS analysis presented in

Horikoshi et al.6 showed a similar direction of effect as the

SEM. It may be that there are differences between EGG and

the UK Biobank in how birthweight is measured or analysed,

which may be responsible for this discrepancy (for

example, many studies in EGG correct birthweight for gesta-

tional age whereas this is not done in UK Biobank). Further

Figure 5. Fetal and maternal effect size estimated using the structural

equation model (SEM) for the 58 birthweight-associated SNPs in the UK

Biobank. All SNPs are aligned to the birthweight-increasing allele re-

ported in Horikoshi et al.6 The colour of each dot indicates the maternal

genetic association P-value for birthweight generated using the Wald

test: orange, P < 0.001; yellow, 0.001 � P < 0.05; white P � 0.05. Gene

names are provided for those loci with large effects.
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investigation of this locus needs to be undertaken before any

strong conclusions can be drawn.

Discussion

In this article, we have presented a method for estimating

and testing maternal and fetal effects. The approach uses

data from mother-offspring pairs for whom genotype data

are available for the mothers only and phenotype data are

available on both individuals. Our method is (asymptotically)

unbiased when both maternal and fetal effects exist, which

improves on the traditional linear model which estimates

each effect separately while assuming the other to be absent.

The approach is flexible and can be used when either the in-

dividual’s own phenotype or the phenotype of their offspring

is not available. The ability to incorporate studies with only

an individual’s own or their offspring’s phenotype, in com-

bination with mother/offspring pairs with complete data, will

transform many aspects of perinatal research, as it provides a

large increase in statistical power to disentangle maternal and

fetal effects which have been difficult to resolve until now.

Data from males are included in the SEM in two ways.

First, genotyped males who report their own phenotype

(birthweight), but not their offspring’s phenotype, are

modelled in the top half of Figure 1. For example, these

males contributed directly to estimation of the fetal effect

of genotype on birthweight (see the coefficient labelled ‘f’

that is on the path from their own SNP to their own BW as

illustrated in the top half of Figure 1) and also indirectly to

estimation of the maternal effect on birthweight, since their

observed genotype (SNP) is correlated with their mother’s

unmeasured latent genotype at the same locus (GG)

(see the coefficient ‘m’ that is on the path from SNP to GG

to BW in the top half of Figure 1). Second, male data con-

tribute to estimation in this SEM when the offspring of a

UK Biobank female with genotype data is male and she re-

ports his phenotype (i.e. birthweight of offspring BWO).

For example, these offspring males contribute directly to

the estimation of the maternal effect on birthweight

(see the coefficient ‘m’ that is on the path from SNP to

BWO in the lower half of Figure 1) and indirectly to the

estimate of the fetal effect on birthweight, since the male’s

latent genotype (GO) is correlated with his mother’s

observed genotype at the same locus (SNP) (see the coeffi-

cient ‘f’ that is on the path from SNP to offspring genotype

GO to offspring birthweight BWO in the lower half of

Figure 1). It is important to note that the inclusion of males

in this way is not equivalent to estimating a paternal effect.

To estimate paternal effects, one would need information

on males’ own genotype, their own phenotype and their

offspring’s phenotype. Our SEM purely involves resolving

maternal and fetal effects.

To illustrate the method, we used birthweight because

there is clear evidence that both maternal and fetal effects

exist.2–4,11 However, the method could be useful for many

other phenotypes, especially pregnancy outcomes and early

developmental traits. As long as phenotype information is

present for individuals in two generations and genotype in-

formation is available on the older individual, then it is

possible to use this method to estimate both maternal and

fetal effects. This could include phenotypes where genome-

wide association meta-analyses already exist, such as

measures of size at birth including length12 and head cir-

cumference,13 maternal phenotypes during pregnancy such

as gestational weight gain,14 or developmental phenotypes

during childhood such as language development.15

The most common study design used when trying to esti-

mate fetal and maternal effects is to have maternal/offspring

pairs, with phenotype information on the offspring and

genotype information on both the mother and the offspring.

These studies are then analysed using a standard linear re-

gression model adjusting for both the maternal and the off-

spring genotype, which is often referred to as ‘conditional

analysis’. One of the benefits of the SEM we describe here is

that the coefficients for the maternal and fetal effects are on

the same scale as the coefficients from a conditional analysis,

and therefore a meta-analysis could be conducted across

multiple cohorts with different study designs. Alternatively,

because the model can be fit with observed covariance matri-

ces, if the phenotypes of the mother and offspring are both

standardized and the effect allele frequency is known, then

the summary statistics (allele frequency, beta coefficient from

the regression model and variance of the phenotype) from an

unconditional analysis for either the fetal effect or the mater-

nal effect can be incorporated into this SEM. This makes it a

potentially very powerful approach, as cohorts with pheno-

type data and genotypes from mother, child or both, can all

be incorporated. It also avoids the need to share raw data,

which can be problematic for some cohorts, but still allows

for all cohorts to be included in the analysis and therefore

the sample size maximized.

One of the biggest advantages of this SEM is that it is

robust to missing data, either for the individual’s own

phenotype or the phenotype of their offspring. This is an

advantage over conditional analysis, which uses only those

mother/offspring pairs that have genotype data from both

persons. It can even be used when no individuals have

phenotypes measured on both themselves and their off-

spring; however, the power to detect a maternal or fetal ef-

fect is reduced and a small bias is introduced to the

maternal effect estimate. There are unlikely to be many

studies with this study design, as the majority would have

a combination of individuals with complete data with

individuals missing data for their own phenotype or the
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phenotype of their offspring. Additionally, it is robust to

measurement error involving either the individual’s own

phenotype or the phenotype of their offspring. However,

increasing measurement error in both phenotypes will in-

crease the standard errors and therefore decrease statistical

power, similar to the effect of measurement error on ordin-

ary least squares regression.

There are four potential limitations to this SEM. First, al-

though we have shown that the model fits well under a range

of minor allele frequencies, in some situations it has difficulty

optimizing with low frequency variants (generally with minor

allele frequency < 5%). This can often be resolved using the

mxTryHard function in OpenMx, which makes several at-

tempts to optimize the model and returns results from the

most optimal fit. Second, the SEM assumes multivariate nor-

mality between the observed variables and linearity between

the genotypes and phenotypes. We have simulated our pheno-

types to be normally distributed and ensured that birthweight

data in the UK Biobank were approximately normally distrib-

uted. In the case of non-normality, an appropriate data trans-

formation can help ensure that the assumption of

multivariate normality is satisfied. Third, we assumed addi-

tive genetic effects for both the fetal and maternal contribu-

tions. An additive model is used in the vast majority of

genome-wide association studies in the literature, and theory

and data show that the overwhelming majority of genetic loci

act in an additive fashion.16 If these assumptions do not hold,

then we expect reduced power to detect a fetal or maternal ef-

fect. Finally, we assume only main effects and no interaction

between the maternal and fetal genotypes.

The SEM using observed covariance matrices takes ap-

proximately three times longer to compute than an uncondi-

tional linear model. Therefore, there is potential for this

method to be used in large genomic studies, such as

genome-wide studies. A new method for fitting SEMs in

genome-wide association studies in a computationally

feasible fashion has recently been developed,17 which may

facilitate analyses involving more complicated models like

ours. We note that tests of genetic association have trad-

itionally been performed in the fixed effects part of SEMs

(i.e. the ‘model for the means’). In contrast, we have mod-

elled SNP effects in the covariance part of the model, which

has allowed us to model latent genotypes. We have shown

that within the confines of our study, accuracy of estimates

of maternal and fetal effects appear to be robust to the in-

herent non-normality of individual-level SNP data, which is

to be expected in the case of exogenous variables.18

A recent study by Horikoshi et al.6 found three SNPs that

were significantly associated with birthweight using the indi-

vidual’s own genotype (i.e. have a ‘fetal effect’); our analyses

indicate that the effects at these loci are driven by a maternal

rather than a fetal effect (variants in MTNR1B, and near

ACTL9 and EBF1). This result is consistent with the condi-

tional analysis of 12 909 mother-offspring pairs in Horikoshi

et al.6 for MTNR1B and EBF1. The initial finding of a fetal

effect appears to be due to the bias in the linear model, and

therefore the fetal effect size was approximately half of the

maternal effect size estimated using the SEM. We also identi-

fied six SNPs where the maternal and fetal effects were in op-

posite directions (variants in ADCY5, CDKAL1 and ABCC9

and near HHEX-IDE, ANK1-NKX6-3 and DTL).

Interestingly, four of these SNPs that exhibited maternal and

fetal effects in opposing directions (three of which were con-

firmed using the conditional analysis in Horikoshi et al.6) are

known type 2 diabetes loci (ADCY5, HHEX/IDE, CDKAL1

and ANK1), consistent with what is known regarding the

underlying biology at these loci.19 Importantly, the existence

of an opposing maternal effect at these loci would not have

been detected had only unconditional linear regressions of

offspring birthweight on maternal genotype been performed,6

further highlighting the importance of our method in disen-

tangling maternal and fetal effects on perinatal phenotypes.

In summary, we describe a new method for estimating

unbiased maternal and fetal effects using studies where

genotype data are available for only the individual and not

their offspring. We have shown that the type 1 error rate of

the method is appropriate, there is substantial statistical

power to detect a genetic variant that has a moderate effect

on the phenotype and reasonable power to detect whether it

is a fetal and/or maternal effect. We have also illustrated

that this method could be useful for accurate estimation of

fetal and maternal effects in large genetic studies, such as

genome-wide association studies, as the computational time

is not substantially larger than the standard linear model.
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