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Abstract: A computational screening for natural compounds suitable to bind the AKT protein
has been performed after the generation of a pharmacophore model based on the experimental
structure of AKT1 complexed with IQO, a well-known inhibitor. The compounds resulted as being
most suitable from the screening have been further investigated by molecular docking, ADMET
(Absorption, Distribution, Metabolism, Excretion, and Toxicity) analysis and toxicity profiles. Two
compounds selected at the end of the computational analysis, i.e., ZINC2429155 (also named STL1)
and ZINC1447881 (also named AC1), have been tested in an experimental assay, together with IQO
as a positive control and quercetin as a negative control. Only STL1 clearly inhibited AKT activation
negatively modulating the PI3K/AKT pathway.

Keywords: AKT1; pharmacophore model; virtual screening; molecular docking; ADMET analysis;
kinase inhibitors

1. Introduction

Protein kinase B/(PKB)/AKT belongs to the ACG family of serine-threonine kinases.
It has been identified about 30 years ago by the cloning of the v-AKT oncogene from
the transforming murine retrovirus AKT-8 [1]. Four years later, different laboratories
identified the cellular homolog of v-AKT, an approximately 57 kDa protein kinase called
c-AKT [2] or PKB, for its similarity with PKA/PKC kinases [3,4]. In the 90s, PKB/AKT
acquired a prominent role in the field of cellular signal transduction, when it became clear
that its activation was downstream of the lipid kinase PI3K (phoshoInositide-3-kinase),
closely related to tumor transformation and cellular response to insulin [5]. Currently,
PKB/AKT is well known to regulate key cellular functions such as metabolism, survival
and proliferation in response to hormones and growth factors. This evidence explains why
the over-activation of PKB/AKT caused by excessive production of the membrane lipid
PIP3 (phosphatidyl-Inositol-3,4,5-tris-phosphate), produced by PI3K, is observed in 50% of
human cancers [6–8], while defects in the PKB/AKT pathway is associated with metabolic
diseases (diabetes and insulin resistance) [9]. Three AKT isoforms have been characterized.
They show high sequence identity (>80%) and are named AKT1 (PKBα), AKT2 (PKBβ)
and AKT3 (PKBγ), encoded by three distinct genes located on different chromosomes.
These isoforms share a common architecture consisting of a catalytic domain flanked by an
N-terminal domain called PH (Pleckstrin Homology) and a C-terminal regulatory domain
(EXT) characterized by a hydrophobic motif (HM), typical of ACG kinases [10]. In vivo
mutagenesis studies (knockout mice) demonstrated that each isoenzyme possesses a typical
function: in particular, mice with the specific AKT1 deletion are characterized by growth
delays and perinatal lethality. AKT2 knock-out mice develop insulin resistance and a
type II diabetes-like syndrome, while mice deleted for AKT3 show a decrease in the brain
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volume [11]. PH domain is highly conserved in the different AKT isoforms (sequence
homology between 76 and 84%) for its essential role in the interaction with membrane
phospholipids such as PIP3 produced by PI3K. Biochemical analysis revealed that the PH
domain of PKB/AKT binds with similar affinity to both PIP3 and PIP2 (phosphatidyl-
inositol-3,4,-di-phosphate) [12]. The binding of phosphoinositides to the PH domain
causes conformational changes allowing the phosphorylation of the Thr308 and Ser473
residues by PDK1 and mTORC2 (mechanistic target of rapamycin (mTOR) complex 2)
kinases, respectively, leading to the full AKT enzymatic activation [13]. Phosphorylation in
Thr408 residue in the C-terminal regulatory domain called turn motive (TM) stabilizes the
AKT protein in the cytosol after its synthesis. Signal termination is instead controlled by
PIP3-dependent phosphatase (PTEN) and by phosphatases PP2A and PHLPP [13].

Activated PKB/AKT can phosphorylate over 100 bona fide substrates where the tar-
gets Ser/Thr residues are embedded in the minimal consensus motif: R-X-R-X-X-S/T-φ
(where X stays for any amino acid and φ refers to a large hydrophobic residue). How-
ever, important substrates, such as AMP-regulated protein kinase (AMPK) have in the
PKB/AKT consensus phosphorylation site a Pro residue at the −5 position, rather than the
typical R (Arg) residue [14]. Important physiological substrates of PKB/AKT are GSK3β
(glycogen synthase kinase β), which is inactivated by phosphorylation in Ser9 resulting
in a final proliferative and survival response; the transcription factor FoxO, which, upon
phosphorylation, translocates to the cytoplasm blocking de facto the transcription of genes
that arrest the cell cycle and/or induce apoptosis [15].

Due to its peculiar role as a central “cellular hub” in proliferation, growth and
metabolism, the PI3K/AKT axis is one of the most frequently altered biochemical pathways
in the complex network of intracellular signals leading to human cancers. These alterations
include somatic oncogenic amplifications or mutations impacting the regulation or the
expression of proteins such as EGFR, HER2, PKD1 and PIK3CA receptors [13]. For these
reasons, the PI3K/AKT pathway became a key target for the latest generation of anticancer
drugs, characterized by high molecular specificity to minimize the cytotoxic side effects on
normal cells [11]. These innovative drugs can target a specific member within the pathway
(e.g., PI3K, AKT and mTOR) and have been or are being tested in clinical trials. This is
the case, for example, of Idelalisib (CAL-101), the first PI3K inhibitor approved by the
US Food and Drug Administration (FDA), which targets the isoform δ of the catalytic
subunit of PI3K (p110 δ) [16]. Idelalisib is effective against chronic lymphocytic leukemia
(CLL), follicular lymphoma (FL) and small lymphocytic lymphoma (SLL) [17]. Several
synthetic compounds that directly target AKT and showed promising results in animal
models of cancer reached phase I/II clinical trials. They have been functionally character-
ized, but the results are still debatable since the complexity of the AKT signaling pathway
network generates phenomena of compensatory resistance reactivating PI3K or mTOR in
the PI3K/AKT/mTOR pathway. Therefore, the combination of inhibitors that hit more
than one kinase in the PI3K/AKT/mTOR phosphorylation cascade appears as a promising
therapeutic alternative against different types of cancer [7].

The possibility that natural agents can inhibit the PI3K/AKT pathway gained great in-
terest and the efficacy of several phytochemicals were analyzed in recent review articles [7,18].
A good example is quercetin that, in cellular models of CLL, and in association with the
BH3-mimetic ABT-737, synergistically enhanced apoptosis by directly targeting PI3K and
CK2 kinases, being the latter a positive modulator of the PI3K/AKT pathway since it
inactivates PTEN phosphatase [19,20]. However, only in a few cases, a direct interaction
between the natural agent and AKT has been demonstrated. As an example, [6]-Shogaol
from ginger root can directly target AKT1 and AKT2, but not PI3K or mTOR, suppressing
cell growth in several cancers (NSCLC, hepatocarcinoma, skin and ovarian cancer) cell
lines [21]. Oridonin from Rabdosia rubescens acts as an ATP competitive inhibitor of AKT1
and AKT2 and suppresses proliferation of esophageal squamous cell carcinoma in cell lines
and in patient-derived xenograft tumors [8]. In silico models indicate that the flavonol
herbacetin, found in ramose scouring rush herb and flaxseed, behaves as a dual inhibitor
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of ornithine decarboxylase (ODC) and AKT1/2 forming hydrogen bonds with the latter
into the ATP binding pockets. Due to this interaction, tumor growth was suppressed in
squamous cell carcinoma and melanoma [22]. However, to our knowledge, no clinical
trials have been designed or are ongoing to assess the efficacy of natural inhibitors of AKT
that directly target this kinase.

Based on this evidence and considering that the inhibition of PI3K/AKT pathway is
associated with adverse events such as hyperglycemia and hyperinsulinemia [11], great
interest is focused on the identification of new and specific inhibitors of the three AKT
isoforms in different types of cancer.

The use of computational and bioinformatic approaches allows fast screening of
molecules in the search for enzyme inhibitors and protein ligands. Starting by the experi-
mental structure of a protein–ligand complex, it is possible to investigate by computational
tools the structural features that other potential ligands should have, in order to be able
to bind the protein. This procedure is known as the creation of a pharmacophore model,
and it is followed by virtual screening, i.e., the search of a large data set of molecules
in order to find candidate ligands that fit with the pharmacophore model [23]. Further
computational studies can verify how the ligands may interact with the protein, as in the
case of docking simulations [24].

In this article, we described our study aimed at identifying and investigating new
compounds that could be potential candidates “lead compounds” to inhibit/modulate the
activity of AKT1 protein [25,26]. Pharmacophore modeling has been applied by setting up
a computational strategy protocol based on the integrated use of online and local tools for
lead candidates’ generation-optimization. Experimental tests for preliminary validation of
the effect of selected compounds have been performed.

2. Results
2.1. Computational Analysis

To identify good candidates as potential drug-likes capable of modulating or inhibit-
ing the activity of AKT1, the pharmacophore modeling strategy has been applied to the
structure of AKT1 complexed with the inhibitor IQO (see Figure 1). The amino acids of
AKT1 that interact with IQO have been analyzed with DiscoveryStudio (see Figure 2) and
Ligplus (not shown). Both software identified Ser205 as involved in the H-bond interaction
with IQO, and a number of amino acids involved in other interactions. Ligplus identifies
them as generic hydrophobic interactions, whereas DiscoveryStudio gives more detailed
description of their nature. These interactions are considered for the generation of the
pharmacophore models based on the IQO interaction with AKT1. We analyzed by Pharmit
and DiscoveryStudio the structure of the AKT1-IQO complex to generate different pharma-
cophore models, suitable to bind in a stable manner within the IQO binding site. Based on
the pharmacophore models obtained by Pharmit and DiscoveryStudio (see Figure 3A,B),
the starting parameters of the minimal pharmacophore model is characterized by four fea-
tures (i.e., one aromatic ring, two hydrophobic regions and one hydrogen-bond acceptor).

The best pharmacophore model obtained is characterized by six features (Figure 3C),
i.e., one H-bond donor, two hydrophobic, one positive charge and two aromatic rings.
The large-scale screening for natural compounds in the ZINC data base matching the
pharmacophore model (Figure 3D) generated a list of molecules (not shown), and the best
candidates were further investigated by molecular docking simulations. Table 1 reports
the best docking results obtained, together with the results deriving from docking the IQO
molecule (redocking procedure) as a positive control, being a known inhibitor of AKT1,
and quercetin (negative control) that is a specific ligand for PI3K but not AKT1 [20]. The
known inhibitor of AKT1 interacts with a very low binding energy, i.e., <−12 Kcal/mol,
while the selected compounds have binding energy values around −10 Kcal/mol, still
suitable for a possible inhibitory effect. In the case of quercetin the energy value is higher,
approximately −6 Kcal/mol, in agreement with the experimental evidence that quercetin
is not a direct ligand of AKT1.
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Figure 1. AKT1 structure with the IQO inhibitor. The image shows the global architecture of AKT1
and the IQO inhibitor position. The backbone of AKT1 is shown with red ribbons and cyan arrows to
indicate helices and strands, respectively. The IQO molecule is represented in the stick mode, and its
position is highlighted with the red circle.

Figure 2. Amino acids of AKT1 that interact with IQO. The figure presents the schematization of the IQO interaction with
AKT1, obtained with DiscoveryStudio. Van der Waals interactions are not shown to make more readable the scheme.

Figure 3. Pharmacophore models and data base screening. (A) The pharmacophore model built by
Pharmit on the AKT1-IQO complex. (B) The pharmacophore model built by DiscoveryStudio on
the AKT1-IQO complex. (C) The final pharmacophore model generated by DiscoveryStudio for the
virtual screening. (D) The parameters used for the virtual screening.
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Table 1. Results of molecular docking simulations. The IQO compound is a known inhibitor of
AKT1 and has been used as a positive control. Quercetin does not interact with AKT1 and has been
employed as a negative control.

Compounds Binding Energy
(Kcal/mol) Ki

IQO (iAKT-S) −12.56 635.40 pM
ZINC4259855 −11.00 737.43 µM
ZINC2161363 −10.11 1.41 µM

ZINC2429155 (STL1) −10.00 2.21 µM
ZINC1237912 −10.00 1.12 µM

ZINC1447881 (AC1) −9.36 1.36 µM
ZINC13691379 −9.30 1.13 µM
ZINC02154548 −9.16 1.04 µM
ZINC03851635 −9.00 99.14 µM
ZINC02666313 −8.91 1.60 µM
ZINC14611917 −8.73 2.16 µM
ZINC54307082 −8.72 2.20 µM

Quercetin −6.55 15.85 µM
Underline: these two compounds are those further investigated in the manuscript.

We performed a further analysis at PharmacoKinetics/PharmacoDynamics (PK/PD)
level through the ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity)
predictor to study the bioavailability (adsorption, distribution, metabolism, excretion and
toxicity) of the best selected compounds. Figure 4 reports the ADMET analysis for the
best compounds selected by the virtual screening and molecular docking computational
procedure. The analysis suggests that the compounds may be well absorbed by the
intestinal barrier, not at level of the blood–brain barrier.

Figure 4. ADMET plot. The ADMET plot shows the relationship between the 2D polar surface area
and the partition coefficient (n-octanol/water) algorithm, of the solution in which the bioavailability
of the vitamin E compounds is calculated. The four ellipses define the regions where the inhibitors
are expected to be well absorbed by the system and where they are expected to be located. In theory,
for intestinal absorption, the inhibitors are well absorbed between 95 and 99% of the established
confidence interval, if they fall within the ellipses colored in red and green, respectively. While, for
absorption at the level of the blood–brain barrier, the inhibitors are well absorbed between 95 and
99% if they fall within the ellipses colored in magenta and cyan, respectively.
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Then, we analyzed the toxicity profiles of the selected compounds by TOPKAT soft-
ware integrated into Discovery Studio. Table 2 reports the results of the analysis. Different
toxicity effects are predicted for the compounds, so we focused our attention on those
without mutagenic or carcinogenic effects.

Table 2. Toxicity profiles of the selected compounds.
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Compound

ZINC4259855 no no no no yes no yes mild yes 100 67.4
ZINC2161363 yes no no no no no no m/s a yes 100 67.4
ZINC2429155 no no yes no no no no mild yes 500 68.1
ZINC1237912 yes no no no no no no m/s a yes 4400 54.3
ZINC1447881 no no no no no no no mild yes 500 68.1
ZINC13691379 no no yes no yes yes no mild yes 1000 67.4
ZINC02154548 yes no no no yes yes no m/s a yes 600 54.3
ZINC3869685 no yes no no no no no mild yes 159 100.0
ZINC02666313 no no yes no no no no mild yes 100 67.4
ZINC14611917 yes no no no yes yes yes m/s a yes 500 68.1
ZINC54307082 no no yes no no no no m/s a yes 2875 68.1

a m/s = moderate-severe; Underline: these two compounds are those further investigated in the manuscript.

At the end of the computational study, the compounds we selected for the experimen-
tal validation were ZINC2429155 (also named STL1), ZINC1447881 (also named AC1) and
ZINC02161363, having binding energy values in the range of −9/−10 Kcal/mol, Ki in the
range of 1–2 µM, and favorable toxicity profiles. However, ZINC02161363 has not been
tested for technical problems related to solubility. Figure 5 shows the molecular structure
of the compounds selected for the experimental assays, together with IQO (also named
iAKT-S), used as a positive control being a known inhibitor of AKT1. The structure of
quercetin, used as a negative control, is also reported in Figure 5.

Figure 5. Chemical structures of the compounds investigated in the present study.

2.2. Experimental Validation

To validate in a biological assay the results of the computational screening and predic-
tions, we selected the cell line HG3 as a cellular model to assess in an in vitro model the
inhibitory capacity of the putative AKT inhibitors on the activation of the kinase.
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We firstly demonstrated that iAKT-S (IQO), employed as a positive control, was able to
fully inhibit the phosphorylating activation of AKT on Ser473 (Figure 6A) and this effect was
not due to changes in the AKT protein expression, which remained unchanged (Figure 6A,
middle panel). Subsequently, we tested the compounds selected by the computational
procedure. Surprisingly, only one of the two was able to inhibit AKT activation in HG3
cells. In fact, as reported in Figure 6B, STL1 dose-dependently inhibited pAKT-Ser473
expression of about 70%, based on densitometric analysis, at the highest concentration
applied (40 µM). On the opposite, AC1, even at 100 µM concentration, did not change
the phosphorylation state of pAKT-Ser473 compared to vehicle-treated (DMSO 0.1% v/v)
cells (Figure 6C).

Figure 6. Effect of AKT inhibitors HG3 cells. Cells (1 × 106/mL) were treated for 1 h with DMSO
(0.1% v/v), quercetin (25 µM), CAL-101 (5 µM) and iAKT-S (IQO, 20–40 µM) (A); ZINC2429155 (STL1,
20–40 µM) (B) and ZINC1447881 (AC1, 20–100 µM) (C). Immunoblots were performed using the
anti-phospho-AKT (p-AKT) antibody (upper panel). After two rounds of stripping, the blot was
reprobed using the anti-AKT1-2-3 antibody (middle panel) followed by the anti-α−tubulin antibody.
Densitometric analysis was calculated measuring optical density of p-AKT bands normalized respect
to the expression of AKT and α-tubulin (pAKT/AKT/α-tubulin; numbers between the middle and
lower panels). The blots are representative images of three independent experiments.
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3. Discussion

Pharmacophore models make it possible to perform a large-scale screening of com-
pounds applying several filters, to find good candidates to bind a target protein. A “good”
candidate should be able to map all the parameters and all the chemical–physical character-
istics required to carry out its biological activity. The compounds that match a well-defined
pharmacophore have been analyzed through direct focused molecular docking for selecting
only the best candidates and studying the protein–ligand interactions, taking into account
the parameters related to the lowest binding energy and the estimated inhibition constant
(Ki). This allowed us to evaluate which is the most stable complex and which is the com-
pound that used at lower concentration is able to give the same biological results as the
compounds used at higher concentrations.

To verify the AKT-inhibitory activity of the selected compounds, we selected the cell
line HG3 for two main reasons. Firstly, previous studies from our laboratory demonstrated
that two negative controls, quercetin, a natural compound, and CAL-101, a clinically
relevant drug, were able to inhibit the PI3K/AKT pathway without directly binding AKT,
but interacting with its upstream positive regulator PI3K [19,20]. Secondly, HG3 cells are
resistant to the treatment of drugs able to inhibit antiapoptotic Bcl-2 family members, such
as ABT-737, due to the overexpression of Mcl-1, a downstream effector of activating AKT
in CLL and other leukemia [20,27]. Therefore, the identification of a new AKT inhibitor
can lead to bypassing the drug resistance.

IQO/iAKT-S is an allosteric AKT1/2 inhibitor [28] that, accordingly to Wu et al. [29],
binds to the PH domain sequestering the kinase into the cytoplasm. In such a way, AKT
cannot be recruited to the plasma membrane via interactions with the products of PI3K,
be phosphorylated and activated on the two activation sites, Thr308 and Ser473. This
is in agreement with our data shown in Figure 6A,B, where the phosphorylated and
enzymatically active form of AKT, i.e., p-AKT-Ser473, is totally absent (IQO/i-AKT-S) or
strongly reduced (STL1).

More complex is the interpretation of data referring to AC1. The easiest interpretation
is that AC1 does not behave as an allosteric inhibitor of AKT; therefore, upon its addition
to HG3 cells, AKT can move on the plasma membrane and be activated by mTORC2
phosphorylation on residue Ser473. This explanation conflicts with data in Table 1 and
can be explained by evoking a reduced cellular uptake and a faster metabolism of AC1
compared to STL1, both limiting its intracellular concentration and capacity to bind to
the AKT PH-domain. However, other explanations are plausible and may deserve further
investigation. The assay reported in Figure 6 measures the “activation” of AKT, not its
enzymatic activity. Being AC1 an allosteric inhibitor that does not compete with the
ATP-binding pocket, we cannot exclude that the interaction between AC1 and the AKT
PH-domain exists, but the conformational change does not “close” the AKT structure
hiding the Ser473, as it happens for IQO/iAKT-S [29]. As a consequence, mTORC2 can still
phosphorylate AKT, as shown in Figure 6C, which remains enzymatically inactive because
of its binding to AC1. This hypothesis can be verified by designing an appropriate in vitro
assay to measure the activity of the kinase and/or assessing the regulation of downstream
effectors of the PI3K/AKT pathway to verify whether the treatment with AC1 modifies
their status. Unfortunately, this latter solution cannot be easily pursued. In fact, for both
STL1 and AC1, we demonstrated that the treatment did not significantly reduce HG3 cell
viability, as we could expect for AKT inhibitors. The low capacity of both inhibitors to block
cell proliferation can be explained considering the resistance of HG3 to proapoptotic and
antiproliferative stimuli. Alternatively, it is necessary to keep in mind the limits common to
several AKT inhibitors due to the high biochemical redundancy of the PI3K/AKT pathway
associated with phenomena of its reactivation to bypass AKT inhibition (see Introduction).
To this aim, we are currently investigating the possibility that the AKT inhibitors identified
in the present study can show efficacy as anticancer agents in combination with other
synthetic or natural compounds.
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In conclusion, our computational strategy has been very effective in selecting a good
“lead compound” as a potential inhibitor of AKT1 and PI3K/AKT1 pathway, as the experi-
mental validation confirmed, and further compounds from our study could be an object of
further investigation.

4. Materials and Methods
4.1. Reagents

Roswell Park Medium Institute (RPMI) medium, PBS, L-glutamine 200 mM, penicillin
5000 IU/mL/streptomycin 5000 µg/mL and 10% fetal bovine serum was from GIBCO
ThermoFisher Scientific, Milan, Italy. Trypan blue solution, quercetin and dimetylsulfox-
ide (DMSO) were from Sigma-Aldrich (Milan, Italy). Cal-101 (GS1101) was purchased
from Sellechem (Aurogene, Rome, Italy), divided into aliquots in DMSO and stored at
−20 ◦C. IQO (iAKT-S), ZINC2429155 (STL1) and ZINC 1447881 (AC1) selected after in
silico screening and dissolved in DMSO, were purchased from Vitas-M Limited, Hong
Kong (https://vitasmlab.biz).

4.2. Cell Culture and Treatment

HG3 cells [30], a lymphoblastoid cell line with B1 cell characteristics established from
a CLL clone by in vitro EBV infection, were cultured in RPMI medium supplemented with
10%, fetal bovine serum, 1% L-glutamine and 1% penicillin/streptomycin at 37 ◦C in a
humidified atmosphere containing 5% CO2. Before starting each experiment, cells were
counted with the Trypan blue system performed using the EVE Automatic cell counter
(NanoEntek distributed by VWR, Milan, Italy) to assess their viability before starting each
experiment (usually >90%) and expressed as the number of cells/mL.

The effect of AKT inhibitors on HG3 cells was tested treating 1×106/mL cells for 1 h
with DMSO, quercetin (25 µM), CAL-101 (5 µM), iAKT-S (IQO, 20–40 µM); ZINC2429155
(STL1, 20–40 µM) and ZINC1447881 (AC1, 20–100 µM). At the end of the incubation, the
immunoblots were performed as reported below. In all untreated control experiments,
we used the vehicle, DMSO, at a final concentration of 0.1% (v/v), which, from previous
studies [19,20] resulted in not being cytotoxic for HG3 cells. Equal volumes of solutions
(inhibitors and DMSO) were added to the cells.

4.3. Immunoblotting

After treatments with the different agents, HG3 cells were washed in PBS and sus-
pended in lysis buffer containing 50 mM Tris/HCl; 150 mM NaCl; 1% NP-40; 10 mM
EDTA; 10% glycerol; 0.5 mM DTT; 1% protease and phosphatase inhibitor cocktail (Sigma-
Aldrich) and 100 µg of PMSF. Following measurement of protein concentration by the
Bradford method [31], samples (30 µg) were added with Reducing Agent 20X (Bio-Rad
Laboratories; Milan, Italy) and Sample Buffer 4× (TermoFischer-Scientific, Milan, Italy)
consisting of: 100 nM Tris/HCL pH 6.8; 4% SDS; 200 nM of DTT; 20% glycerol and 0.2%
bromophenol blue. Samples were boiled for 5 min and loaded on 4–12% polyacrylamide
precast gel (Invitrogen Thermo Fisher Scientific). Electrophoresis was performed in the
MOPS buffer ((3-(N-morpholino) propanosulfonic)) (50 mM MOPS, 50 mM Tris, 1% SDS,
1 mM EDTA; pH 7), at constant voltage (200 V) in an Invitrogen electrophoretic chamber.
Proteins were transferred to a PVDF (polyvinyldenfluoride) membrane using the TRANS-
Blot TURBO System (Bio-Rad Laboratories), with a constant amperage (2.5 mA) at room
temperature. PVDF membranes were washed with T-TBS (0.1% Tween-20; 25 mM Tris;
137 mM NaCl and 2.69 mM KCl, pH 8) blocked 1 h at room temperature with 5% (w/v) non-
fat dry milk in T-TBS before incubation with specific antibodies. The primary antibodies
were: anti-pAKT-Ser473 (Cell Signalling, Milan, Italy; cat. #9271), anti-AKT1/2/3 (Santa-
Cruz Biotechnologies distributed by DBA, Milan, Italy; cat. #sc-81434) and anti-α-tubulin
(Sigma-Aldrich; cat. #T5168). PVDF membranes were finally incubated with horseradish
peroxidase linked secondary antibody antimouse or rabbit IgG (GE Healthcare, Milano,
Italy) and immunoblots revealed with the ECL Plus Western Blotting Detection System Kit

https://vitasmlab.biz
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(Perkin-Elmer, Milano, Italy). Band intensities were quantified measuring optical density
on Gel Doc 2000 Apparatus and Multi-Analyst Software (Bio-Rad Laboratories).

4.4. Computational Procedure

The bioinformatics/computational workflow is an advancement of the procedure ap-
plied in previous recent studies [32,33], and it is described in detail by the following steps.

(a) Selection of the structural model of AKT1. Search for a suitable structural model of
AKT1 has been performed in PDB Protein Data Bank [34], looking for structures of
AKT1 complexed with an inhibitor [35]. Among the available structures, by excluding
those with mutations and limited portions of the protein, the most suitable resulted the
PDB file with code 3O96, as the model crystal structure characterized by AKT1 protein
linked to the interface to its selective allosteric inhibitor known as IQO (Inhibitor VIII
of AKT1/2) [29]. Visual analysis of the 3D structure has been performed by means
of Discovery Studio 4.5 (Biovia, San Diego, CA, USA). Analysis of the amino acids
interacting with IQO has been performed by DiscoveryStudio and Ligplus [36].

(b)–(c) Pharmacophore modeling and virtual computational screening; the pharmacophore
models have been obtained by integrating PHARMIT (http://pharmit.csb.pitt.edu) [37]
and Discovery Studio 4.5 tools. ZINC12 database [38] has been searched for com-
pounds of natural and bioactive origin and using Pharmer [39]. The molecular weight
has been restricted to the range from 200 to 800 g/mol, RMSD to the range from 0.300
to 0.900 Å, RBnds (rotational angle) not exceeding 15.

The other parameters used to generate the 3D pharmacophore with PHARMIT and
Discovery Studio, to apply “the Receptor-Ligand pharmacophore generation method” and
“Best/Fast rigid conformation research method” are the following:

• Functional groups on which to implement pharmacophoric models (bonds that act as
hydrogen acceptors/donors, bonds for positive/negative ions, hydrophobic bonds
and presence of aromatic rings). A maximum of 10 hypotheses (or pharmacophore
models) are generated for each run. The HypoGen algorithm used develops models
with different pharmacophore features. The hypotheses generated are analyzed in
terms of their correlation coefficients and the cost function values.

• Application of automatic parameter minimization based on Best/Fast rigid conforma-
tion characteristics. So, the FAST conformation generation method searches conforma-
tions only in the torsion space and takes less time. While, the BEST method provides a
complete and improved coverage of conformational space by performing a rigorous
energy minimization and optimizing the conformations in both torsional and Cartesian
space using the Poling algorithm to assess the quality of pharmacophore hypotheses.

• Chemical–physical characteristics of the compounds were selected to perform the
subsequent steps of work.

• Validation of the pharmacophore model: the pharmacophore models selected based
on the acceptable correlation coefficient (R) and cost analysis should be validated
in three subsequent steps: Fischer’s randomization test, test set prediction and the
Güner–Henry (GH) scoring method. The method involves evaluation of the following:
the percent yield of actives in a database (%Y, recall), the percent ratio of actives in
the hit list (%A, precision), the enrichment factor E and the GH score. The GH score
ranges from 0 to 1, where a value of 1 signifies the ideal model [40].

(d) After selecting a number of good candidates, blind and focused-rigid direct molecular
docking has been performed by using AutoDock tools 4.2 [41], evaluating all the
molecular interactions that may exist between the ligand and our AKT1 protein, taking
into account the lower binding energy values to identify the most stable complex,
and the estimated inhibition constant (Ki), to estimate which compounds are able
to inhibit more AKT1 at lower experimental concentrations. Docking procedure has
been applied according to protocols in use in our laboratory and described in previous

http://pharmit.csb.pitt.edu


Molecules 2021, 26, 492 11 of 13

articles [42–44]. Redocking procedure has been applied to evaluate the binding energy
value of the IQO inhibitor as described in previous studies of our group [44].

The selected good candidates were analyzed using Discovery Studio to further refine
the screening procedure, taking into account other parameters:

• The number of pharmacophore features must be included into the range between
4–6, taking into account that no pharmacophore has more than six functional groups
present at the same time [45]). A pharmacophore model consisting of too many chemi-
cal features (e.g., more than six or seven) is not appropriate for practical applications.
Therefore, it is always important to pick a restricted number of chemical features
(usually four to seven) to create a reliable pharmacophore hypothesis. One more
significant drawback is that the obtained pharmacophore hypothesis cannot replicate
the quantitative structure–activity relationship (QSAR) because the model is generated
based just on a single macromolecule–ligand complex or a single macromolecule.

• The selectivity score is a selectivity parameter of a ligand for a specific target to
evaluate the quality of the pharmacophore models. There is no maximum limit (the
higher the better).

• The method of generating the conformation of pharmacophores (FAST/BEST because
they give us in a short time what are considered to be the best pharmacophores
for the applied method) is used to then perform other internal screening and select
only good candidates. The choice of these parameters is essential, to designate the
subsequent steps of biological-molecular evaluation, taking only the best ones from
the pharmacophores.

(e) The selected best candidates are then analyzed on a chemical–physical level using:
Chemical vendors in Pubchem Compound [46] to identify the specifications of each
single compound; SciFinder (scifinder.cas.org) to evaluate the presence or absence of
preliminary tests already conducted on these compounds and what is already known
in the literature on such compounds; FooDB/HMDB [47] to investigate food proper-
ties if there are ones and the origins of such chemical compounds and Chemicalize
(chemaxon.com) to calculate the most important chemical parameters related to the
stability of the compound. Afterwards, all the information collected were used to
trace the origin of the compounds analyzed, underlining the most important features
such as:

• Solubility in organic solvents such as DMSO, ethanol, methanol and in inorganic
solvents such as water;

• LogD, pKa and the chemical stability of compounds.

(f) Molecular–biological evaluation of the selected compounds with the realization of
the pharmacokinetic/pharmacodynamics (PK/PD) models. To select the “hit” com-
pounds by virtual screening, it has been necessary to understand the features of
pocket involved in ligand–protein interactions and to underline the amino acids
involved in molecular interactions, trying to identify the compounds that can be
considered good lead compounds. This step plays a critical role for the choice of
the best candidates to calculate the physical–chemical properties and create PK/PD
models, for characterizing the good lead compounds for next experimental assays.

(g) All this information are essential to realize the ADMET profile through ADMET/Toxicity
predictor server (implemented in Discovery Studio), allowing the application of the
Lipinski-Veber five rule, on which the bioavailability and the specific ADMET profile
of each individual compound is calculated, and applying the TOPKAT software
(implemented in Discovery Studio), useful for identifying and evaluating the toxicity
profile of each compound in different conditions and systems.
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