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Abstract The social interactions underlying group foraging and their benefits have been mostly

studied using mechanistic models replicating qualitative features of group behavior, and focused

on a single resource or a few clustered ones. Here, we tracked groups of freely foraging adult

zebrafish with spatially dispersed food items and found that fish perform stereotypical maneuvers

when consuming food, which attract neighboring fish. We then present a mathematical model,

based on inferred functional interactions between fish, which accurately describes individual and

group foraging of real fish. We show that these interactions allow fish to combine individual and

social information to achieve near-optimal foraging efficiency and promote income equality within

groups. We further show that the interactions that would maximize efficiency in these social

foraging models depend on group size, but not on food distribution, and hypothesize that fish may

adaptively pick the subgroup of neighbors they ‘listen to’ to determine their own behavior.

Introduction
Living in a group has clear benefits, including expansion of sensory sensitivity (Miller and Bassler,

2001; Pratt et al., 2002; Berdahl et al., 2013; Ward et al., 2011), sharing of responsibilities and

resources (Clutton-Brock et al., 1999; McGowan and Woolfenden, 1989; Chittka and Muller,

2009), collective computation (Miller and Bassler, 2001; Pratt et al., 2002; Berdahl et al., 2013;

Ward et al., 2011; Karpas et al., 2017; Shklarsh et al., 2011; Ward et al., 2012), and the potential

for symbiotic relations between members that would allow for specialization by individual members

(Chittka and Muller, 2009; Gordon, 1996). Understanding the interactions among individuals that

give rise to macroscopic behavior of groups is therefore central to the study and analysis of collec-

tive behavior in animal groups and other biological systems.

Group foraging is a prominent example of collective behavior, and social interactions among

members have been suggested to increase foraging efficiency (Pitcher, 1986; Radakov, 1973;

Giraldeau and Caraco, 2000; Zahavi, 1971; Brown, 1988; Pitcher et al., 1982) by allowing individ-

uals to combine private and social information about the location of resources and their quality (see

however (Laland and Williams, 1998; Giraldeau et al., 2002) for adverse effects of social informa-

tion). Theoretical models have been used to study social foraging using various strategies, including

producer-scrounger dynamics (Barnard and Sibly, 1981) and the use of ’public’ information

(Clark and Mangel, 1984; Bhattacharya and Vicsek, 2014; Valone, 1989). These models explored

the efficiency of the underlying strategies and their evolutionary stability, as well as the effects of

group composition and the distribution of resources (Barnard and Sibly, 1981; Bhattacharya and

Vicsek, 2014; Tania et al., 2012; Torney et al., 2011; Clark and Mangel, 1986; Hein et al., 2016).

Experimental work, in the field and in the lab, aimed to identify interactions between foraging indi-

viduals (Ward et al., 2012; Coolen et al., 2001; Harel et al., 2017; Krebs, 1974; Flemming et al.,

1992; Miller et al., 2013) and their dependence on factors such as the distribution of resources,

phenotypic diversity among foragers, animal personality, and foraging strategies of mixed species
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(Ryer and Olla, 1995; Farine et al., 2014; Michelena et al., 2009; Aplin et al., 2014; Jolles et al.,

2017). The interaction rules studied with these theoretical models and the emerging group behavior

had mostly qualitative correspondence to that of real groups, as the predictions of theoretical mod-

els were usually not tested against experimental data of groups at the individual level (Barnard and

Sibly, 1981; Martı́nez-Garcı́a et al., 2013; Hamilton and Dill, 2003; Mottley and Giraldeau, 2000;

Giraldeau and Beauchamp, 1999).

Moreover, most models studying how schooling or flocking may improve foraging efficiency have

explored the case of single sources, or clumped food patches (Karpas et al., 2017; Shklarsh et al.,

2011; Ward et al., 2012; Hein et al., 2016; Miller et al., 2013; Aplin et al., 2014; Jolles et al.,

2017). Yet, in many real-world situations, animals are likely to encounter distributed food sources,

where maintaining a tight group may not be beneficial for all group members. Indeed, schooling

and shoaling species have been shown to disperse when confronted with distributed resources

(Ryer and Olla, 1995; Miller and Gerlai, 2007). A characterization of group foraging for multiple

sources with complex spatial distribution is therefore needed.

The ability to track the behavior of groups of individuals with high temporal and spatial resolution

under naturalistic conditions (Pérez-Escudero et al., 2014; Ballerini et al., 2008; Greenwald et al.,

2015; Nagy et al., 2010; Dell et al., 2014) makes it possible to explore foraging models and behav-

ior quantitatively in groups and individuals. Here, we studied food foraging by groups of adult

zebrafish in a large arena, where multiple food items were scattered and individuals could seek them

freely. We inferred social interaction rules between fish and compared the accuracy of several math-

ematical models of group foraging based on these rules and the swimming statistics of individual

animals. We explored the performance of these models in terms of foraging dynamics and efficiency

of food consumption by the group and of individuals for various resource distributions and group

sizes. Our data-driven approach allowed us to analyze foraging strategies through the local depen-

dencies between conspecifics and to show that social interactions increase foraging efficiency in real

groups of fish. We further used these models to study the effect of social interactions on income

equality between members of the group. Finally, we used our models to explore the implications of

social interactions on the efficiency of collective foraging of larger groups under different distribu-

tions of resources, and asked how animals could choose an optimal foraging strategy under varying

conditions.

Results
We studied free foraging of single adult zebrafish and of groups of three or six fish in a large circular

arena with shallow water, where small food flakes were scattered on the surface (Figure 1, Fig-

ure 1—figure supplement 1A, and Materials and methods; All data used in this study is avilabale

online). The trajectories and heading of individual fish, the position of flakes, and food consumption

events were extracted from video recordings of these experiments using a tracking software that

was written in house (Harpaz et al., 2017). Tracking of fish identities in the videos were verified and

corrected using IdTracker (Pérez-Escudero et al., 2014). Fish were highly engaged in the foraging

task and consumed all flakes in less than 2 min in most cases (Figure 1B, Figure 1—figure supple-

ment 1C, Figure 1—video 1). The number of identified consumption events varied between groups,

since in some cases fish ate only a part of a flake or flakes disintegrated into smaller parts (Figure 1—

figure supplement 1B). The time differences between flake consumption events reflect the nature

of foraging and its efficiency.We found that in our setup, the time it took a group of k fish to con-

sume n flakes, Tk nð Þ, was accurately predicted using a simple exponential model,

log T̂k nð Þ ¼ n

bk
þ ak (1)

where parameters bk (the ’consumption rate’ of the fish) and ak (time to detection of the first flake)

were found numerically to minimize the mean squared error between the model predictions and the

data. The correlation between the observed Tk nð Þ and model predictions T̂k nð Þ was very high, with

median r2 values: 0.94 [0.09], 0.96 [0.04], 0.96 [0.05] for groups of one, three, and six fish, respec-

tively (brackets show interquartile range). Larger groups consumed the flakes faster than smaller

ones (Figure 1B-C), and the feeding rates were higher than those predicted just from having a larger

number of foragers, which we tested using a model of independent foragers (Figure 1—figure
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Figure 1. Individual and group foraging by adult zebrafish. (A) Example trajectories of groups of one, three, and six fish foraging for food flakes.

Colored lines show the trajectories of individual fish, black dots show the location of flakes consumed by the fish. (B) Time of consumption of the ith

flake in the arena is shown for each of the groups tested (thin lines show N = 14, 10, and 10 groups of one, three, and six fish, correspondingly) overlaid

with the mean of all groups for every group size (thick line); light shaded areas represent SEM. (Because individual groups of the same size did not

Figure 1 continued on next page
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supplement 1D, see models below). Fish in groups of different size differed also in their average

swimming statistics, with groups of three fish exhibiting higher swimming speeds, higher polariza-

tion, and larger variation of group cohesion (nearest neighbor distances) (Figure 1D). We also found

that group polarity was highly correlated with group cohesion for both groups of three and six fish,

but was not correlated with swimming speed (Figure 1—figure supplement 1E). We therefore

asked what social interactions between fish may underlie group foraging and swimming trajectories.

Characterizing social interactions during foraging
To explore the nature of interactions between foraging fish, we analyzed individual swimming behav-

ior before and after flake consumption events and found that fish performed salient and stereotypic

maneuvers around the consumption of food items. They increased their speed when approaching

food and then abruptly turned in the process of consuming it (Figure 2A–C and Figure 2—video 1).

This maneuver was characterized by a decrease in speed and an increase in the curvature of the tra-

jectory (Figure 2B–C, Figure 2—figure supplement 1A). We found that for most groups of 3 and 6

fish analyzed (75%), neighboring fish responded to these salient behaviors and were more likely to

visit areas of recent flake consumption within 1–4 s (Figure 2D–E), much more than expected by

chance (p<0.05 for 3 and 6 fish, Wilcoxon’s signed rank test). Fish were less attracted to the location

of a neighbor’s consumption maneuver if flakes were more abundant in the arena (Figure 2—figure

supplement 1B). To confirm that these salient behavioral changes attracted fish to previous con-

sumption areas and not a physical trace of the flake, we also analyzed ’pseudo consumption events’,

where fish performed speed changes similar to those seen near flake consumption, but with no food

present (see Materials and methods). Neighboring fish were attracted to such pseudo-consumption

events, affirming that fish responded to the specific behavior of their neighbors (Figure 2—figure

supplement 1C–D).

Social interaction models of group foraging
To study the implications of attraction to locations of feeding by other fish, we simulated foraging

groups of fish with various social interactions and without them (see Materials and methods). Simula-

tions were based on the swimming characteristics of real fish and the empirical spatial distributions

of flakes (Figure 1A, Figure 3A-B). The swimming trajectory of each fish was simulated by successive

drawing from the distribution of step sizes (the length of the path traveled on discrete ’bouts’

according to our segmentation of real fish trajectories; Figure 3A, B) and turning angles (change of

heading angle between two discrete bouts) of a specific fish in the real group (Figure 3A-B, Fig-

ure 3—figure supplement 1A-B). However, if a flake was within the ’range of detection’ by a fish

(Df ), then that fish oriented itself directly towards the flake with a probability that monotonically

decreased with the distance to the flake (see Figure 3C). The independent foraging model (IND) is

based on a collection of such fish. In addition, we considered six social interaction models that com-

bine attraction to neighbors’ feeding events and attraction and alignment between fish regardless of

feeding (Attraction to feeding events- Attfeed; Attraction to neighbors- Att; Alignment with neigh-

bors- Align; and their combinations: Attfeed+Align, Att+Align, Attfeed+Att+Align). In all these mod-

els, the direction of motion of each fish was modulated by the behavior of neighboring fish within

the ’neighbor detection range’ Dn (Figure 3D and Materials and methods) (Bhattacharya and

Figure 1 continued

always consume the same total number of flakes, averages were calculated over the first 5, 9, and 21 flakes consumed by the groups of one, three, and

six fish, respectively, and the number of consumed flakes is truncated at 30 for clarity; the full curves are shown in Figure 1—figure supplement 1C;

We emphasize that all analyses were conducted on the full curves). (C) Boxplots show the rate of flake consumption bk that was fitted for each of the

groups shown in B. Middle horizontal lines represent median values and box edges are the 1st and 3rd quartiles; asterisks denote p<0.05 under

Wilcoxon’s rank-sum test, N = 14,10,10 groups of fish. (D) Average speed, polarity, and nearest neighbor distance for individual fish and for the groups.

Horizontal lines represent median values and box edges are the 1st and 3rd quartiles.

The online version of this article includes the following video and figure supplement(s) for figure 1:

Figure supplement 1. Experimental design for studying free foraging behavior in zebrafish groups.

Figure 1—video 1. Foraging behavior of fish in a group.

https://elifesciences.org/articles/56196#fig1video1

Harpaz and Schneidman. eLife 2020;9:e56196. DOI: https://doi.org/10.7554/eLife.56196 4 of 25

Research article Computational and Systems Biology Physics of Living Systems

https://elifesciences.org/articles/56196#fig1video1
https://doi.org/10.7554/eLife.56196


Figure 2. Stereotypical maneuvers before and during flake consumption by one fish attracts its neighbors. (A) An example of the stereotypical

behavior of one fish (in a group of three) showing flake detection and consumption. Flake position is shown by a red circle before consumption and by

a black circle after it has been eaten. (B–C) Stereotypical behaviors around flake consumption (denoted by time 0 and marked by a red dot) include a

transient increase in speed (shown in body length (BL) per second), followed by a sharp decrease (in B); this is accompanied by an increase in the

curvature of the trajectory (in C). Bold blue lines are mean speed and curvature profiles over all detection events of groups of three fish, and dotted

green lines show a reference value calculated from random points along the trajectories not related to consumption events (curvature values were

normalized such that the average curvature is zero). Light blue and green shadings show SEM. (D) Probability of neighbors to cross within 2 BLs from

Figure 2 continued on next page
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Vicsek, 2014; Torney et al., 2011; Couzin et al., 2002; Huth and Wissel, 1992; Vicsek et al.,

1995). These different models allowed us to tease apart the specific contribution of attraction to

neighbor’s previous flake consumptions and of the general schooling or shoaling tendencies of the

fish (see Figure 3—figure supplement 1C and Materials and methods for a description of all mod-

els ; all simulation codes are avilabale online).

For each of the real groups in our data, we simulated each of the models using a range of possi-

ble values of the model’s parameters Df and Dn (Figure 3—figure supplement 1C,

Materials and methods). For each set of Df ;Dn values, we estimated the accuracy of the models in

predicting the sequence of consumption events as well as two swimming statistics of the group: the

average polarity of the group (or alignment between fish) and the average cohesion of the group

(average distance to the nearest neighbor -Dnn) (Figure 4A-B, Materials and methods). We evaluated

the performance of each model on each of these measures (Figure 4C), and their combination

(Figure 4D). We found that the IND model did not describe well the consumption times of the

groups or their swimming statistics (Figure 4C). Simple attraction to neighbors (Att model) also

failed to accurately represent the consumption times or the polarity of the group, yet it accurately

described distances between fish and slightly improved overall accuracy over the IND model

(Figure 4C-D). Alignment interactions among fish (Align model) was significantly better than the Att

model, specifically in describing the polarity of the groups and the sequence of consumptions, indi-

cating that fish respond to their neighbors’ direction while foraging (P<0.005, for groups of three

fish with N=10, and P<0.01 for groups of six fish with N=10; Wilcoxon’s signed rank test)(Figure 4C-

D, Figure 4—figure supplement 1A). The most accurate model of fish swimming and foraging

behavior was the one that included both alignment and attraction to neighbors’ previous consump-

tion events (Attfeed+Align), showing high accuracy in describing both the swimming statistics of the

groups and the sequence of consumptions, which was significantly better than the competing mod-

els (P<0.005 when comparing the Attfeed+Align to all other models shown, N=10,10 for groups of

three and six fish, Wilcoxon’s signed rank test)(Figure 4C-D, Figure 4—figure supplement 1A). The

inferred range of social interactions of the best fitted model (Attfeed+Align) were ~4 and 8 times

larger than the range of flake detection (median Dn values: 21.5 [11], 11.5 [6] and median Df values:

2.5[2], 3[3] for groups of three and six fish, interquartile range in parenthesis; see Figure 4—figure

supplement 1C).

Importantly, the observed improvement in accuracy was not a result of increased model complex-

ity: First, the number of model parameters was the same for all social models. Second, models that

include attraction to neighbors regardless of flake consumption (Att+Align, Attfeed+Att+Align mod-

els) were less accurate than the Attfeed+Align model (Figure 4—figure supplement 1B,D). We con-

clude that while fish continuously respond to the swimming direction of their neighbors, they also

exhibit a specific attraction to neighbors’ previous flake consumptions during foraging.

Increased foraging efficiency is predicted by attraction to neighbor’s
flake consumptions
To understand the impact of social interactions on foraging efficiency, we compared the feeding

rates of foraging fish in the best fit social model (Attfeed+Align model) and the reference IND model

(Figure 4), for a wide range of model parameter values Df ; Dn (Figure 5A). The feeding rates were

accurately approximated by an exponential function (as in Eq. 1; R2>0:98 for all simulations). As

Figure 2 continued

the location of a previous flake consumption, within 1–4 s following a consumption event, for one group of three fish (blue arrow), compared to the

distribution of such neighbor crossing events, if flake consumption events were ignored (Materials and methods). This reference distribution of

crossings is well fitted by a Gaussian distribution (mean = 0.25, SD = 0.056), which is shown by a overlaid black line. (E) Crossing probabilities for

groups of three and six fish show significant increase from the baseline neighbor crossing distribution of each group, similar to C; 0 represent the mean

of the baseline crossing distributions, error bars represent SEM.

The online version of this article includes the following video and figure supplement(s) for figure 2:

Figure supplement 1. Stereotypical maneuvers before and during flake consumption by one fish attracts its neighbors.

Figure 2—video 1. Stereotypical maneuvers of fish during flake detection and consumption.

https://elifesciences.org/articles/56196#fig2video1
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expected, the simulated groups consumed flakes faster as Df increased (Figure 5B). For relatively

short flake detection range (Df � 6 BL), flake consumption rates increased with Dn, reflecting the

Figure 3. Comparing social and independent foraging using model simulations. (A) An example of the speed profile of an individual fish in a group.

Orange dots mark local minima and are used to segment the continuous motion into discrete events. (B) Left: A snippet of a fish trajectory,

corresponding to the speed profile in A and its segmentation into discrete steps (orange line). Middle: Distributions of step size L and angle change �,

between discrete steps over three fish in one of the groups (Materials and methods). Right: sketch of a simulated fish trajectory composed of successive

drawings of � and L from the empirical distributions. (C) A sketch of the independent model of fish foraging: At each time step, if there was a flake

within a fish’s detection range (df<Df depicted by the blue circle), the fish oriented towards the flake with a probability p(go to flake). (D) Sketches of

the different social interactions between fish. Each fish may detect consumption of flakes by another fish (left), if that fish was within the neighbor

detection range (dn<Dn red circle). The observing fish was then attracted to the consumption point with probability p(go to consumption). Additionally,

a fish may respond to the swimming behavior of its neighbors within Dn, regardless of flake consumption, by swimming towards the average position of

the neighbors (middle) with probability p(go to neighbors) or by aligning its swimming direction (right) with the neighbors that are within Dn, p(align to

neighbors). Different combinations of these possible social interactions comprise the six different social models that we tested (Figure 3—figure

supplement 1C, Materials and methods).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Models of fish foraging behavior.
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Figure 4. Social models incorporating attraction to neighbors’ flake consumptions give the best fit to real foraging groups. (A) Example trajectories

from simulations of foraging of a group of six fish, for the IND, Att, Align, and the Attfeed+Align models that use the parameters that gave the best fit

to real group foraging. Colored lines show different individual fish and black dots are flake positions. Next to the simulated trajectories, we plot the

average group polarity and nearest neighbor distance in the simulations (colored dots), and the experimental values of the real foraging group (black

dots); Error bars represent standard deviation (SD) in the simulation. (B) Flake consumption times (black dots) of two groups of six fish (Top row shows

the group whose trajectories are shown in A) and the average and standard deviation of the best-fit models (bold colored lines represent averages;

shaded areas represent SD). (C) Errors of best fit models for groups of six fish are shown for three statistics of interest: the polarity of the group

Epolarity ¼ Pdata�Pmodel

SD Pdatað Þ , the nearest neighbor distance EDnn ¼ Ddata
nn �Dmodel

nn

SD Ddata
nnð Þ , and the consumption times Econsumptions ¼ 1

N
n

X

log tdata nð Þ
� �

� log tmodel nð Þ
� �� �2

; where N

is the number of flakes consumed. Dots represent different experimental groups; horizontal lines are median values and boxes represent the 1st and 3rd

quartiles. Dotted line represents 0 error in prediction or a perfect fit to the data. (D) Combined error of each of the models presented in C.

Ecombined ¼ Epolarity þ EDnn þ Econsumptions
� �

=3, where all error measures were scaled to be between 0 and 1, by dividing by the largest observed error for

that measure. The Attfeed+Align model is significantly more accurate than the IND, Att, and Align models (p<0.005 for all, Wilcoxson’s signed rank test,

N = 10 groups, Materials and methods). Each dot represents one group; horizontal lines are median values and boxes represent the 1st and 3rd

quartiles.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure 4 continued on next page
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effect of directly responding to neighbors’ foraging behavior. For Df>6 BL, increasing Dn had a very

little effect on consumption rates (Figure 5B).

Social interactions in the Attfeed+Align model resulted in a significant increase in consumption

rates, compared to the IND model, only for simulations with low Df and high Dn values (red areas in

Figure 5C). Importantly, most groups of real fish were best matched by simulated groups with

parameter values that were well within the area of the parameter space were social interactions

improve foraging efficiency (low Df and high Dn), approaching the peak of the expected improve-

ment in foraging performance (Figure 5C). The observed improvement due to social interactions

was model specific - social interaction models that did not include attraction to neighbors’ previous

flake consumptions (e.g. the Align, Att, or Att+Align models) did not show a similar improvement

over the independent model (Figure 5D, Figure 5—figure supplement 1A-B). Moreover, social for-

aging strategies that included attraction to neighbors’ positions (not specifically related to flake con-

sumptions) were less efficient than independent foragers (Figure 5D, Figure 5—figure supplement

1A-B).

Individual efficiency and income equality in socially interacting fish
We next explored how the Attfeed+Align foraging strategy might affect the foraging success of indi-

vidual members of the group. We simulated groups in which only a fraction of the foragers used

social interactions, while the others foraged independently (Figure 6A illustrates these mixed strat-

egy groups). Comparing foraging success of the social and non-social individuals within the same

group, we found that individuals using social information consumed up to 20% more flakes than their

non-social companions, and this advantage decreased as the number of interacting agents in the

group increased (Figure 6B-C, Figure 6—figure supplement 1A). These effects were most pro-

nounced in models that used the same parameter range that matched real foraging groups, namely

low Df and high Dn (Figure 6—figure supplement 1A).

We further assessed the equality of food distribution among individuals in real groups and simu-

lated groups using the Theil index of inequality (Theil, 1967):

ITheil k;nð Þ ¼ 1

k

X

k

i¼1

ni

�
log

ni

�

� �

; (2)

where k is the number of fish in the group, ni is the number of flakes consumed by the ith fish, and

�¼ n
k
is the average number of flakes consumed by a fish in the group. We normalized ITheil by its

maximal possible value, log k (the case where one fish consumes all flakes), and measured equality

using 1� ITheil
log k

, which ranges between 0 (a single fish who consumed all flakes) and 1 (full equality).

Real groups showed high equality values, with median values of 0.89 [0.21] for groups of three fish

and 0.92 [0.16] for groups of six fish (values in brackets show the interquartile range). The corre-

sponding simulated groups using the Attfeed+Align strategy exhibited similar high equality values

(Median = 0.92 [0.05], 0.90 [0.1] for simulated groups of three and six fish), indicating that resources

were distributed relatively equally among real and simulated fish (Figure 6—figure supplement

2A). We then compared income equality for the different social foraging models and found that only

models that include specific attraction to neighbors’ previous flake consumptions exhibited

increased equality compared to independent foraging (Figure 6—figure supplement 2C). In simu-

lated groups using the Attfeed+Align strategy, equality was a function of both the number of socially

interacting individuals within the group and the spatial dispersion of the flakes (Figure 6—figure

supplement 2B). For low spatial dispersion of flakes, simulated groups composed of just indepen-

dent foragers showed the highest inequality of all groups with mixed strategies, and equality

increased with the number of foragers in the group that used the Attfeed+Align strategy (Figure 6D-

E, Figure 6—figure supplement 2DA). When all individuals in the group used the Attfeed+Align

strategy, equality was higher than in groups of independent foragers for groups of three and six

fish, for most parameter values that match real foraging groups (Figure 6D-E). In contrast, in

Figure 4 continued

Figure supplement 1. Social models incorporating attraction to flake consumption by neighbors show the best fit to real foraging groups.
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Figure 5. Attraction to neighbors’ feeding results in increased foraging efficiency. (A) Left: Sketch of two groups of three fish foraging, with their

different interaction ranges Df ; Dn overlaid. For Dn ¼ 0, the group is composed of independent foragers (IND model). Right: foraging efficiency was

estimated by comparing the slope (b; see eq. 1) of the exponential function fitted to the rate of flake consumption of socially interacting agents

(Attfeed+Align model) and independent (IND) foragers. (B) Average consumption rates, b, for different combinations of Df and Dn; the first column on

Figure 5 continued on next page
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environments with high dispersion of flakes these effects disappeared or even reversed, with groups

of three fish showing only a moderate non-significant increase in equality and groups of six fish

showing a significant decrease in equality (Figure 6D-E). Thus, attraction to neighbors’ consumption

events increases income equality among group members only when resources are hard to come by.

Simulating larger groups and different distributions of food
Finally, we investigated the predictions of the Attfeed+Align foraging model for larger groups and

additional spatial distributions of food. We simulated groups of up to 24 fish in environments with

spatial distributions of food ranging from a single cluster of food items to a uniform distribution

(Figure 7A, Figure 7—videos 1–6). The increase in efficiency due to social interactions was most

pronounced when food items were highly clustered in space, whereas for the extreme cases of ran-

dom or uniform distributions, the models predict that social interactions would hinder foraging per-

formance (Figure 7B, Figure 7—figure supplement 1A; Giraldeau and Caraco, 2000; Ryer and

Olla, 1995; Ryer and Olla, 1998; Ranta et al., 1993). Importantly, our simulations predict that

groups of 12 and 24 fish that follow the Attfeed+Align strategy would be less efficient than indepen-

dent foragers for almost all the food distributions we tested. This is mainly due to the fact that the

larger groups are more cohesive and disperse less in the environment, making the search less effi-

cient (Figure 7—video 6). A social foraging strategy that only includes attraction to neighbors’ flake

consumption events (without a tendency to align with neighbors - Attfeed model) increased foraging

efficiency also for the large group sizes (Figure 7—figure supplement 2A). Income equality in the

group also increased in clustered food distributions and decreased in non-clustered ones, for all

group sizes (Figure 7C, Figure 7—figure supplement 1B, Figure 7—figure supplement 2B).

Interestingly, simulated groups of three and six fish were most efficient for intermediate Dn values

in the cases of clustered and real flake distributions (~10-12 BL, see Figure 7B). Simulations of

groups with longer social interaction ranges added only a small gain to foraging efficiency. In con-

trast, for simulated groups foraging with non-clustered food distributions (Random and Grid,

Figure 7A), increasing Dn values resulted in decreased efficiency for larger groups, but had almost

no effect for groups of three fish. These simulations suggest that regardless of the flake distribution,

optimal interaction ranges for groups of three fish could be long, while groups of six fish should use

intermediate interaction ranges to balance their gains at high clustered environments with their

losses at distributed environments. The parameter values of the best fit models to real groups con-

form with these predictions with median Dn values of 21.5 and 11.5 for groups of three and six fish,

respectively.

Discussion
We studied free foraging behavior in groups of adult zebrafish and found that fish responded to the

salient swimming maneuvers of shoal mates that indicated the consumption of food, by swimming

to these locations. Mathematical models of group behavior that combined the tendency of fish to

align with one another and to attract to the locations of previous flake consumptions by other fish,

accurately described fish foraging behavior and their success rates, and were superior to several

other (commonly used) social interaction models. This foraging strategy increased efficiency of

groups specifically in models that best matched real foraging groups, improved income equality

within the groups, and was efficient under different resource distribution settings. Simulations of the

models also show that socially interacting individuals that would rely on attraction to feeding events

Figure 5 continued

the left (Dn ¼ 0) represent independent foragers. Contours denote 10, 50, and 90% of the highest observed rate. (C) Difference in foraging efficiency for

groups that utilize social interactions (Attfeed+Align) compared to groups of independent foragers (IND) for all model parameters. Dots represent Df

and Dn values of simulated groups that best fitted real foraging groups. (D) Average improvement in the rate of flake consumption by socially

interacting individuals compared to independent foragers. Colors indicate different social foraging strategies; dotted black line represent no change

compared to independent foragers (IND); results were averaged over all simulations with Df � 5 which was the parameter range where real groups

were matched by simulations. Colored dots represent statistically significant differences (P<0.05, Wilcoxon’s signed rank test).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Foraging efficiency and attraction to neighbors’ consumption events.
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Figure 6. Social interactions promote individual foraging efficiency and income equality within groups. (A) Sketch showing simulated groups of three

fish with a varying number of foragers who use the Attfeed+Align strategy during foraging. (B, C) Average fraction of flakes consumed by the socially

interacting individuals in the same simulated group. Colors indicate the number of social foragers in the group; dotted lines show the expected

consumption values if resources were distributed equally among foragers; results were averaged over all simulations with Df � 5, which was the

Figure 6 continued on next page
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by other fish would consume more food than shoal mates that forage independently. Our results

thus present a detailed social foraging heuristic that matches fish behavior in a naturalistic context,

and constitutes a highly efficient and robust foraging strategy.

Our modeling predicts that the inferred interaction ranges that best fit real foraging groups

would result in a robust foraging strategy for groups of three and six fish for various spatial distribu-

tions of food. This implies that to forage efficiently fish could adjust their interaction range according

to the perceived group size, regardless of the (usually unknown) distribution of food. Additionally,

the reduction in foraging efficiency predicted by our models for larger simulated groups (12 and 24

fish) predicts that these groups are more likely to break down into smaller groups that will exhibit

increased efficiency. This finding is consistent with the observation that zebrafish both in the wild

and in the laboratory are rarely found in cohesive groups of 12 fish or more (Harpaz et al., 2017;

Suriyampola et al., 2016). Interestingly, when simulating groups that only utilize attraction to neigh-

bors’ consumption events (without the general schooling tendency observed in real fish) the models

predicted increased efficiency for all group sizes. We therefore hypothesize that this interaction type

represents a general behavioral strategy for individuals foraging in a social context, also for non-

schooling species (Brown, 1988; Clark and Mangel, 1984; Flemming et al., 1992; Miller et al.,

2013).

Since zebrafish rely heavily on their visual system (Saverino and Gerlai, 2008; Pita et al., 2015),

our modeling focused on vision as the main source of social information between individuals. It is

likely that other sensory modalities, namely tactile or odor pathways, also play a role in information

transfer during foraging. However, the inferred parameters of the best fit models in our data indi-

cated that neighbor detection ranges were ~4–8 times larger than flake detection ranges - reaching

up to 21 body lengths, on average. It is unclear whether odors or tactile information may be

detected from such large distances on such short time scales (Moore and Crimaldi, 2004). Thus,

while various modalities may modulate fish behavior, we suggest that vision plays the prominent role

in processing social information during foraging.

We focused here on attraction-based strategies for the fish, since in our experiments fish were

attracted to areas where neighbors detected food. However, previous studies have suggested other

search strategies that were based on repulsion between individuals (Tani et al., 2014) or on maxi-

mizing information about the location of food (Karpas et al., 2017). Although our modeling frame-

work gave an excellent fit to the data, it is possible that foraging fish combine or alternate between

strategies in different environmental conditions, based on group composition or their internal state

(Farine et al., 2014; Michelena et al., 2009; Harpaz et al., 2017; Kurvers et al., 2011). Thus, mod-

els that incorporate additional strategies according to an explicit policy, might prove to be even

more accurate in explaining fish behavior.

Observations of groups in nature, and related theoretical models, suggest that groups may con-

tain a fraction of individuals whose search is based on their personal information (’producers’) as well

as individuals that rely mostly on social information (’scroungers’) (Barnard and Sibly, 1981;

Mottley and Giraldeau, 2000; Harten et al., 2018). Our results suggest that when individuals in the

group have similar foraging capabilities and a limited social interaction range (Bhattacharya and

Vicsek, 2014; Bhattacharya and Vicsek, 2015), using both individual and social information is the

most efficient strategy for the individual. An interesting extension of our models would be to explore

individual differences between members of the group and their effect on individual social foraging

strategies (Aplin et al., 2014; Jolles et al., 2017; Michelena et al., 2010; Brown and Irving, 2014),

Figure 6 continued

parameter range where real groups were matched by simulations; dots represent significant increase in efficiency of social foragers over independent

foragers within the group (Wilcoxon’s signed rank test, N=10, 10). (D, E) Equality of food distribution within groups, measured by 1� ITheil
log k

(Eq. 2).

Lighter colors represent a larger fraction of social foragers. Data is shown for both low flake dispersion environments (top), and high dispersion

(bottom) (Figure 6—figure supplement 2B). Equality values were averaged over Df � 5; dots show a significant difference from independent foragers

(0 social fish) (Wilcoxon’s signed rank test; N=5 for each group size and dispersion level).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Social interactions improve foraging efficiency of individuals in groups.

Figure supplement 2. Social interactions improve income equality in groups.
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Figure 7. Optimal interaction range depends on group size and not on resource distribution. (A) Sketches showing six different resource distributions

used for foraging simulations, three with varying levels of clustering (1, 2, and 3 clusters), a random distribution, and uniform distribution (approximated

by a hexagonal grid), and an example of the distribution of flakes taken from one of the experiments. (B) Improvement in group foraging rates (mean

time to consumption per flake) of the Attfeed+Align model compared to independent foragers (IND model) for groups of 3, 6, 12, and 24 fish (dark to

Figure 7 continued on next page
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or the existence of stable sub-groups of individuals with higher tendencies to interact with one

another in larger groups of foragers.

Finally, we note that our work reflects the power of detailed behavioral analysis of individuals in

real groups for building accurate mathematical models of social interactions. Learning the models

from the data and testing them on real groups allowed us to explore the efficiency and robustness

of the interactions among group members in a quantitative manner. This data-driven approach

would be applicable and potentially imperative in the analysis of social behavior of large groups of

individuals - where macroscopic or mean field like models would not suffice to characterize the inter-

play between complex and possibly idiosyncratic traits of individuals and emerging group behavior.

Materials and methods

Experimental setup
Detailed description of the setup is given in Harpaz et al., 2017. Briefly, adult fish were purchased

from a local supplier (Aquazone LTD, Israel) and housed separately in their designated groups for

more than a month prior to behavioral experiments. Fish were housed in a standard holding system

consisting of a recirculating multistage filtration system where temperature, conductivity, PH, and

light- dark cycle were monitored.

Imaging of fish foraging behavior was done using an industrial video recording system composed

of a Vieworks VC-2MC-M340 camera with an 8 mm lens, a Karbon-CL frame grabber, and a record-

ing server. Camera was suspended 150 cm above the experimental tank. During experiments we

changed the effective tank size by using arenas of different size (Figure 1—figure supplement 1A ;

see also discussion below). All water conditions were similar between the holding tanks and the

experimental tank.

Fish acclimation and behavioral experiments
To facilitate food searching behavior and to reduce fish anxiety, the following acclimation procedure

was followed: On day 1, all fish were transferred to the designated experimental tank (D = 95 cm;

water depth of 5 cm) and were allowed to explore the tank for 5 min. On days 2–5, all groups and

individual fish were transferred from their home tanks to test tanks of increasing size (Figure 1—fig-

ure supplement 1A) where 6, 12, or 18 flakes were randomly scattered over the water in the area

outside the start box (for groups of sizes 1, 3, and 6 respectively, Figure 1—figure supplement 1A).

The number of flakes used in the experiments for individual fish and for groups were chosen based

on preliminary experiments, as the amount of food that would entice single fish to engage in the

Figure 7 continued

light colors) for the different spatial distributions (panels from top to bottom). Results were averaged over all simulations with Df � 5 (Figure 7—figure

supplement 1, 100 repetitions per parameter combination, Materials and methods). (C) Same as in B but for the increase in equality of resources within

groups.

The online version of this article includes the following video and figure supplement(s) for figure 7:

Figure supplement 1. Simulating different distributions of food.

Figure supplement 2. Optimal interaction range depends on group size and not on resource distribution.

Figure 7—video 1. Simulations of groups of six fish foraging in an arena with a single cluster of food flakes.

https://elifesciences.org/articles/56196#fig7video1

Figure 7—video 2. Simulations of groups of six fish foraging in an arena with 2 clusters of flakes.

https://elifesciences.org/articles/56196#fig7video2

Figure 7—video 3. Simulations of groups of six fish foraging in an arena with 3 clusters of flakes.

https://elifesciences.org/articles/56196#fig7video3

Figure 7—video 4. Simulations of groups of six fish foraging in an arena with a uniform distribution of flakes.

https://elifesciences.org/articles/56196#fig7video4

Figure 7—video 5. Simulations of groups of six fish foraging in an arena with random distribution of flakes.

https://elifesciences.org/articles/56196#fig7video5

Figure 7—video 6. Groups of 12 simulated fish foraging in an environment with 3 clusters of flakes.

https://elifesciences.org/articles/56196#fig7video6
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task yet not to overcrowd the arena with flakes (especially for the larger groups). Fish were first

placed in a small starting box (25 cm x 25 cm) that was inside a larger arena. The small box was

raised after 5 min and the fish were allowed to forage and consume the flakes in the larger arena for

an additional 5 min. Fish were then netted and returned to their home tanks, keeping their original

groups. Over the 4 days of training, we increased the size of the arena from the small starting box

itself (day 2) to circular ones with D = 47.5, 67.2, 95 cm on days 3–5 (Figure 1—figure supplement

1A). On days 6–7 fish were kept in their home tanks and were deprived of food. Foraging was then

tested on day 8. During training, no food was administered to the fish outside of the experimental

arena. In total, n = 106 adult fish (3 months old or older) were used at approximately 1:1 male to

female ratio. Overall we tested 16 single individuals, 10 groups of three fish (30 fish in total), and 10

groups of six fish (60 fish in total). Two single individual fish were excluded from analysis as they did

not swim when transferred to the experimental tank.

Data extraction
Recorded videos were analyzed off-line to extract the size, position, speed, and orientation of indi-

vidual fish, and the position of food flakes. Positional data was then used to estimate fish trajectories

using a designated tracking software. All image processing and tracking were done using Matlab

with software written in house; the details of these procedures are described in Harpaz et al., 2017.

Fish identities were further corrected using IdTracker (Pérez-Escudero et al., 2014). Fish trajectories

were smoothed using a Savitzky-Golay filter (Savitzky and Golay, 1964) spanning 17 frames which

constituted ~1/3 of a second (all videos were recorded at 50 fps). Fish positions were defined as the

coordinates of the center of each fish, x
!

i tð Þ, and fish velocity was calculated as:

v
!
i tð Þ ¼ x

!
i tþdtð Þ� x

!
i t�dtð Þ

2dt
, with dt = 1 video frame or 20 ms. Direction of motion of the fish was defined

as: d
!
i tð Þ ¼ v

!
i tð Þ

v
!
i tð Þj j and the trajectory curvature at time t was given by c tð Þ ¼ 1=R tð Þ, where R is the

radius of the circle that gave the best Euclidean fit to a trajectory segment of length 600 ms, cen-

tered on time t.

Tracking flakes
Flakes’ locations were tracked with the same software that was used for tracking the fish

(Harpaz et al., 2017). Flakes that were larger than four pixels (a radius of about 1.15 mm) were reli-

ably detected. Flakes typically disappeared when eaten, but when consumed flakes broke

into pieces, new smaller flakes appeared. Consumption events were defined at times when a fish

made contact with a flake and the flake disappeared from the camera’s field of view. The resolution

of our camera did not allow us to confirm whether the fish digested the flake entirely.

Flake consumption events and pseudo consumption events
We estimated the probability of fish to cross near the location of a consumption event by another

fish, P crossingð Þ, by counting all events where at least one fish passed within 2 BL of that location

within 1-4 s after a neighbor’s flake consumption, and dividing it by the total number of consumption

events. Since zebrafish tend to swim in groups, regardless of the presence of food, we compared

this number to the probability of one fish to cross near a neighbor’s position within 1-4 s when no

food was recently consumed by that neighbor (within the last 4 s) or would be consumed in the near

future (within the next 4s). We estimated this Pnull crossingð Þ by drawing k random fish positions (mim-

icking k flake detection events) 10000 times, from times when no flake was detected for at least 8 s

(Figure 2D). The tendency to attract to the location of flake consumption was then given by:

P crossingð Þ � Pnull crossingð Þh i, where angle brackets represent the average over random drawings for

a given group.

We defined ’pseudo flake consumptions’ at times when fish exhibited a speed profile that was

similar to that of a fish during real consumption events, namely gradual increase in speed followed

by a sudden sharp decrease back to baseline (Figure 2B). To detect such events, we convolved the

speed profile of individual fish in the group at all times when no flakes were present near the fish

(for at least 8 s) with the calculated average speed profile near all real flake consumption events of

that group (Figure 2B) and obtained a correlation measure for each point in time. We then treated

the top 2.5 percent of this distribution as pseudo consumption events. The average number of
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these events was 12.6 ± 4 and 21.8 ± 6.6 for groups of three and six fish, respectively. We compared

the probability of neighbors to cross near the locations of such events, P pseudo crossingð Þ to

Pnull crossingð Þ. The tendency of neighboring fish to cross near pseudo consumption events was high,

and was correlated with their tendency to cross near real flake consumption events over groups (Fig-

ure 2—figure supplement 1C-D).

Segmentation of fish trajectories
Segmentation of trajectories into discrete steps was based on the detection of local minima in the

speed profile of the fish (Figure 3A-B). We characterized discrete steps by the total distance trav-

eled between two minima points, L, and the change in angle between successive steps, or turning

angle, �. These distributions were estimated for each fish and used to simulate their swimming

behavior (Figure 3—figure supplement 1A-B).

Simulating swimming behavior
Fish motion
We modeled fish swimming behavior as a correlated random walk, defined by the distribution of

step sizes, L, and of the turning angles between consecutive steps � (see above). Thus, at each time

point, we drew for each simulated fish a step size and a turning angle, which determined the direc-

tion of motion and the length of the next step (Figure 3B, Figure 3—figure supplement 1A-B).

Average step size estimated from fish data was 2.85 ± 1.7 and 3.1 ± 1.9 body lengths (BL) for groups

of three and six fish, and turning angle distributions were nearly symmetric with an SD of 50˚ and of

46˚ for groups of three and six fish (Figure 3—figure supplement 1A-B). The initial conditions of

each simulation, or the starting positions of individual fish, matched those of the real fish groups. All

simulations were conducted within bounded arenas, identical to those used for testing real fish. If a

simulation step was expected to end outside of the arena boundaries, that movement was discarded

and a new movement was chosen that did not exceed the arena boundaries. To compare simulated

foraging time (counted as discrete steps) to real foraging experiments (Figure 4B), we divided the

length of each simulated step by the calculated average speed of real foraging fish.

Simulated flakes
In all simulations, we used the true positions of flakes as extracted from fish foraging experiments. If

a flake drifted during an experimental epoch (due to water turbulence), we only used its final posi-

tion in the simulations since the speed and distance were negligible compared to the motion of the

fish. Since real flakes sometimes disintegrated into smaller bits after a consumption event, we copied

that in the simulations, that is if flake i at position x
!

i has appeared after flake j was (partially) con-

sumed, so did the corresponding flakes in the simulation.

Sensory range of flake detection
Each simulated fish had a circular range Df , within which it could detect a flake, and orient towards it

with probability p(go to flake) = e�df =Df , where df is the distance to the flake (Figure 3C). If a fish ori-

ented itself toward a flake, its next step size was drawn from the empirical distribution. If the fish

reached the flake (or passed it) during this movement, that flake was considered to be consumed. If

the simulated fish did not reach the flake, the procedure was repeated. In the IND foraging model, k

such fish were simultaneously simulated, independent of one another.

Sensory range of neighbor detection
Since foraging fish in real groups were found to be attracted to areas of previous flake consump-

tions, and since zebrafish are known to exhibit schooling and shoaling tendencies, we allowed

agents in our simulated social models to detect and respond to neighbors’ swimming and foraging

behavior within the sensory range of neighbor detection, Dn. Specifically, agents in the social forag-

ing models could combine various types of social interactions (Figure 3D, Figure 3—figure supple-

ment 1C, and see below):

1. Attraction to neighbors’ previous flake consumptions (‘Attfeed’): if a neighbor of fish i was
within the sensory range of neighbor detection, Dn, and found a flake in the previous t time
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steps, then fish i oriented towards the position of the previous consumption with probability p

(go to consumption) = e�dn=Dn , where dn is the distance to the position where a flake was con-
sumed by a neighbor. In case a movement toward a consumption position was successfully
drawn, the step size was drawn from the empirical distribution.

2. Neighbor attraction (‘Att’): if neighbor(s) were found within the sensory range of neighbor
detection, Dn in the previous times step, fish oriented towards the center of mass of these

neighbors with probability P(attract) ¼ e
� dnjh i=Dn where dnj


 �

is the distance to the center of

mass of the neighbors, such that the new direction of fish i is d
!
i t þ 1ð Þ ¼ xj tð Þ


 �

� xi tð Þ
j xj tð Þ

 �

� xi tð Þj
, where

xj tð Þ

 �

is the center of mass of neighbors within Dn at time t.

3. Neighbor alignment (‘Align’): if neighbor(s) were found within the sensory range of neighbor
detection, Dn in the previous times step, fish adopted the average direction of these neighbors

with probability P(align) ¼ e
� dnjh i=Dn where dnj


 �

is the distance to the center of mass of the

neighbors, such that the new direction of fish i is d
!
i t þ 1ð Þ ¼ 1

J
j2dij<Dn

X

d
!
j tð Þ where J is the number

of neighbors within Dn.

Hierarchical nature of the social models
Simulated fish actions were given by the following hierarchy: If a flake was within the Df range of a

fish, that fish would turn towards it with p(go to flake). If a flake was not detected (i.e. no flake was

within Df ), and a neighbor consumed a flake at a distance smaller than Dn, then the fish would move

towards that location with the appropriate probability (for the cases where the model included

response to food consumption by neighbors). If neither a flake nor a neighbor consumption event

were detected, but neighbors were within a distance Dn, the fish responded to the position/orienta-

tion of these neighbors (given that the model included response to neighbors’ swimming). If no

flakes or neighbors were detected, or if motion towards these areas was not successfully drawn,

then the next direction of motion of the fish was randomly chosen from the empirical turning angle

distribution.

Mixed strategy groups
In simulations of groups with mixed individual strategies, fish that used social interactions followed

the procedure described above and the rest used independent foraging (Figure 6A).

Simulating larger groups of foragers for various flake distributions
We simulated group foraging for various group sizes: 3, 6, 12 and 24 fish in a range of flake distribu-

tions with a constant number of 18 flakes (Figure 7A):

1. Single cluster. Flakes were randomly distributed within a small circle with a diameter of 9.5 cm
(within the 95 cm diameter arena). Circle center was situated at a distance of 20 cm from the
arena walls.

2. Two clusters. Flakes were equally distributed between two circles as described for the single
cluster. Circle centers were situated on the diameter of the large arena to ensure maximal dis-
tance between clusters.

3. Three clusters. Flakes were equally distributed between three clusters as described above. Cir-
cle centers were positioned on the vertices of an equilateral triangle to ensure maximal dis-
tance between clusters.

4. Random. To achieve a random, non-clustered distribution we positioned flakes randomly in
the arena and assessed their clustering level based on the nearest neighbor distance of flakes,

using the clustering coefficient given in Clark and Evans, 1954: C ¼ NN1

0:5� ffiffi

�
p , Where NN1 is the

average nearest neighbor distance of all flakes, and � is the density of flakes. Values of
0� Cj j<0:01 were taken to show no spatial clustering and were chosen for simulations.

5. Uniform (Hexagonal grid). We positioned N+1 flakes in a hexagonal grid within the arena
boundaries. We then removed the center flake to allow fish to start in the center position.

6. Empirical flake distributions. We used the empirical flake distribution used in experiments (see
above).

Harpaz and Schneidman. eLife 2020;9:e56196. DOI: https://doi.org/10.7554/eLife.56196 18 of 25

Research article Computational and Systems Biology Physics of Living Systems

https://doi.org/10.7554/eLife.56196


In all simulations, fish started foraging in the center of the arena (see Figure 7—videos 1–6). We

repeated these simulations 100 times for all Df and Dn values, for all group sizes in all simulated flake

distributions (1-5). For the empirical flake distribution (see 6 above) we repeated simulations 20

times for all Df and Dn values, for all group sizes and for every empirical flake distribution used in the

experiments. We later averaged simulation results over the different flake distributions for each

group size to achieve a single representative performance map similar to the results of the simulated

flake distributions (Figure 7—figure supplement 1).

Model classes and parameters

Independent models Social models

Df – flake detection range 1–20 body length, increments of 1 1–20 body length increments of 1

Dn – neighbor detection range 0 body length 1–25 body length increments of 1

t – memory of a neighbor
detecting flakes

five time steps (where applicable)

Arena Radii 32 BL (95 cm) 32 BL (95 cm)

Turning angles Estimated from swimming
data of each fish

Step sizes Estimated from swimming
data of each fish

Flake positions According to the
starting position and
appearance and
disappearance dynamics in
experiments or according
to the simulated flake
distributions (see above).

Agents starting positions According to the starting
positions in experiments or in
the center of the arena for simulated
flake distributions.

Model types and names
Description
(see Figure 3—figure supplement 1C)

Independent model
(IND model)

fish only respond to flakes
within Df around them (Dn=0)

Attraction to consumption
events (Attfeed)

fish respond to flakes within Df ,
otherwise respond to neighbors’
previous flake detections within Dn

Attraction to
neighbors regardless
of consumption (Att model)

fish respond to flakes within Df ,
otherwise attract to the center of mass
(average position of the group) of their
neighbors within Dn; regardless
of consumption events

Alignment with neighbors
(Align model)

fish respond to flakes within Df ,
otherwise align with t average
direction of neighbors within Dn

Attraction to
consumption events
and alignment
(Attfeed+Align model)

fish respond to flakes within Df ,
otherwise respond to neighbors’
previous flake detections within Dn,
otherwise align with neighbors within Dn

Continued on next page

Harpaz and Schneidman. eLife 2020;9:e56196. DOI: https://doi.org/10.7554/eLife.56196 19 of 25

Research article Computational and Systems Biology Physics of Living Systems

https://doi.org/10.7554/eLife.56196


Continued

Model types and names
Description
(see Figure 3—figure supplement 1C)

Attraction and alignment
with neighbors (Att+Align)

fish respond to flakes within Df ,
otherwise align with neighbors
within Dn=2; and attract to the center
of mass of neighbors
within Dn=2 < dn <Dn

regardless of consumption events.
If neighbors exist in both zones, fish
average the attraction
and alignment responses.

Attraction to consumption
events and attraction
and alignment
with neighbors
(Attfeed+Att+Align model)

fish respond to flakes within Df ,
otherwise respond to neighbors’
previous flake detections within Dn;
otherwise align with neighbors within Dn=2;
and attract to the center of mass of
neighbors within Dn=2 < dn <Dn

regardless of consumption events. If neighbors
exist in both zones, fish average
the attraction and alignment responses.

Model fitting
Models were fitted to data by finding the parameter values (Df for the independent model, and

Df ;Dn for the social models) that maximized the log-likelihood of the simulated consumption times

given the empirical consumption times of a given group (see below) and minimized the normalized

squared error between the swimming statistics (average polarity and nearest neighbor distance) of

real groups and simulated groups.

Consumption times: we used the distribution of consumption times of flake i over the simulations

(100 repetitions), to assess the probability of observing a sequence of consumption events on real

data traces. Thus, the probability of the i-th consumption event to occur at time T is given by its

value from the simulations of the model, PDf ;Dn
Tdata ið Þð Þ, and the probability of a sequence of con-

sumption times is given by the product of the probabilities of the individual events
i

Y

PDf ;Dn
Tdata ið Þð Þ.

The log-likelihood of the model is then given by:

logPDf ;Dn
Tdata 1ð Þ;Tdata 2ð Þ; :::ð Þ ¼

i

X

logPDf ;Dn
Tdata ið Þð Þ

where Tdata ið Þ is the actual consumption time of the ith flake, and the probability P is the distribution

of consumption times of the ith flake over all simulations for a specific set of model parameters

Df ;Dn. We used kernel density smoothing to estimate a continuous probability from the discrete dis-

tribution obtained from simulations.

Polarity and nearest neighbor distance: we calculated the normalized mean squared error

between the statistics obtained from simulations and the ones observed in the data: E Df ;Dn; S
� �

¼
Ŝh i� Sh ið Þ2
SD Ŝð Þ where S is the relevant statistic measured (polarity or nearest neighbor distance), Ŝ is the

value obtained from simulations and <:::> denotes the average. polarity is defined

Polarity ¼ 1

N
i

X

d
!

i, which is the average direction vectors of the N fish in the group.

Combined accuracy measure: To assess the accuracy of the model we combined these three sep-

arate measures into a single error function to be minimized by searching over the Df ;Dn values of

the simulations: Ecombined ¼ Econsumptions þ Epolarity þ EDnn where Econsumptions was taken as minus the log

likelihood of consumptions (see above), and all three error surfaces were standardized by subtracting

their mean value and dividing by the standard deviation, such that all errors will have similar units.
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Measuring flake clustering
To quantify the spatial clustering of flakes, we simulated the random positions of N flake consump-

tions (corresponding to the number of actual flake consumptions of each of the real groups). We

then calculated the average nearest neighbor distance of the simulated flakes Drand
nn1 and repeated

this analysis 100,000 times to obtain a distribution of average nearest neighbor distances expected

at random. We then compared the actual average nearest neighbor distance Dnn1 of flake consump-

tions to the random distribution and assessed how likely it is to obtain Dnn1 if flakes were randomly

distributed in space. The level of clustering of a group of n flakes is then defined by:

D̂ nð Þ ¼
nn1 nð Þ��

Drand
nn1

nð Þ
s
Drand
nn1

nð Þ , where �Drand
nn1

and sDrand
nn1

are the mean and standard deviation of the distribution

of nearest neighbor distances of randomly distributed flakes.

Inequality measure
To quantify the inequality of flake consumptions between members of the same group, we calcu-

lated the Theil index of inequality (Theil, 1967). This is an information theory-based measure, assess-

ing the difference in the entropy of a distribution from the maximum entropy expected if

consumption rate was equal for all agents, and is given by

ITheil k;nð Þ ¼ 1

k

X

k

i¼1

ni

�
log

ni

�

� �

where k is the number of agents, ni is the number flakes consumed by fish i and m is the mean num-

ber of flakes consumed by a fish in the group. In addition, we normalized ITheil by log k, the maximum

possible value if one fish consumed all flakes. We then quantified equality by 1� ITheil
log k

, where 1 indi-

cates full equality and 0 is full inequality.

Sample sizes and power estimation
As the current research tests novel effects of social behavior on group foraging, precise estimation

of sample sizes and statistical power could not be conducted a priori. Instead, we have based our

choice of sample sizes on previously published studies of collective behavior and social foraging

behavior of zebrafish (Miller and Gerlai, 2007; Harpaz et al., 2017). In addition, we chose to

include more than one group size in the study design (groups of three and six fish) to support the

generality of our findings. Finally, as the study is focused on groups, sample sizes were chosen to be

large enough to conduct parametric and nonparametric statistical testing (e.g. Pearson’s correlation

coefficient, Wilcoxon’s rank-sum test), while minimizing the total number of animals used in the

experiments.
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Harpaz R, Tkačik G, Schneidman E. 2017. Discrete modes of social information processing predict individual
behavior of fish in a group. PNAS 114:10149–10154. DOI: https://doi.org/10.1073/pnas.1703817114, PMID: 2
8874581

Harten L, Matalon Y, Galli N, Navon H, Dor R, Yovel Y. 2018. Persistent producer-scrounger relationships in bats.
Science Advances 4:e1603293. DOI: https://doi.org/10.1126/sciadv.1603293, PMID: 29441356

Hein AM, Rosenthal SB, Hagstrom GI, Berdahl A, Torney CJ, Couzin ID. 2016. The evolution of distributed
sensing and collective computation in animal populations. eLife 4:e10955. DOI: https://doi.org/10.7554/eLife.
10955

Huth A, Wissel C. 1992. The simulation of the movement of fish schools. Journal of Theoretical Biology 156:365–
385. DOI: https://doi.org/10.1016/S0022-5193(05)80681-2

Jolles JW, Boogert NJ, Sridhar VH, Couzin ID, Manica A. 2017. Consistent individual differences drive collective
behavior and group functioning of schooling fish. Current Biology 27:2862–2868. DOI: https://doi.org/10.1016/
j.cub.2017.08.004, PMID: 28889975

Karpas ED, Shklarsh A, Schneidman E. 2017. Information socialtaxis and efficient collective behavior emerging in
groups of information-seeking agents. PNAS 114:5589–5594. DOI: https://doi.org/10.1073/pnas.1618055114,
PMID: 28507154

Krebs JR. 1974. Colonial nesting and social feeding as strategies for exploiting food resources in the great blue
heron (Ardea herodias). Behaviour 51:99–134. DOI: https://doi.org/10.1163/156853974X00165

Kurvers RHJM, Adamczyk VMAP, van Wieren SE, Prins HHT. 2011. The effect of boldness on decision-making in
barnacle geese is group-size-dependent. Proceedings of the Royal Society B: Biological Sciences 278:2018–
2024. DOI: https://doi.org/10.1098/rspb.2010.2266

Laland KN, Williams K. 1998. Social transmission of maladaptive information in the guppy. Behavioral Ecology 9:
493–499. DOI: https://doi.org/10.1093/beheco/9.5.493

Martı́nez-Garcı́a R, Calabrese JM, Mueller T, Olson KA, López C. 2013. Optimizing the search for resources by
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