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Abstract

Mitochondrial DNA copy number (mtDNA-CN), a measure of the number of mitochondrial

genomes per cell, is a minimally invasive proxy measure for mitochondrial function and has

been associated with several aging-related diseases. Although quantitative real-time PCR

(qPCR) is the current gold standard method for measuring mtDNA-CN, mtDNA-CN can also

be measured from genotyping microarray probe intensities and DNA sequencing read

counts. To conduct a comprehensive examination on the performance of these methods,

we use known mtDNA-CN correlates (age, sex, white blood cell count, Duffy locus geno-

type, incident cardiovascular disease) to evaluate mtDNA-CN calculated from qPCR, two

microarray platforms, as well as whole genome (WGS) and whole exome sequence (WES)

data across 1,085 participants from the Atherosclerosis Risk in Communities (ARIC) study

and 3,489 participants from the Multi-Ethnic Study of Atherosclerosis (MESA). We observe

mtDNA-CN derived from WGS data is significantly more associated with known correlates

compared to all other methods (p < 0.001). Additionally, mtDNA-CN measured from WGS is

on average more significantly associated with traits by 5.6 orders of magnitude and has

effect size estimates 5.8 times more extreme than the current gold standard of qPCR. We

further investigated the role of DNA extraction method on mtDNA-CN estimate reproducibil-

ity and found mtDNA-CN estimated from cell lysate is significantly less variable than tradi-

tional phenol-chloroform-isoamyl alcohol (p = 5.44x10-4) and silica-based column selection

(p = 2.82x10-7). In conclusion, we recommend the field moves towards more accurate meth-

ods for mtDNA-CN, as well as re-analyze trait associations as more WGS data becomes

available from larger initiatives such as TOPMed.
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Introduction

Mitochondrial dysfunction has long been known to play an important role in the underlying

etiology of several aging-related diseases, including cardiovascular disease (CVD), neurode-

generative disorders and cancer[1]. As an easily measurable and accessible proxy for mito-

chondrial function, mitochondrial DNA copy number (mtDNA-CN) is increasingly used to

assess the role of mitochondria in disease. Several population-based studies have shown higher

levels of mtDNA-CN to be associated with decreased incidence for CVD and its component

parts: coronary artery disease (CAD) and stroke[2,3]; neurodegenerative disorders such as

Parkinson’s and Alzheimer’s[4,5]; as well as several types of cancer including breast, kidney,

liver and colorectal[6–8]. Furthermore, mtDNA-CN measured from peripheral blood has con-

sistently been shown to be higher in women, decline with age, and correlate negatively with

white blood cell (WBC) count[9–11].

Although the mtDNA-CN field is relatively young, the number of publications has been

steadily increasing at an average rate of 12% per year since 2015[12]. However, there has yet to

be a rigorous examination of the various methods for measuring this novel phenotype and the

factors which may influence its accurate estimation. Without such an examination, studies

may be severely underestimating or misrepresenting the relationship of mtDNA-CN with

their traits of interest.

Quantitative real-time PCR (qPCR) has been the most widely used method for measuring

mtDNA-CN, partly due to its low cost and quick turnaround time. However, recent work has

demonstrated the feasibility of accurately measuring mtDNA-CN from preexisting microar-

ray, whole exome sequencing (WES) and whole genome sequencing (WGS) data[2,10,13].

With these advances, it is important for the field to evaluate these methods in the context of

the current gold standard.

In addition to the method for determining mtDNA-CN, it is important to consider the

impact of DNA extraction method on mtDNA-CN, particularly due to the small size and cir-

cular nature of the mitochondrial genome. Previous research has shown organic solvent

extraction is more accurate than silica-based methods at measuring mtDNA-CN, which is

unsurprising as column kit parameters are typically optimized for DNA fragments�50 Kb

[14]. However, as all DNA extraction methods have bias in the DNA which they target, mea-

suring mtDNA-CN from direct cell lysate may prove to be a more accurate method.

In the present study, we assess the relative performance of various methods for measuring

mtDNA-CN and the effects of DNA extraction on mtDNA-CN estimation accuracy. We lever-

age mtDNA-CN calculated across 4,574 individuals from two prospective cohorts, the Athero-

sclerosis Risk in Communities study (ARIC) and the Multi-Ethnic Study of Atherosclerosis

(MESA). Using mtDNA-CN estimates calculated from qPCR, WES, WGS, and two microarray

platforms–the Affymetrix Genome-Wide Human SNP Array 6.0 and the Illumina HumanEx-

ome BeadChip genotyping array–we compare associations for known correlates of

mtDNA-CN including age, sex, white blood cell count, the Duffy locus and incident CVD to

determine the optimal method for calculating copy number. We additionally determined the

reproducibility of mtDNA-CN measurements in vitro from three separate DNA extraction

methods: silica-based column selection, organic solvent extraction (phenol-chloroform-isoa-

myl alcohol), and measuring mtDNA-CN from direct cell lysis without performing a tradi-

tional DNA extraction. We hypothesized that mtDNA-CN calculated from WGS data would

outperform other estimation methods and mtDNA-CN measured from direct cell lysate

would be more accurate than traditional DNA extraction methods.
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Methods

Study populations

The ARIC study recruited 15,792 individuals between 1987 and 1989 aged 45 to 65 years from

4 US communities. DNA for mtDNA-CN estimation was collected from different visits and

was derived from buffy coat using the Gentra Puregene Blood Kit (Qiagen). Relevant covari-

ates were derived from the same visit in which DNA was collected. Our analyses were limited

to 1,085 individuals with mtDNA-CN data available across all four platforms performed within

ARIC: Affymetrix Genome-Wide Human SNP Array 6.0, Illumina HumanExome BeadChip

genotyping array, WES and WGS. Eighty-eight percent of our final ARIC participants were

Black.

The MESA study recruited 6,814 individuals free of prevalent clinical CVD from 6 US com-

munities across 4 ethnicities. Age range at baseline was 45 to 84 and the baseline exam

occurred between 2000 and 2002. DNA for mtDNA-CN analyses was isolated from exam 1

peripheral leukocytes using the Gentra Puregene Blood Kit. Our analyses were restricted to

3,489 White and Black (36%) individuals with mtDNA-CN data available across the three plat-

forms with mtDNA-CN data available at the time of analysis: qPCR, Affymetrix Genome-

Wide Human SNP Array 6.0 and Illumina HumanExome BeadChip genotyping array. Exam 1

DNA for the exploratory dPCR pilot study was derived from packed red blood cells.

Measurement of mtDNA-CN

qPCR. mtDNA-CN was determined using a multiplexed real time qPCR assay as previ-

ously described[11]. Briefly, the cycle threshold (Ct) value of a mitochondrial-specific (ND1)

and nuclear-specific (RPPH1) target were determined in triplicate for each sample. The differ-

ence in Ct values (ΔCt) for each replicate represents a raw relative measure of mtDNA-CN.

Replicates were removed if they had Ct values for ND1>28, Ct values for RPPH1>5 standard

deviations from the mean, or ΔCt values >3 standard deviations from the mean of the plate.

Outlier replicates were identified and excluded for samples with a ΔCt standard deviation

>0.5. The sample was excluded if the ΔCt standard deviation remained >0.5 after replicate

removal. We corrected for an observed linear increase in ΔCt value due to the pipetting order

of each replicate via linear regression. The mean ΔCt across all replicates was further adjusted

for plate effects as a random effect to represent a raw relative measure of mtDNA-CN.

Microarray. mtDNA-CN was determined using the Genvisis[15] software package for

both the Affymetrix Genome-Wide Human SNP Array 6.0 and the Illumina HumanExome

BeadChip genotyping array. A list of high-quality mitochondrial SNPs were hand-curated by

employing BLAST to remove SNPs without a perfect match to the annotated mitochondrial

location and SNPs with off-target matches longer than 20 bp. The probe intensities of the

remaining mitochondrial SNPs (25 Affymetrix, 58 Illumina Exome Chip) were determined

using quantile sketch normalization (apt-probeset-summarize) as implemented in the Affyme-

trix Power Tools software. The median of the normalized intensity, log R ratio (LRR) for all

homozygous calls was GC corrected and used as initial estimates of mtDNA-CN for each

sample.

Technical covariates such as DNA quality, DNA quantity, and hybridization efficiency were

captured via surrogate variable analysis or principal component analysis as previously

described[2]. Surrogate variables or principal components were applied to the BLAST filtered,

GC corrected LRR of the remaining autosomal SNPs (43,316 Affymetrix, 47,512 Exome Chip).

These autosomal SNPs were selected based on the following quality filters: call rate>98%,

HWE p value>0.00001, PLINK mishap for non-random missingness p value>0.0001,
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association with sex p value >0.00001, linkage disequilibrium pruning (r2 <0.30), with maxi-

mal spacing between autosomal SNPs of 41.7 kb.

WES. Whole exome capture was performed using Nimblegen’s VChrome2.1 (Roche) and

sequencing was performed on the Illumina HiSeq 2000. Sequence reads were aligned using

Burrows-Wheeler Aligner (BWA)[16] to the hg19 reference genome. Variant calling, and qual-

ity control were performed as previously described[17]. mtDNA-CN was calculated using the

mitoAnalyzer software package, which determines the observed ratios of sequence coverages

between autosomal and mtDNA[18,19].

Due to large batch effects observed in our raw mtDNA-CN calls, alignment summary,

insert size, quality score, base distribution, sequencing artifact and quality yield metrics were

collected using Picard tools (version 1.87) to take into account differences in capture efficiency

as well as sequencing and alignment quality[20]. Picard sequencing summary metrics to incor-

porate into our final model were selected through a stepwise backwards elimination model (S1

Table).

WGS. Whole genome sequencing data was generated at the Baylor College of Medicine

Human Genome Sequencing Center using Nano or PCR-free DNA libraries on the Illumina

HiSeq 2000. Sequence reads were mapped to the hg19 reference genome using BWA[16]. Vari-

ant calling and quality control were performed as previously described[21]. A count for the

total number of reads in a sample was scraped from the NCBI sequence read archive using the

R package RCurl[22] while reads aligned to the mitochondrial genome were downloaded

directly through Samtools (version 1.3.1). A raw measure of mtDNA-CN was calculated as the

ratio of mitochondrial reads to the number of total aligned reads. Unlike WES, we did not

observe large batch effects in our WGS raw mtDNA-CN calls, obviating the need for adjust-

ment for Picard sequencing summary metrics.

Digital PCR. mtDNA-CN was calculated using a multiplexed digital plate-based PCR

(dPCR) method utilizing the ND1 and RPPH1 qPCR probes previously described. Samples were

divided into 36,000 partitions on a 24-well plate and the fluorescence for each probe was mea-

sured with the Constellation Digital PCR System (Formulatrix, Boston MA). Fluorescence inten-

sity was evaluated with the Formulatrix software and thresholds were based on visual inspection

of the aggregate data for each plate. Thresholds were then used to determine the number of posi-

tive and negative partitions. Positive counts were fitted to a Poisson distribution to determine

copy number[23]. mtDNA-CN was represented as the ratio between the number of ND1 copies/

μL and the number of RPPH1 copies/μl. Samples were included if they had fewer than 30,000

positives for ND1 and between 5 and 2,000 positives for RPPH1. Samples were filtered if the

observed ratio was not between 15 and 300 ND1:RPPH1. The initial mtDNA-CN ratio was

adjusted for plate as a random effect to represent a raw absolute measure of mtDNA-CN.

Cardiovascular disease definition and adjudication

Event adjudication through 2017 in ARIC and 2015 in MESA consisted of expert committee

review of death certificates, hospital records and telephone interviews. Incident cardiovascular

disease (CVD) was defined as either incident coronary artery disease (CAD) or incident stroke.

Incident CAD was defined as first incident MI or death owing to CAD while incident stroke

was defined as first nonfatal stroke or death due to stroke. Individuals in ARIC with prevalent

CVD at baseline were excluded from incident analyses.

Genotyping and imputation

Genotype calling for the WBC count locus was derived from the Affymetrix Genome-wide

Human SNP Array 6.0 in ARIC and MESA. Haplotype phasing for both cohorts was
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performed using ShapeIt[24] and imputation was performed using IMPUTE2[25]. Genotypes

were imputed to the 1000G reference panel (Phase I, version 3). Imputation quality for the

Duffy locus lead SNP (rs2814778) was 0.95 and 0.92 in ARIC and MESA, respectively.

DNA extraction method

All DNA used in the DNA extraction comparison were derived from HEK293T cells grown in

a single 150T flask to minimize variation due to clonality and cell culture procedures. Extrac-

tion were performed with 15 replicates each containing one million cells. mtDNA-CN was

determined using qPCR as described previously. To account for the inherent variability in

mtDNA-CN estimation, qPCR was run in triplicate.

Silica-based column extraction

We performed a silica-based column extraction using the AllPrep DNA/RNA Mini Kit (Qia-

gen) according to the manufacturer’s instructions for fewer than 5 x 106 cells. Briefly, HEK293T

cells were lysed and the subsequent lysate was pipetted directly onto the DNA Allprep spin col-

umn for homogenization and DNA binding. The bound DNA was then washed and eluted.

Organic solvent extraction

An aliquot of cells were lysed with 350 μL of RLT Plus Buffer (Qiagen) and one volume of phe-

nol:chloroform:isoamyl alcohol (25:24:1) (PCIAA) was added to the sample and mixed until it

turned milky white. The solution was centrifuged and the upper aqueous phase containing

DNA was transferred to a separate tube. We proceeded with an ethanol precipitation protocol

using 3M sodium acetate to complete the DNA extraction.

Direct cell lysis

Cells were pelleted at 500 g for 5 minutes and the supernatant was removed. The cell pellet was

agitated in 100 μL of QuickExtract DNA Solution (Lucigen) to disrupt the pellet and placed in

a thermocycler for 15 minutes at 68˚C followed by 10 minutes at 95˚C. The cell lysate was then

centrifuged at 17,000 g for 15 minutes to pellet any insoluble inhibitors and the supernatant

was transferred to a clean tube. The supernatant containing DNA was finally diluted 1:30 with

water to limit the impact of any soluble inhibitors on qPCR.

Statistical analyses

The final mtDNA-CN phenotype for all measurement techniques is represented as the stan-

dardized residuals from a linear model adjusting the raw measure of mtDNA-CN for age, sex,

DNA collection center, and technical covariates. Additionally, mtDNA-CN in ARIC was

adjusted for WBC count, and the14.9% of individuals with missing WBC data were imputed to

the mean. WBC was not available in MESA for the same visit in which the DNA was obtained.

As mtDNA-CN was standardized, the effect size estimates are in units of standard deviations,

with positive betas corresponding to an increase in mtDNA-CN.

For analyses involving outcomes which also served as covariates in our final phenotype

model (age, sex, WBC count), mtDNA-CN was calculated using the full model minus the out-

come variable. For example, when exploring the relationship between mtDNA-CN and age,

our mtDNA-CN phenotype would represent the standardized residuals from a model control-

ling for sex, sample collection center, WBC count and any technical covariates. We would then

use this phenotype to explore the association between age and mtDNA-CN such that effect

sizes for all comparisons remain in standard deviation units.
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The Duffy locus is highly associated with WBC count in Blacks[26] due to its role in confer-

ring a selective advantage to malaria, however this association is limited or absent in other eth-

nicities[27]. As such, single SNP regression for mtDNA-CN on the Duffy locus was limited to

Blacks. Due to the association of mtDNA-CN with WBC count, the Duffy locus acts as another

independent external validator for mtDNA-CN unadjusted for WBC count. In ARIC,

mtDNA-CN not adjusted for WBC count was used as the independent variable. Single SNP

regression models were additionally adjusted for age, sex, sample collection site, and genotyp-

ing PCs. Regression analyses were performed with FAST[28].

Cox-proportional hazards regression was used to estimate hazard ratios (HRs) for incident

CVD outcomes. Follow-up time was defined from DNA collection through death, lost to fol-

low-up, or study end point (through 2017 in ARIC and 2015 in MESA).

Pairwise F-tests were used to test the null hypothesis that the ratio of variances between the

DNA extraction methods is equal to one.

All statistical analyses were performed using R (version 3.3.3).

Ethics statement

Johns Hopkins IRB approved of this study (NA_00091014 / CR00027367). All participants

provided written informed consent and all centers obtained approval from their respective

institutional review boards.

Results

The study included 1,085 participants from ARIC with mtDNA-CN data from the Affymetrix

6.0 microarray, the Illumina Exome Chip microarray, WES, and WGS while MESA included

3,489 participants with mtDNA-CN data available from qPCR, the Affymetrix 6.0 microarray,

and the Illumina Exome Chip microarray (combined N = 4,574). The mean age of study par-

ticipants was 61.4 years (ARIC, 57.1 years; MESA 62.7 years), 55.3% of participants were

female (n = 2,528), and 46.4% of participants were Black (n = 2,124) (Table 1). While the Affy-

metrix and Illumina Exome Chip arrays were run in both cohorts, at the time of analysis WES

and WGS were unique to ARIC and qPCR was unique to MESA.

mtDNA-CN estimation method comparison

To determine the optimal method for measuring mtDNA-CN, we ranked the performance of

each technique based on strength of the association, as measured by p values, with the relevant

mtDNA-CN correlate (S2 Table). Kendall’s W tests[29] show significant agreement in

Table 1. Participant characteristics.

Participant Characteristics ARIC MESA

N 1,085 3,489

Sex (female) 672 (61.9) 1,856 (53.2)

Ethnicity (Black) 958 (88.3) 1,226 (35.1)

Age 57.1 ± 5.9 62.7 ± 10.2

WBC count (103/μl) 5.8 ± 1.7 NA

Incident CVD 174 (16.0) 270 (7.7)

Values are number (%) or mean ± SD;

Abbreviations: SD, standard deviation; WBC, white blood cell;

CVD, cardiovascular disease

https://doi.org/10.1371/journal.pone.0228166.t001
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rankings across correlates in ARIC (p = 0.0019, Kendall’s W = 0.79) and MESA (p = 0.036,

Kendall’s W = 0.82) with WGS and the Affymetrix array performing best for each measure in

ARIC and MESA, respectively (Table 2).

To additionally quantify performance, we created a scoring system for each method using

negative log transformed p values standardized to the least significant method for each corre-

late. These values were then summed across the correlates for each method to achieve an over-

all rating of performance (S3 Table). These ratings were compared to 1,000 permutations of a

random sampling of the standardized and transformed p values for each correlate across the

different estimation techniques. In ARIC, WGS had a significantly higher performance score

compared to all other methods (p< 0.002) while the Illumina Exome Chip had a significantly

lower score (p = 0.03) (S1A Fig). In MESA, Affymetrix had a significantly higher score than

qPCR and the Illumina Exome Chip (p = 0.002) (S1B Fig). When removing the contribution

of WGS in ARIC, the Affymetrix array had a significantly higher score than the Illumina

Exome Chip and WES (p = 0.01) (S1C Fig).

As WGS and Affymetrix performed similarly, we sought to further parse out their perfor-

mance by evaluating the 2,746 ARIC samples which contained mtDNA-CN from both plat-

forms. On average, WGS performed 2.2 orders of magnitude more significantly than the

Affymetrix array (S4 Table).

Due to the recent emergence of digital PCR (dPCR) as a viable method for calculating

mtDNA-CN, we performed an additional exploratory analysis in 983 individuals of the MESA

cohort comparing the performance of dPCR to qPCR and the Affymetrix genotyping array (S5

Table). While mtDNA-CN calculated from dPCR was more significantly associated with age then

either qPCR or the Affymetrix array, dPCR was the least significantly associated metric with sex and

the observed association with incident CVD was in the opposite direction as expected (S6 Table).

DNA extraction comparison

Raw mitochondrial estimates from qPCR were mean-zeroed to the plate average and the mean

value across the triplicate plates was used to determine the variance across the 15 replicates for each

method (Fig 1). The variance for our novel Lyse method was significantly lower at 0.02 compared

to 0.17 and 0.59 for the PCIAA and Qiagen Kit extractions respectively (F = 0.13, p = 5.44x10-4;

F = 0.04, p = 2.82x10-7). Additionally, our findings support previous work[14] demonstrating

PCIAA had significantly lower variability compared to the Qiagen Kit (F = 0.29, p = 0.03).

Discussion

We explored several methods for measuring mtDNA-CN in 4,574 self-identified White and

Black participants from the ARIC and MESA studies. We found mtDNA-CN estimated from

Table 2. Performance rankings for mtDNA-CN estimation methods.

Cohort Assay Age Sex WBC Duffy locus� Incident CVD Mean Rank Kendall’s W p value

ARIC Exome 2 4 3 4 4 3.4 0.001

Affy 3 2 2 2 2 2.2

WES 4 3 4 3 3 3.4

WGS 1 1 1 1 1 1

MESA Exome 2 3 NA 2.5 3 2.625 0.03

Affy 1 1 NA 1 1 1

qPCR 3 2 NA 2.5 2 2.375

�Duffy locus associations were performed in Blacks only

https://doi.org/10.1371/journal.pone.0228166.t002

Evaluation of mitochondrial DNA copy number estimation techniques

PLOS ONE | https://doi.org/10.1371/journal.pone.0228166 January 31, 2020 7 / 14

https://doi.org/10.1371/journal.pone.0228166.t002
https://doi.org/10.1371/journal.pone.0228166


WGS read counts and Affymetrix Genome-Wide Human SNP Array 6.0 probe intensities was

more significantly associated with known mtDNA-CN correlates compared to mtDNA-CN

estimated from WES, qPCR and the Illumina HumanExome BeadChip. When observing the

relative performance of these methods, mtDNA-CN calculated from either WGS or Affymetrix

array are, respectively, 5.6 and 5.4 orders of magnitude more significant than the current gold

standard of qPCR (Fig 2). These results are not limited to significance as we see similar trends

when exploring effect size estimates (Fig 3). For example, when looking at incident CVD,

mtDNA-CN measured from WGS observes a substantial HR of 0.63 (0.54–0.74) where as

Fig 1. mtDNA-CN measured across DNA extraction methods. mtDNA-CN measured by qPCR was mean-zeroed

and averaged across three runs for Lyse, PCIAA and Qiagen Kit DNA extractions. Variance for Lyse, PCIAA and

Qiagen Kit are 0.02, 0.17 and 0.59 respectively. PCIAA, phenol:chloroform:isoamyl alcohol.

https://doi.org/10.1371/journal.pone.0228166.g001

Fig 2. Relative overall performance of mtDNA-CN estimation methods. Overall performance for each method scored as mean or median of the negative log-

transformed p value across all correlates normalized to the least significant method of each correlate. For ExomeChip and Affymetrix, the mean value across both

cohorts was used as the final measure of performance.

https://doi.org/10.1371/journal.pone.0228166.g002
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mtDNA-CN measured from qPCR only has a HR of 0.93 (0.82–1.05), a marked difference. As

a result, when exploring the relationship between mtDNA-CN and a trait of interest, on aver-

age one could expect a result 5.6 orders of magnitude less significant and 6 times less extreme

when using mtDNA-CN estimated from qPCR data as opposed to WGS.

Several recent reports have touted dPCR as the new gold standard for mtDNA-CN estima-

tion due to its ability to quantify absolute copy number[30–32]. In a small subset of MESA

samples, we found mtDNA-CN estimates from dPCR were on average 1.15 and 0.55 orders of

magnitude less significant than Affymetrix and qPCR respectively (S7 Table). These results

suggest dPCR may not measure mtDNA-CN as accurately as both the current gold standard

and other recently developed methods. However, it is important to note these findings were

derived from a subset of samples a fifth of the size as those from the main findings of the over-

all study, and thus should be interpreted with caution. Additionally, whereas the dPCR data

was derived from DNA from packed red blood cells, the qPCR and Affymetrix data was

obtained from peripheral leukocytes potentially explaining the poor performance of dPCR rel-

ative to other methods.

Interestingly, mtDNA-CN measured from two seemingly similar microarray platforms dif-

fered drastically (S2 Fig). However, this finding is unsurprising when exploring the underlying

biochemistry of sample preparation for each microarray platform. While the Affymetrix proto-

col starts with two restriction enzyme digests prior to whole genome amplification (WGA),

the Illumina Exome Chip requires WGA with a processive polymerase prior to sonication. As

a result, the mitochondrial genome undergoes rolling circle amplification which occurs at a

significantly faster rate than linear WGA[33].

Lower mtDNA-CN has been found to be associated with an increased incidence for several

diseases, including end stage renal disease, type 2 diabetes, and non-alcoholic fatty liver dis-

ease[34–36]. However, such studies have relied on mtDNA-CN estimated from qPCR data.

Our findings suggest much of the current literature may be severely underestimating disease

associations with mtDNA-CN as well as its potential as a predictor of disease outcomes.

Despite this, at<$2 per sample qPCR may remain the principal method for measuring

mtDNA-CN due to the prohibitive costs of WGS. Furthermore, absolute quantification of

mtDNA-CN through the use of standard curves may improve upon the performance of qPCR

furthering its continuing use[37].

We additionally showed DNA extraction method affects mtDNA-CN estimate reproduc-

ibility with copy number measured directly from cell lysate significantly outperforming silica-

based column extraction and organic solvent extraction. Although several other studies have

explored the impact of DNA isolation protocol on mtDNA-CN estimation[14,38,39], to our

knowledge, this is the first study to interrogate the possibility of measuring mtDNA-CN

directly from cell lysate. In addition to the superior performance of direct cell lysis, this

method is cheaper and has less hands-on time than PCIAA or Qiagen Kit extractions. How-

ever, the authors recognize DNA from cell lysate has less downstream utility than traditional

DNA extraction procedures potentially limiting its adoption within the mtDNA-CN field

when sample availability is limited. Additionally, as our application of the lyse method was

limited to cultured cells, it is important to further validate this method in the context of differ-

ent sample types which may have higher concentrations of inhibitors. Furthermore, it is

important to note the various DNA extraction methods resulted in significantly different

Fig 3. Effect size and hazard ratio estimates for mtDNA-CN with known correlates. Data points and their corresponding 95% confidence

intervals represent the effect size or hazard ratio estimates for mtDNA-CN with Age, Sex, white blood cell (WBC) count, Duffy locus, and incident

cardiovascular disease (CVD). Effect size estimates are in standard deviation units. The significance of each estimate is represented as ‘�’ for

P< 0.05, ‘��’ for P< 0.01, and ‘���’ for P< 0.001. WBC, white blood cell.

https://doi.org/10.1371/journal.pone.0228166.g003
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mtDNA-CN estimates (p = 3.56x10-11, 0.02, 2.85x10-7 for Lyse:PCIAA, Lyse:Qiagen Kit, and

PCIAA:Qiagen Kit respectively). As such, when choosing an extraction method, it is important

to remain consistent across the study.

In conclusion, our study demonstrates mtDNA-CN calculated from WGS reads or Affyme-

trix microarray probe intensities significantly improves upon the current gold standard

method of qPCR. Furthermore, we show direct cell lysis introduces less variability to

mtDNA-CN estimates than popular DNA extraction methods. Despite the relative infancy of

using mtDNA-CN as a novel risk marker, these findings highlight the need for the field to

adapt to current technologies to ensure disease and trait associations are fully realized with a

move toward more accurate microarray and WGS methods. Furthermore, due to the preva-

lence of qPCR in the literature, the authors recommend re-analyzing trait associations as more

WGS data becomes available from large initiatives such as TOPMed.
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