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A B S T R A C T

In this paper we present a hierarchical generative model of medical image data, which can capture simultaneously
the variability of both signal intensity and anatomical shapes across large populations. Such a model has a direct
application for learning average-shaped probabilistic tissue templates in a fully automated manner. While in
principle the generality of the proposed Bayesian approach makes it suitable to address a wide range of medical
image computing problems, our work focuses primarily on neuroimaging applications. In particular we validate
the proposed method on both real and synthetic brain MR scans including the cervical cord and demonstrate that
it yields accurate alignment of brain and spinal cord structures, as compared to state-of-the-art tools for medical
image registration. At the same time we illustrate how the resulting tissue probability maps can readily be used to
segment, bias correct and spatially normalise unseen data, which are all crucial pre-processing steps for MR
imaging studies.
Introduction

Over the past two decades neuroimaging techniques have been
widely recognised has powerful non-invasive tools to answer neurosci-
entific questions regarding, for instance, the variability of neuroanatomy
across different populations (Good et al., 2001; Ashburner and Friston,
2000), the role of structural changes in determining disease onset and
progression (Fox et al., 2000; Chetelat et al., 2005; Brex et al., 2002), as
well as the relationships between neural activations andmental functions
(Friston et al., 1996) during common cognitive, somatosensory or
motor tasks.

One of the main challenges, which is encountered in all neuroimaging
studies, originates from the difficulty of mapping between different
anatomical shapes. In particular, a fundamental problem arises from
having to ensure that this mapping operation preserves topological
properties and that it provides, not only anatomical, but also functional
overlap between distinct instances of the same anatomical object (Brett
et al., 2002).

This explains the rapid development of the discipline known as
computational anatomy (Grenander and Miller, 1998), which aims to
provide mathematically sound tools and algorithmic solutions to model
high-dimensional anatomical shapes, with the ultimate goal of encoding,
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or accounting for, their variability. In this framework, the problem of
anatomical mapping is most commonly addressed by assuming that a
population of subjects can be fully described by means of an
average-shaped template, together with a set of high-dimensional
transformations, which, once applied to the template, generate the
observed anatomical configurations (Thompson et al., 2000). In this
setting, an ideal template is one that can accurately be matched to the
observed data while minimising the geodesic distance between the
template itself and each observation (Avants and Gee, 2004).

One of the practical advantages of this approach is that, once a
template has been constructed, it can be used to model unseen data
drawn form the same population, thus providing an ideal reference co-
ordinate system for neuroimaging studies and for statistical testing of
neuroscientific hypotheses.

In this paper we propose a general modelling scheme and a training
algorithm, which, given a large cross-sectional data set of MR scans, can
learn a set of average-shaped tissue probability maps, either in an un-
supervised or semi-supervised manner. This is achieved by building a
hierarchical generative model of MR data, where image intensities are
captured using multivariate Gaussian mixture models, after diffeomor-
phic warping (Ashburner and Friston, 2011; Joshi et al., 2004) of a set of
unknown probabilistic templates, which act as anatomical priors. In
2017
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Table 1
List of mathematical symbols used in this paper.

Symbol Meaning

xij Observed image intensity at voxel j for subject i.
zij Vector of latent class membership probabilities.
πj Tissue priors at voxel j.
μik Mean intensity of class k for subject i.
Σik Covariance of intensities for class k and subject i.
W0k Scale matrix of Wishart prior distribution on Λk ¼ ðΣkÞ�1:

ν0k Degrees of freedom of Wishart prior distribution on Λk .
m0k Mean of Gaussian prior distribution over μk
β0k Scaling hyperparameter of Gaussian prior distribution over μk
α0 Hyperparameter governing the Dirichlet prior on π.
Θβ Bias field parameters.
μβ Prior mean of bias parameters.
Σβ Prior covariance matrix of bias parameters.
Θa Affine transformation parameters.
μa Prior mean of affine transformation parameters.
Σa Prior covariance matrix of affine transformation parameters.
wi Weights for rescaling the tissue priors.
uij Initial velocity at voxel j for subject i.
Lu Differential operator to compute penalty on ui .

1 Our formulation tries to be as general as possible, therefore we do not assume that
different images will have the same size, as this often does not occur in practice. The size
of the template is calculated so as to cover the field of view of all the images in the data
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addition, intensity inhomogeneity artefacts are explicitly represented in
our model, meaning that the input data does not need to be bias corrected
prior to model fitting.

Our work builds on a number of state-of-the-art techniques, some of
which were already explored and validated individually as part of our
previous work (Ashburner and Friston, 2005, 2011; Blaiotta et al., 2016).
In particular, we rely on the variational Bayes expectation-maximisation
(VBEM) algorithm for image segmentation proposed in Blaiotta et al.
(2016), which is a robust generalisation of the segmentation method
implemented in the SPM12 software (Ashburner and Friston, 2005).
Additionally, we exploit the diffeomorphic image registration framework
described in Ashburner and Friston (2011), which is an accurate, fast
converging and memory efficient strategy to align complex anatomical
shapes using diffeomorphic transformations.

To the best of our knowledge, the particular mathematical formula-
tion that we adopt to combine such modelling techniques has never been
adopted before. The resulting approach enables processing simulta-
neously a large number of MR scans in a groupwise fashion and partic-
ularly it allows the tasks of image segmentation, image registration, bias
correction and atlas construction to be solved by optimising a single
objective function, with one iterative algorithm. This is in contrast to a
commonly adopted approach to mathematical modelling, which involves
a pipeline of multiple model fitting strategies that solve sub-problems
sequentially, without taking into account their circular dependencies.
Our strategy instead, addresses the fact that learning anatomical priors
requires collecting accurate segmentations from a training population,
while such segmentations can only be obtained if suitable priors are
available. Thus, the two modelling problems are solved more effectively
within an integrated framework, rather than independently.

Related work was done by Bhatia et al. (2007), however their method
relies on classical point estimation techniques to perform image seg-
mentation, as opposed to our variational approach, which instead allows
estimating full posteriors on the intensity distribution parameters.
Additionally we incorporate bias correction and also explore
semi-supervised learning, as opposed to the fully unsupervised scheme
adopted in their work. The work presented in Lorenzen et al. (2004) is
also along a similar line but it only address the problem of Bayesian
diffeomorphic template construction given a set of pre-computed seg-
mentations, without embedding image segmentation and atlas con-
struction in a single mathematical model of the data.

The main aim of this paper is to demonstrate the methodological
validity of the proposed approach, which, for this purpose, has been
thoroughly tested on both synthetic and real MR neuroimaging data sets.
However, the method is a general one and, since it was not tuned or
optimised for a particular type of imaging data, we believe that it holds a
potential for application in a wider range of medical image computing
problems, some of which we aim to explore as part of our future work.

Methods

Let us consider a population of M subjects belonging to a homoge-
neous group, from an anatomical point of view, and let us assume that D
image volumes of different contrast are available for each subject.

From a generative perspective, the image intensities X ¼ fXigi¼1;…;M ,
which constitute the observed data, can be thought of as being generated
by sampling from D-dimensional Gaussian mixture probability distribu-
tions, after non-linear warping of a probabilistic anatomical atlas (Evans
et al., 1994). The use of Gaussian mixture models to capture the proba-
bility density function of MR data is a well established approach (Ash-
burner and Friston, 2005; Greenspan et al., 2006; Zhang et al., 2001). For
an extensive review of such methods see Balafar (2014).

The probabilistic atlas carries prior anatomical knowledge, in the
form of average shaped tissue probability maps. From a mathematical
modelling point of view, the atlas encodes local mixing proportions Θπ ¼
fπjgj¼1;…;Nπ

of the mixture model, with j being an index set over the Nπ
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template voxels (for a list of all the mathematical symbols used in this
section see Table 1). Each vector πj has K elements, which indicate the
prior probability of voxel j belonging to one of K tissue classes. These
spatially varying mixing proportions can also be thought of as the co-
efficients used to parametrise K continuous scalar functions of
space fπkgk¼1;…;K .

Tissue priors

Each image voxel, j 2 f1;…;Nig1 for each subject i 2 f1;…;Mg is
considered as being drawn from K possible tissue classes. The following
prior latent variable model defines the probability of finding tissue type
k, at a specific location j (i.e. centre of voxel j), in image i, prior to
observing the corresponding image intensity signal

p
�
zijk ¼ 1

��Θπ ;Θw;Θu

� ¼ wik πk

�
ξi
�
yj

��PK
c¼1wic πc

�
ξi
�
yj

�� ; (1)

or equivalently

p
�
zij
��Θπ ;Θw;Θu

� ¼YK
k¼1

 
wik πk

�
ξi
�
yj

��PK
c¼1wic πc

�
ξi
�
yj

��!zijk

: (2)

Class memberships, for each subject and each voxel, are encoded in
the latent variable zij, using a one-of-K scheme (i.e. zij is K-dimensional
vector with all elements equal to zero except for one, which is equal to
one). In particular, zijk 2 f0;1g is equal to one if voxel j of image i belongs
to tissue class k and zero otherwise, which also explains the equivalence
of (1) and (2). fπkgk¼1;…;K are continuous scalar functions πk : Ωπ→ℝ,
defined on the template domain Ωπ . Such functions are common across
the entire population, which satisfy the constraint

XK
k¼1

πkðyÞ ¼ 1 ; ∀y 2 Ωπ⊂ℝ3 ; (3)

with y being a continuous coordinate vector field. Global weights
Θw ¼ fwigi¼1;…;M , withwi 2 ℝK , are introduced to further compensate for
individual differences in tissue composition.

In equation (1), ξi denotes a generic spatial transformation,
set.



2 A Riemannian manifold, in differential geometry, is a smooth manifold M equipped
with a Riemannian metric (inner product). In particular, the Riemannian metric Gp on the
n-dimensional manifold Mn defines, for every point p 2 M, the scalar product of vectors in
the tangent space TpM, in such a way that given two vectors x; y 2 M, the inner product
Gpðx; yÞ depends smoothly on the point p. The tangent space represents the nearest
approximation of the manifold by a vector space (Warner, 2013).

3 A Hilbert space H is a complete inner product space, where an inner product is a map
〈⋅; ⋅〉 : H � H →ℂ , which associates each pair of vectors in the space with a scalar quantity.
In particular given x; y; z 2 H and a; b 2 ℂ

〈ax þ by; z〉 ¼ a〈x; z〉þ b〈y; z〉 ; (9)

〈x; x〉 � 0; and 〈x;x〉 ¼ 0⇔x ¼ 0 ; (10)

〈x; y〉 ¼ 〈y;x〉 : (11)
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parametrised by Θu, which allows projecting prior anatomical informa-
tion onto individual data, with ξi : Ωi→Ωπ being a continuous mapping
from the domain Ωi⊂ℝ3 of image i, into the space of the tissue priors
Ωπ⊂ℝ3. In this work we adopt a large deformation diffeomorphic model
(Ashburner and Friston, 2011; Beg et al., 2005; Trouv�e, 1998), where, as
explained in the following subsection, the diffeomorphisms are para-
metrised by means of an initial velocity field, denoted by u.

Since digital image data is a discrete signal, defined on a tridimen-
sional voxel grid, each mapping ξi needs to be discretised as well, via
sampling at the centre of every voxel j 2 f1;…;Nig, to give the discrete
mapping fξiðyjÞgj¼1;…;Ni

that appears in (1).
As opposed to the modelling approach described in Ashburner and

Friston (2005) and Blaiotta et al. (2016), where the tissue priors were
considered as fixed and known a priori quantities, here the tissue prob-
ability maps are treated as random variables, whose point estimates or
full posteriors can be inferred via model fitting (Bhatia et al., 2007;
Ribbens et al., 2014).

For this purpose, a finite dimensional parametrisation of the contin-
uous functions fπkgk¼1;…;K needs to be defined. Typically, whenever a
continuous function needs to be reconstructed from a finite discrete
sequence, it is possible to formulate the problem as an interpolation that
makes use of a finite set of coefficients and continuous basis functions.
Since the priors fπkgk¼1;…;K are bounded to take values in the interval
½0; 1� on the entire domain Ωπ (see equation (3)), not all basis functions
are well suited here. For this reason we use first degree B-splines, which
ensure that the tissue priors satisfy the above mentioned constraint,
while being quite a computationally efficient choice compared to higher
order interpolation methods. The coefficients used to parametrise the
tissue priors belong to the discrete set Θπ ¼ fπjgj¼1;…;Nπ

of K-dimensional
vectors, with

XK
k¼1

πjk ¼ 1; ∀j 2 f1;…;Nπg : (4)

and Nπ being the number of template voxels. Such coefficients can be
learned directly from the data, as it will be shown in the
following section.

Additionally, prior distributions on the parameters fπjgj¼1;…;N can be
introduced (Bishop, 2006). Dirichlet priors are the most convenient
choice here, since they are conjugate to multinomial forms of the type in
(2), and they can be expressed as

p
�
πj

� ¼ Dir
�
πj

��α0

� ¼ Cðα0Þ
YK
k¼1

παk�1
jk ; (5)

where the normalising constant is given by

Cðα0Þ ¼ ΓðαÞ
Γðα1Þ…ΓðαkÞ ; (6)

with Γð⋅Þ being the gamma function and

α ¼
XK
k¼1

αk : (7)

Diffeomorphic image registration

As anticipated in the previous sections, the generative interpretation
of imaging data that this work relies on involves warping an unknown,
average-shaped atlas to match a series of individual scans.

Such a problem, that is to say template matching via non-rigid
registration, has been largely explored in medical imaging, mainly for
solving image segmentation or structural labeling problems, in an auto-
mated fashion (Ashburner and Friston, 2005; Shen and Davatzikos, 2004;
Christensen, 1999; Chui et al., 2001; Bajcsy et al., 1983; Iglesias et al.,
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2012; Pluta et al., 2009; Warfield et al., 1999; Khan et al., 2008; Bowden
et al., 1998).

Indeed, the modelling of spatial mappings between different anato-
mies can be approached in a variety of manners, depending on the
adopted model of shape and on the objective function (i.e. similarity
metric and regularisation) that the optimisation is based on, thus leading
to a variety of algorithms with remarkably different properties (Penney
et al., 1998; Denton et al., 1999; Klein et al., 2009).

The work presented here is formulated according to the Large
Deformation Diffeomorphic Metric Mapping (LDDMM) framework
(Younes, 2010), where the transformations mapping between the source
images and the target image are assumed to belong to a Riemannian
manifold 2 of diffeomorphisms (Ashburner, 2007). A diffeomorphism ϕ :

Ω→Ω is a smooth differentiable map (with a smooth differentiable in-
verse ϕ�1) defined on a compact, simply connected domain Ω⊂ℝ3.

One way of constructing transformations belonging to the diffeo-
morphic group DiffðΩÞ is to solve the following non-stationary transport
equation (Joshi and Miller, 2000)

d
dt
ϕðy; tÞ ¼ uðϕðy; tÞ; tÞ; ϕðy; 0Þ ¼ y; t 2 ½0; 1� ; (8)

where uðϕðy; tÞ; tÞ 2 H is a time dependent, smooth velocity vector field,
in the Hilbert space3 H .

The initial map, at t ¼ 0, is equal to the identity transform
ϕðy;0Þ ¼ y, while the final map, endpoint of the flow of the velocity field
u, can be computed by integration on the unitary time interval t 2 ½0; 1�
(Beg et al., 2005).

ϕðy; 1Þ ¼ ∫ 1
0uðϕðy; tÞ; tÞdt þ ϕðy; 0Þ : (12)

A procedure known as geodesic shooting (Miller et al., 2006; Ash-
burner and Friston, 2011; Allassonni�ere et al., 2005; Vialard et al., 2012;
Beg and Khan, 2006) is applied, within the work presented here, to
compute the final diffeomorphism given the initial map (i.e. the identity
transform) and the velocity field at t ¼ 0. Such a procedure exploits the
principle of conservation of momentum (Younes et al., 2009), which is
given by Ly

uLuut , with Ly
u being the adjoint of the differential operator Lu,

to integrate the dynamical system governed by (8) without having to
compute and store an entire time series of velocity fields. The imple-
mentation adopted here relies on the work presented in Ashburner and
Friston (2011).

A diffeomorphic path ϕ is not only differentiable, but also guaranteed
to be a one-to-one mapping. Such a quality is highly desirable for finding
morphological and functional correspondences between different anat-
omies without introducing tears or foldings, which would violate the
conditions for topology preservation (Christensen, 1999). Additionally,
the diffeomorphic framework provides metrics to quantitatively evaluate
distances between anatomies or shapes. It should also be noted that
diffeomorphisms are locally analogous to affine transformations (Avants
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et al., 2006).
In practice, finding an optimal diffeomorphic transformation to

equation a pair, or a group, of images involves optimising an objective
function (e.g. minimising a cost function), in the space H of smooth
velocity vector fields defined on the domain Ω. The required smoothness
is enforced by constructing the norm on the space H through a differ-
ential operator Lu (Beg et al., 2005), such that a quantitative measure of
smoothness can be obtained via

ℛðuÞ ¼ ����Luu
��j2L2 ; (13)

where u is a discretised version of u.
The form of the cost function will depend on how the observed data is

modelled. For the work presented here, groupwise equationment is
achieved via maximisation of the following variational objective function

E ðΘuÞ ¼ EZ
�
logp

�
Z
��Θπ ;Θw;Θu

��þ logpðΘuÞ þ const

¼
XM
i¼1

XNi

j¼1

XK
k¼1

γijk log

 
wikπk

�
ϕi

�
yj

��XK

c¼1
wic πc

�
ϕi

�
yj

��
!

�1
2

XM
i¼1

jjLuuijj2L2 þ const ;

(14)

where Z ¼ fZigi¼1;…;M is the set of latent variables across the entire
population, fγijgi;j ¼ fE½zij�gi;j are K-dimensional vectors encoding the
posterior probabilities of each voxel belonging to the K tissue types. The
coordinate mappings fϕigi¼1;…;M are encoded in the parameter set Θu,
which consists of M vectors of coefficients fuigi¼1;…;M , containing 3� Ni

elements each. Such coefficients can be used to construct continuous
initial velocity fields via trilinear, or higher order, interpolation.

The posterior membership probabilities fγijgi;j that appear in (14) can
be computed by combining the prior latent variable model introduced in
2.1 with a class conditional likelihood model of image intensities, which
will be described in subsection. In such a case, learning posterior label
probabilities can be addressed as a standard mixture distribution infer-
ence problem, which can be conveniently solved using the expectation-
maximisation algorithm or its variational extensions (Bishop, 2006;
Blaiotta et al., 2016), thus leading to a fully unsupervised
learning scheme.

Alternatively, when manual labels are available, binary posterior
class probabilities can be derived directly from such categorical anno-
tations, without performing inference from the observed image intensity
data. In particular, if all input data has been manually labelled, then the
resulting algorithm would implement a fully supervised learning strat-
egy. Instead, if only some of the data has associated training labels, a
hybrid approach can be adopted, which would fall into the category of
semisupervised learning (Chapelle et al., 2006; Filipovych et al., 2011).

Essentially these three approaches, namely unsupervised, semi-
supervised and fully supervised, differ in the relative ratio between the
number of labelled and unlabelled voxels. Even so, they can all be framed
within an expectation-maximisation setting, where depending on
whether a voxel is labelled or not, the E-step is performed differently.
Specifically, if xij is an unlabelled observation

γijk ¼ p
�
zijk ¼ 1

��xij;Θ
�

¼ p
�
xij

��zijk ¼ 1;Θ
�
p
�
zijk ¼ 1

��Θ�XK

c¼1
p
�
xij

��zijc ¼ 1;Θ
�
p
�
zijc ¼ 1

��Θ� ;
(15)

with Θ being the current estimate of model parameters at each iteration
of the algorithm. Instead, if xij has been manually labelled

γijk ¼ p
�
zijk ¼ 1

��lij� ¼ � 1; if lij ¼ k
0; if lij≠k

(16)
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where lij is a categorical manual label assigned to voxel j in image i.
Finally, it is also possible to take into account the uncertainty inherent

in the process of manual rating. In such a case, the actual posterior
probabilities, for labelled observations, can be computed by making use
of the categorical output of manual labelling together with an estimate of
the rater sensitivity and with a generative intensity model.

Making use of Bayes rule, this gives

γijk ¼ p
�
zijk ¼ 1

��xij;Θ; lij
�

¼ p
�
xij

��zijk ¼ 1;Θ
�
p
�
zijk ¼ 1

��Θ�p�zijk ¼ 1
��lij�XK

c¼1
p
�
xij

��zijc ¼ 1;Θ
�
p
�
zijc ¼ 1

��Θ�p�zijc ¼ 1
��lij� ;

(17)

where pðzijk ¼ 1
��lijÞ indicates the probability of voxel j in image i

belonging to class k, given the manual label attributed to the same voxel.
A simple model for this, is

p
�
zijk ¼ 1

��lij� ¼
8<:

ζl; if lij ¼ k

1� ζl
K � 1

; if lij≠k
(18)

where ζl is the sensitivity of the rater that generated the set of labels
flijgj¼1;…;N for image i. The problem of how to evaluate the performance
of a manual or automated rater is not addressed here. For instance, a
probabilistic scheme, which has been widely used to assess segmentation
performance in medical imaging, is presented in Warfield et al. (2004).

In the remainder of this paper we will be focusing on the semi-
supervised approach and we will consider the general case where only
some voxels in few images have been manually labelled by adopting the
model in (17) with a fixed sensitivity parameter ζl equal to 0.9.

Combining diffeomorphic with affine registration

Anatomical shapes are very high dimensional objects. The diffeo-
morphic model described in the previous section, which is encoded using
3� Ni free parameters, can account for a significant amount of shape
variability in the observed data. Nevertheless, it is still convenient,
mainly for computational reasons, to combine such a local, high
dimensional shape model with global, lower dimensional trans-
formations, such as rigid body or affine transforms. In fact, by beginning
to solve the registration problem from the coarsest deformation compo-
nents (e.g. rigid body or affine), it is possible to ensure that the subse-
quent diffeomorphic registration starts from a good initial estimate of
image alignment, that is to say closer to the desired global optimum
(Lester and Arridge, 1999). This makes the optimisation problem faster to
solve and at the same time it reduces significantly the chance of regis-
tration failure (Modersitzki, 2004). It is relatively common for non-linear
registration algorithms to perform poorly in the presence of a large
translational or size mismatch between the reference and the target im-
ages (Jenkinson and Smith, 2001).

A possible parametrisation that combines affine and diffeomorphic
transformations is

ξiðyÞ ¼ Ti ϕiðyÞ þ ti; ∀y 2 Ωi ; (19)

where ξiðyÞ is the resulting mapping from image of subject i into the
template space. Such a mapping is obtained by affine transforming the
diffeomorphic deformation field ϕi. The transformation matrix Ti en-
codes nine degrees of freedom (rotation, zooming and shearing) and is
computed via an exponential map Ti ¼ expðQiðaiÞÞ with QiðaiÞ 2 gað3Þ,
where gað3Þ is the Lie algebra for the affine group in three dimension
GAð3Þ and ai is a vector of nine parameters (Ashburner and Ridgway,
2013). Translations are modelled by the vector ti 2 ℝ3. The entire set of
affine parameters is denoted as Θa ¼ fai; tigi¼1;…;M .



Fig. 1. Graphical representation of the model adopted in this paper. Observed variables
fxijg are represented by a filled circle. Latent variables fzijg as well as model parameters
are depicted as unfilled circles. Blue solid dots correspond to fixed hyperparameters. The
so called plate notation is adopted to indicated repeated variables. Symbols referring to all
variables and parameters are listed in Table 1.
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Intensity model

From a general probabilistic perspective, classification of tissue types
based on MR signal intensities requires a model of the observed data that
is capable of capturing the probability of occurrence of each signal
sample value xij, provided that the true labels are known. In other words,
the problem breaks down into defining suitable conditional probabilities
pðxij

��zijk ¼ 1Þ, for each k ¼ f1;…;Kg and then applying Bayes rule to
infer the posterior class probabilities.

In the model adopted here, image intensity distributions are repre-
sented as Gaussian mixtures, with the unknown mean μik and covariance
matrix Σik of each Gaussian component k, for subject i, being governed by
Gaussian-Wishart priors (Bishop, 2006; Blaiotta et al., 2016).

Correction of intensity inhomogeneities is also performed within the
same modelling framework and it involves multiplying the uncorrected
intensities of each image volume by a bias field, which is modelled as the
exponential of a weighted sum of discrete cosine transform basis func-
tions (Styner et al., 2000; Ashburner and Friston, 2005). Such an
approach is conceptually equivalent to scaling the probability distribu-
tions of all Gaussian components by a local scale parameter, which is the
bias itself, such that

p
�
xij

��zijk; μik ;Σik;Θβ

� ¼ N
�
xij

��bμik; bΣik

�
; (20)

with

bμik ¼
�
diag

�
bij

���1
μik ;bΣik ¼

�
diag

�
bij

���1Σik

�
diag

�
bij

���1
;

(21)

where N indicates a Normal distribution, Θβ denotes the set of bias field
parameters and bij is a D-dimensional vector representing the bias at
voxel j of subject i for each of the D imaging modalities. The result in (20)
is independent from the particular parametrisation of bij, as long as the
bias is multiplicative, and it can be easily proven by applying the change
of variable xij ¼ cij=bij, with cij being the corrected image intensity

p
�
xij

��zijk; μik;Σik;Θβ

� ¼
det
�
diag

�
bij

��
p
�
cij
��zijk ; μik;Σik ;Θβ

� ¼
det
�
diag

�
bij

��
N
�
cij
��μik;Σik

� ¼ N
�
xij

��bμik; bΣik

�
:

(22)

Graphical model

A graphical representation of the model adopted in this paper is
depicted in Fig. 1, while a legend of the symbols used to indicate the
different variables can be found in Table 1.

Given such a model, it is possible to define the following variational
objective function L , which constitutes a lower bound on the logarithm
of the marginal joint probability pðX;Θβ;Θa;Θu;Θπ

��ΘwÞ, such that

logp
�
X;Θβ;Θa;Θu;Θπ

��Θw

� � L (23)

and

L ¼ EZ;Θμ ;ΘΣ

�
logp

�
X
��Z;Θμ;ΘΣ;Θβ

��þ EZ½logpðZjΘπ ;Θw;Θu;ΘaÞ�
þ EΘμ ;ΘΣ

�
logp

�
Θμ;ΘΣ

��þ logpðΘπÞ þ logp
�
Θβ

�þ logpðΘaÞ
þ logpðΘuÞ � EZ½logqðZÞ� � EΘμ ;ΘΣ

�
logq

�
Θμ;ΘΣ

��
;

(24)

where the expectations indicated as EZ and EΘμ ;ΘΣ are computed with
respect to variational posterior distributions (Blaiotta et al., 2016;
Bishop, 2006), denoted by qð⋅Þ, on the latent variables Z and on the
Gaussian means and covariances fΘμ;ΘΣg, respectively. Optimisation of
L , which provides optimal parameter and hyperparameter estimates,
will be discussed in the following section.
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Model fitting

The model described in the previous section can be fit to data sets of
MR images by combining a variational expectation-maximisation
(VBEM) algorithm with gradient based numerical optimisation
techniques.

Indeed, the VBEM algorithm described in Blaiotta et al. (2016) is
well-suited for addressing the model estimation problem discussed here,
since it allows learning posterior distributions on the Gaussian mixture
parameters, under the assumption that qðZ;Θμ;ΘΣÞ factorises as
qðZÞqðΘμ;ΘΣÞ (Bishop, 2006), and at the same time it is able to transfer
the information encoded in such posteriors by estimating empirical in-
tensity priors for each tissue type. As shown in our previous work
(Blaiotta et al., 2016), this approach has several advantages over
maximum likelihood estimation, including lower vulnerability to over-
fitting, faster convergence and higher robustness against misregistration,
which inevitably occurs in the early iterations of any image registra-
tion algorithm.

Additionally, the algorithm proposed in this paper loops over all
subjects in the population and, for each subject, it iterates over esti-
mating the Gaussian-Wishart posteriors, the bias field parameters, the
affine parameters and the initial velocities, which are all treated as
conditional optimisations. Subsequently the tissue probability maps and
the intensity priors are updated and the whole cycle is repeated until
convergence.

Estimation of the bias field parameters Θβ can be conveniently per-
formed via non-linear optimisation techniques. Here the problem is
solved using the Gauss-Newton method (Bertsekas, 1999) with a back-
tracking line search, so as to maximise the objective function in (24) with
respect to Θβ. The resulting implementation is very similar to the one
described in Ashburner and Friston (2005), therefore further details are
omitted here. Optimisation of the affine parameters Θa ¼ fai; tigi¼1;…;M

can also be carried out by means of a Gauss-Newton scheme and a brief
description of the required computations can be found Appendix A. For
the update of the weight parameters Θw we adopt the same strategy
outlined in Ashburner and Friston (2005); Blaiotta et al. (2016).

The following sections instead will present in detail the algorithmic
scheme used to learn the average shaped tissue templates Θπ ¼
fπjgj¼1;…;Nπ

and to estimate the set of initial velocity
fields Θu ¼ fuigi¼1;…;M .

The pseudocode reported in alg:opt illustrates the different optimi-
sation stages of the proposed algorithm. Essentially, the purpose of each
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stage within the inner loop is to optimise a subset of parameters for a
particular subject, while keeping all the other parameters fixed at their
current estimates. This strategy leverages the conditional dependencies
among different variables in the model (such conditional dependencies
are illustrated in Fig. 1), with the aim of learning more accurate pa-
rameters compared to those estimated by solving the different optimi-
sation problems independently (Mahapatra and Sun, 2012; Ashburner
and Friston, 2005; Meng and Rubin, 1993). The outer loop serves to
regenerate group priors both in the form of tissue probability maps and
parametric intensity priors.

Algorithm 1. Optimisation algorithm for generating average-shaped
tissue probability maps using the approach presented in this paper.
Updating the tissue priors
At each outer iteration of the algorithm, the tissue priors Θπ ¼

fπjgj¼1;…;Nπ
need to be updated, given the current estimates of all the

other parameters, which are kept fixed for each individual in the
population.

Considering only the terms in (24) that depend on Θπ gives the
following objective function, which has to be maximised with respect
to Θπ
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L π ¼ EZ½logpðZjΘπ ;Θw;Θu;ΘaÞ� þ logpðΘπÞ þ const !

¼
XM
i¼1

XK
k¼1

∫ Ωi
γikðyÞlog

wikπkðξiðyÞÞXK

c¼1
wic πcðξiðyÞÞ

dy

þlogpðΘπÞ þ const :

(25)

It should be noted that the parameters Θπ that need to be estimated
are defined on the domain of the template Ωπ , rather than on the indi-
vidual spaces fΩigi¼1;…;M . For this reason equation (25), which is a sum of
integrals on the native domains, needs to be mapped to Ωπ , by inverting
the warps fξigi¼1;…;M , to give

L 0
π ¼

XM
i¼1

XK
k¼1

∫
Ωπ

det
�
∂ξ�1

i

∂y

	
γik
�
ξ�1
i ðyÞ�log wikπkðyÞXK

c
wic πcðyÞ

!
dy

þlogpðΘπÞ þ const ;

(26)

where ξ�1
i is the transformation mapping from image i into the template

space and the determinants of the Jacobian matrices of the deformations
are included to preserve volumes after the change of variables.

Finally equation (26) is discretised on a regular voxel grid, whose
centres have coordinates fyjgj¼1;…;Nπ

, to give

L 0
π ¼

XM
i¼1

XNπ

j¼1

XK
k¼1

det


Jξ

�1

ij

�
γik



ξ�1
ij

�
log

 
wikπjkXK

c¼1
wic πjc

!

þlogpðΘπÞ þ const ;

(27)

where

ξ�1
ij ¼ ξ�1

i ðyÞjy¼yj
; (28)

det


Jξ

�1

ij

�
¼ det

�
∂ξ�1

i ðyÞ
∂y

	
jy¼yj

; (29)

πjk ¼ πkðyÞ
�� (30)

The prior term pðΘπÞ is given by the following Dirichlet distribution

pðΘπÞ ¼
YNπ

j¼1

Dir
�
πj

��α0

� ¼ Cðα0Þ
YNπ

j¼1

YK
k¼1

πα0k�1
jk : (31)

Maximising equation (27) is a constrained optimisation problem,
subject to

XK
k¼1

πjk ¼ 1 ; ∀j 2 f1;…;Nπg (32)

A closed form solution could be easily found if the rescaling weights
fwigi¼1;…;M were all equal to one. In such a case

L 0
π ¼

XM
i¼1

XNπ

j¼1

XK
k¼1

det
�
Jij

�
γik



ξ�1
ij

�
log
�
πjk

�
þ
XNπ

j¼1

XK
k¼1

ðα0k � 1Þlogp�πjk

�þ const ;

(33)

which could be maximised under the constraint (32), by making use of
Lagrange multipliers (Falk, 1967), to give

πjk ¼ Njk þ α0k � 1PK
k¼1

�
Njk þ α0k

�� K
; (34)

with Njk ¼
PM

i¼1detðJijÞ γikðξ�1
ij Þ.

This solution would provide maximum a posteriori point estimates of
Θπ ¼ fπjgj¼1;…;Nπ

. However for this problem, it would also be possible to
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derive a full variational posterior distribution, which, like its prior, would
take a Dirichlet form, with parameters αj ¼ α0 þ Nj .

When rescaling of the tissue priors is allowed the optimisation
problem becomes more complex. The strategy adopted here consists in
finding an approximate solution to the unconstrained optimisation
problem by setting the derivatives of the objective function in (26)
to zero

α0k � 1
πjk

þ
XM
i¼1

det


Jξ

�1

ij

�
γik



ξ�1
ij

� 1
πjk

� wikPK
c¼1wicπjc

!
¼ 0 : (35)

Solving with respect to πjk, under the simplifying assumption that the
term

PK
c¼1wicπjc can be treated as a constant, gives

πjk ¼ Njk þ α0k � 1PM
i¼1

det
�
Jξ

�1

ij

�
γikðϕ�1

ij ÞwikPK

c¼1
wicπjc

: (36)

Such a solution is then projected onto the constraining hyperplane, by
preserving tissue proportions at each voxel

πjk ¼ πjkPK
c¼1πjc

: (37)

Experimental testing of this strategy indicated that it gave a constant
improvement of the objective function at a relatively cheap computa-
tional cost. Alternatively, iterative constrained non-linear optimisation
techniques (Powell, 1978) could have been exploited to solve the tem-
plate update problem.

Computing the deformation fields
Groupwise image alignment is achieved by optimisation of the vari-

ational objective function defined in (24), with respect to the parameters
used to compute the deformations. This is equivalent to adopting the
following image matching or similarity term

D ¼ EZ½logpðZjΘπ ;Θw;Θu;ΘaÞ�

¼
XM
i¼1

∫ y2Ωi

XK
k¼1

γikðyÞlog
 

wikπkðξiðyÞÞXK

c¼1
wic πcðξiðyÞÞ

!
dy :

(38)

Additionally, working on discretised image grids, with associated
voxel centres fyijgj¼1;…;Ni

, requires reformulating D as

D ¼
XM
i¼1

XNi

j¼1

XK
k¼1

γijk log
wikπ'jkPK
c¼1wicπ'jc

; (39)

with

π0
jk ¼ πkðξiðyÞÞjy¼yij

: (40)

The penalty term for this groupwise image registration problem is
given by

ℛ ¼ ℛdif þℛaf ¼ logpðΘuÞ þ logpðΘaÞ

¼ �1
2

XM
i¼1

�����Luui

��j2L2 þ aT
i Σ

�1
a ai

�þ const ;
(41)

with ui being a 3� Ni dimensional vector of parameters used for repre-
senting the initial velocity field of image i and ai encoding affine defor-
mation parameters used to compute the transformation in (19).

For each image i in the data set, updating the corresponding initial
velocity field, given the current estimates of the templates and all the
other model parameters, involves optimising the following objec-
tive function
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E ðiÞ
dif ¼ D ðiÞ þℛðiÞ

dif � �

¼
XNi

j¼1

XK
k¼1

γijk log
wikπk ξijXK

c¼1
wicπc

�
ξij
�� 1

2
jjLuuijj2L2 ;

(42)

with respect to ui, under the following deformation model

ξij ¼ ξi
�
yij

� ¼ Ti ϕi

�
yij

�þ ti ; (43)

where ϕi is a diffeomorphism computed via geodesic shooting (Ash-
burner and Friston, 2011) from the corresponding initial velocity field ui.

Here image registration is solved via Gauss-Newton optimisation,
with a backtracking line search to ensure convergence. This requires
computing both the first and second derivatives of the objective function
(Hernandez and Olmos, 2008). Such derivatives can be found in Ap-
pendix B. This leads to a very high dimensional inverse problem, which
unfortunately cannot be solved via numerical matrix inversion, since this
would be prohibitively expensive from a computational point of view.
The approach adopted in this work consists in treating this optimisation
as a partial differential equation problem, which can efficiently be solved
using multigrid methods (Modersitzki, 2004). In particular, we adopt the
same full multigrid implementation as in Ashburner (2007).

Validation and discussion

In this section we present results obtained by applying the presented
modelling framework to real MR scans acquired with different imaging
systems and protocols, as well as to synthetic MR volumes. Both quali-
tative and quantitative measures will be provided to assess the behaviour
of the proposed approach.

All validation analyses have been performed on the full model pre-
sented in this paper, since the validity of the individual components (i.e.
bias correction, diffeomorphic registration, variational Gaussian mixture
modelling) was already assessed in our previous work (Ashburner and
Friston, 2005, 2011; Blaiotta et al., 2016), primarily at a single subject
level. Additionally, numerous studies have demonstrated that solving
image segmentation and registration tasks in a coupled and iterative
manner, as opposed to sequential approaches, ensures more accurate
results while reducing the chances of getting prematurely trapped in a
local optimum (Ashburner and Friston, 2005; Pohl et al., 2006; Yezzi
et al., 2001; Bhatia et al., 2007). This results from the conditional de-
pendencies between the parameters controlling the deformation fields
and the intensity distribution parameters, which are used to infer tissue
labels. In other words, closely matching the template to each scan is a
necessary condition in order to compute accurate segmentations while, in
turn, accurate segmentations of the data help to improve alignment with
the templates.

Template construction

We begin validating our approach by illustrating a set of templates
obtained by fitting the proposed model to a large neuroimaging data set.
Indeed, in remainder of this paper we will be using neuroimaging data for
both training and testing, even if, given the generality of the presented
approach, applications to many more types of data could be explored.

Data
The input data for training the model was obtained from three

different databases, two of which are freely accessible for download, thus
ensuring that the results presented here could readily be compared to
those produced by competing algorithms for medical image registration
or segmentation.

OASIS data set. The first data set consists of thirty five T1-weighted
MR scans from the OASIS (Open Access Series of Imaging Studies)
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database (Marcus et al., 2007). The data is freely available from the web
site http://www.oasis-brains.org, where details on the population de-
mographics and acquisition protocols are also reported. Additionally, the
selected thirty five subjects are the same ones that were used within the
2012 MICCAI Multi-Atlas Labeling Challenge (Landman and War-
field, 2012).

Balgrist data set. The second data set consists of brain and cervical cord
scans of twenty healthy adults, acquired at University Hospital Balgrist
with a 3T scanner (Siemens Magnetom Verio). Magnetisation-prepared
rapid acquisition gradient echo (MPRAGE) sequences, at 1 mm
isotropic resolution, were used to obtain T1-weighted data, while PD-
weighted images of the same subjects were acquired with a multi-echo
3D fast low-angle shot (FLASH) sequence, within a whole-brain multi-
parameter mapping protocol (Weiskopf et al., 2013; Helms et al., 2008).

IXI data set. The third and last data set comprises twenty five T1-, T2-
and PD-weighted scans of healthy adults from the freely available IXI
brain database, which were acquired at Guy's Hospital, in London, on a
1.5T system (Philips Medical Systems Gyroscan Intera). Additional in-
formation regarding the demographics of the population, as well as the
acquisition protocols, can be found at http://brain-development.org/
ixi-dataset.

The complete data set therefore consists of eighty multispectral scans
of healthy adults, obtained with fairly diverse acquisition protocols and
using scanning systems produced by different vendors.

Unfortunately, not all the three modalities of interest (T1-, T2-and PD-
weighted) are available for all of the subjects. To circumvent the diffi-
culties arising from the presence of missing imaging modalities, without
neglecting any of the available data (indeed deletion of entries with
missing data is still, in spite of its crudity, a common statistical practice),
the Gaussian mixture modelling approach discussed in Blaiotta et al.
(2016) was generalised by introducing an additional variational poste-
rior distribution over the missing data points.

In practice, the resulting variational EM scheme iterates over first
estimating an approximated posterior distribution on the unknown
image intensities, secondly updating the sufficient statistics of the com-
plete (observed and missing) data and finally computing variational
posteriors on the Gaussian mixture parameters. Additional computa-
tional details relative to this strategy are provided in Appendix C.

In synthesis, it was possible to fit the generative groupwise model
described in this paper to the entire data set, in spite of having different
imaging modalities available from the different acquisition sites. This is
indeed a very common scenario in real life medical imaging problems,
therefore it should be actively addressed by processing or modelling
solutions that claim to be applicable to large population data (van Tulder
and de Bruijne, 2015).

Manual brain labels are freely available for the selected subset of the
OASIS data set. Such labels have been generated and made public by
Neuromorphometrics, Inc. (http://Neuromorphometrics.com) under ac-
ademic subscription and they provide a fine parcellation of cortical and
non cortical structures, for a total of 139 labels across the brain.

Part of this label data was used for training of the model while the
remainder was left out for testing and validation. In particular, brain
labels of twenty out of the thirty five OASIS subjects were used to create
gray and white matter ground truth segmentations, which were provided
as training input for semisupervised model fitting. In spite of having
defined only one gray matter training label, two distinct gray matter
classes were introduced in the mixture model (top two rows in Fig. 2), to
best capture the corresponding distribution of image intensities, which is
poorly represented by a single Gaussian component, as opposed to the
distribution of white matter intensities. In this case, posterior member-
ship probabilities were computed making use of equation (17).

Spinal cord manual labels were created for forty subjects (twenty
from Balgrist data set and twenty from the IXI data set), by manually
delineating the contour of the cord in each transverse slice of the data
beginning from the lower extremity of the medulla oblongata. Such la-
bels were randomly split in half for training and half for subsequent test
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analyses. Due to the limited resolution of the data it was not possible to
manually delineate gray and white matter within the spinal cord. For this
reason, each voxel classified as spinal cord in the training data was
allowed to be assigned either to the gray or to the white matter tissue
classes, based on the fit of its intensity value to the underlying Gaussian
mixture model, as outlined in equation (17).

Tissue templates and intensity priors
The tissue probability maps obtained by applying the modelling

framework presented in this paper to the data set described above are
depicted in Fig. 2. The total number of tissue classes used for this
experiment is equal to twelve but three classes, representing air in the
background, are not shown.

The total number of classes was selected based on empirical evidence
to obtain a reasonable trade-off between goodness of fit and computa-
tional cost. In principle the proposed algorithm would be able to auto-
matically determine the optimal number of classes, as demonstrated in
Blaiotta et al. (2016), however this would require setting an initial
number of components higher than the unknown optimal one, which, for
the size of the data set considered here, would have been computation-
ally very expensive.

Apart from the number of Gaussians, the only hyperparameters that
are not estimated from the data but need to be fixed a priori are those
controlling the bias and registration regularisation. Indeed, one of the
strengths of the proposed approach is that, in spite of its complexity most
parameters are automatically inferred from the data, thus requiring
minimal parameter tuning. For the experiments described in this section
we used the settings described below.

The prior distribution on the bias field parameters was assumed to be
Gaussian with zero mean and a precision matrix corresponding to a
penalty on the Laplacian of the resulting non-uniformity field. Similarly,
the affine model was regularised using a Gaussian prior with zero mean
and a diagonal covariance matrix, where the magnitude of parameters
modelling translations and rotations was less heavily regularised (the
prior variance was set equal to 1), compared to that of parameters con-
trolling scaling and shearing, whose prior variance was instead set equal
to 0.001. Finally the regularisation settings for diffeomorphic registration
were borrowed from the default settings of the Geodesic Shooting
toolbox (Ashburner and Friston, 2011) provided with SPM12, which
correspond to penalising a linear combination of absolute displacement,
membrane energy, bending energy and linear elasticity (more details can
be found in the documentation of the SPM12 software).

Fig. 2 shows how one of the two gray matter classes (first row) best
fits the subcortical nuclei and also includes voxels affected by partial
volume effects at the interface between gray and white matter, while the
second one (second row) is more representative of cortical structures,
with partial volume effects generated by the mixed presence of gray
matter and CSF. The third row in Fig. 2 shows the white matter class,
which also includes most of the brainstem and the spinal cord.

The remaining tissue classes were estimated in a purely unsupervised
way. Therefore a non ambiguous anatomical interpretation is not
straightforward.

Tissue class four (fourth row) mainly contains CSF, even if other tis-
sues are also present, especially in the neck area. This should be attrib-
uted to the lack of CSF training labels as well as to a poor multivariate
coverage of the cervical region in the available data. In fact, data from the
OASIS set is truncated around the first cervical vertebra. The T1-
weighted scans of the IXI data set cover up to the C2/C3 vertebral
level, but the corresponding T2-and PD-weighted scans do not extend
beyond the brainstem. Indeed, only the data from the second database
(Balgrist hospital) provides more than one modality covering up to
around the fourth cervical vertebra. In this case though, additional dif-
ficulties arose from poor inter-modality alignment of the data, a problem
that turned out to be particularly severe in the cervical region and that,
given its non-linearity, cannot be fully compensated for by affine inter-
modality coregistration. This result confirms the importance and

http://www.oasis-brains.org
http://brain-development.org/ixi-dataset
http://brain-development.org/ixi-dataset
http://Neuromorphometrics.com


Fig. 2. Tissue probability maps obtained by applying the presented groupwise generative model to a multispectral data set comprising head and neck scans of eighty healthy adults, from
three different databases.
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usefulness of non-linear image coregistration tools, particularly when
modelling highly deformable anatomical structures (Stroman et al.,
2008; Fonov et al., 2014). Such a problem was not addressed in this
paper, which limits the applicability of the proposed approach when
scans of the same subject are not in good alignment. However it would in
principle be possible to introduce inter-modality deformation fields
within the same generative model adopted here and we aim to address
this issue as part of our future work.

Bone tissue is also not easily identifiable from the data available for
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this experiment, but it could have potentially been much better extracted
by incorporating some CT scans into the training data.

Fat and soft tissues are mainly represented in the last two classes
(bottom two rows in Fig. 2).

While quantitative evaluation analyses of the proposed modelling
approach will be reported in the following sections, the results presented
in Fig. 2 provide a qualitative insight into the performance of the algo-
rithm discussed in this paper. In particular, the sharp appearance of the
tissue probability maps suggests that the proposed model can capture a



Fig. 3. Zoomed views of the gray (top two rows) and white matter (bottom row) tissue probability maps at the brainstem and spinal cord levels. Each transverse slice covers an area of
45� 53 mm2, while the axial distance between adjacent slices along each row equals 7:5 mm. The order of tissue classes from top to bottom is the same as in the top three rows of Fig. 2,
however more densely spaced transverse slices are depicted here.

Fig. 4. Prior distribution over the mean intensity of gray and white matter, in T1-and PD-
weighted data. Contour plots illustrate a number of randomly selected individ-
ual posteriors.
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significant amount of anatomical variability thus ensuring fine alignment
of complex anatomical structures, whose shape varies significantly across
individuals. In turn, this represents a very valuable property for the
purpose of performing statistical group analyses on neuroimaging data,
since most of these studies rely on the assumption that accurate
anatomical and functional correspondences can be estimated through
some form shape mapping procedure, which is most commonly imple-
mented using non-linear image registration techniques.

Fig. 3 illustrates zoomed views of the gray and white matter tissue
probability maps at the brainstem and spinal cord levels.

The empirical Bayes learning procedure, introduced in Blaiotta et al.
(2016) to estimate suitable prior distributions for the parameters of the
Gaussian mixture model, was applied here to the same data used to
construct the templates. Some of the results are summarised in Fig. 4,
where the estimated empirical prior distributions on the mean intensity
of gray and white matter are depicted, with overlaid contour plots
showing some of the individual posteriors (randomly selected across the
entire population).

Such results indicate that the proposed empirical Bayes learning
scheme can serve to capture, not only the variability of mean tissue in-
tensity across subjects for each of the modalities of interest, but also the
amount of covariance between such modalities. Information of this sort
can potentially be used in a number of different frameworks, for solving
problems such as tissue segmentation, pathology detection or
image synthesis.

In Fig. 5 we report a plot of the lower bound during model fitting as a
qualitative demonstration of convergence.

Run time for the data set presented here was around 50 h on an 8 Core
PC at 3 GHz with 32 GB RAM.

Validity of groupwise registration
The performance of groupwise registration achieved by the presented

algorithm was assessed by computing pairwise overlap measures for all
possible couples of spatially normalised test label maps (i.e. label maps
that were not used for training the model), which were obtained by
applying the inverse of the estimated deformation fields to the maps in
their native space. The Dice4 score coefficient was chosen as a metric of
4 The Dice score over two sets A and B is defined as DSC ¼ 2 jA∩Bj
jAjþjBj.

126
similarity.
Results are summarised in Fig. 6, where the accuracy of the algorithm

presented here is compared to that achieved by the groupwise image
registration method described in Avants et al. (2010), whose imple-
mentation is publicly available, as part of the Advanced normalisation
Tools (ANTs) package, through the web site http://stnava.github.io/
ANTs/. Indeed, the symmetric diffeomorphic registration framework
implemented in ANTs has established itself as the state-of-the-art of
medical image nonlinear spatial normalisation (Klein et al., 2009).

A number of options can be customised within the template con-
struction framework distributed with ANTs. The experiments, whose
results are reported here, were performed with the settings recom-
mended in the package documentation for brain MR data, which are also
reported in Table 2. The same strategy outlined above was applied in
order to compute Dice score coefficients for all structural labels and all
possible pairs of test images.

Results of this validation analyses indicate that the method presented

http://stnava.github.io/ANTs/
http://stnava.github.io/ANTs/


Fig. 5. Lower bound values as a function of iteration number during model training.
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here, in spite of not being as accurate as ANTs for aligning some
subcortical brain structures (e.g. thalamus, putamen, pallidum and
brainstem), provided significantly better overlap when registering
cortical regions, as assessed by means of paired t-tests with a significance
threshold of 0.05 and without correcting for multiple comparisons.

Accuracy of tissue classification
The accuracy of tissue classification achieved by the method pre-

sented in this paper was first evaluated on test data that was used to
create the templates but without providing manual labels for training the
model. The aim in this case is to determine to which extent the proposed
method can capture significant features of the training data, by learning
from few annotated examples.

Dice scores were computed to compare the automated segmentations
produced via semisupervised groupwise model fitting, with the ground
truth, obtained by merging all the gray and white matter brain structures
(labels) into two tissue classes respectively. The probabilistic gray and
white matter segmentations produced by the proposed algorithm were
thresholded at 0.5, in order to obtain binary label maps, directly com-
parable to the ground truth. Results are summarised in seg, which shows
the distributions of Dice scores obtained for gray and white matter.

Such results were then compared to those produced by the brain
segmentation algorithm implemented in SPM12, using the tissue prob-
ability maps illustrated in Fig. 2. Indeed the proposed approach extends
and generalises the model underlying SPM12 segmentation method. This
is achieved by replacing a small deformation approach to image regis-
tration with a diffeomorphic representation of shapes, as well as by
introducing empirical intensity priors (within a variational Bayes
framework) and by allowing learning of the tissue probability maps
directly from the data.

Therefore, results of these analyses, which are also shown in Fig. 7,
provide a direct insight into the performance gain achieved by incre-
menting the model available in SPM12 as indicated above. In particular,
our experiments indicate that the proposed method enables higher tissue
classification accuracy, for both gray and white matter (assessed by
means of paired t-tests with a significance threshold of 0.05).

The experiments described in this section however did not test the
generalisation capability of the proposed method, which would have
required a k-fold cross-validation design in order to exploit as much as
possible of the available data during training. Unfortunately this was
highly unpractical in this case due to the expensive computational cost of
groupwise model fitting. The generalisation performance of the proposed
model is instead assessed in the next section, using a hold-out approach
and making use of both real and synthetic unseen brain MR data, for
which tissue labels are known.
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Modelling unseen data

Further validation experiments were performed to quantify the ac-
curacy of the framework described in this paper to model unseen data,
that is to say data that was not included in the atlas generation process.

In particular, we evaluated registration accuracy using data from the
Internet Brain Segmentation Repository (IBSR), which is provided by the
Centre for Morphometric Analysis at Massachusetts General Hospital
(http://www.cma.mgh.harvard.edu/ibsr/). Experiments to assess bias
correction and segmentation accuracy were instead performed on syn-
thetic T1-weighted brain MR scans from the Brainweb database (http://
brainweb.bic.mni.mcgill.ca/), which were simulated using a healthy
anatomical model under different noise and bias conditions.

Accuracy of registration
To assess the performance of the presented method for spatially

normalising unseen test data we made use of the ISBR data set, which
consists of 18 T1-weighted brain images with manual labels of 84
anatomical structures. Such a data set was also used by Klein et al. (2009)
for their evaluation of 14 brain image registration algorithms. Therefore
the results presented in the remainder of this section allow comparing the
proposed approach to a number of image registration methods available
to the neuroimaging community.

For this experiment we registered each of the 18 unseen scans to the
tissue probability maps presented in Fig. 2 by adopting the algorithmic
framework presented in this paper. We then computed target overlap
measures for all pairs of spatially normalised images. This was achieved
by composing the inverse of each estimated deformation field with every
other direct transformation and applying the resulting warps to the labels
in their native space, so as to map between each couple of subjects. Our
method, after averaging across different brain regions, achieved a me-
dian overlap score of 0.54 with the 25th and 75th percentiles equal to
0.51 and 0.57 respectively. Instead, the best performing method in the
experiments performed by Klein et al. (2009) obtained a median score of
0.55 on the same data set.

Such results indicate that our approach, in spite of being intrinsically
best suited for groupwise analyses, where the reference image is con-
structed iteratively from the same scans that are being spatially nor-
malised (Avants et al., 2010), can provide accurate results also when
mapping test data to a fixed reference that encodes the average shape of a
different population. Indeed, this experiment was intended as a means to
assess the generalisation capability of the templates constructed with the
proposed approach, while ensuring a fairer comparison to the results of
Klein et al. (2009), which were produced via pairwise non-linear regis-
tration rather than by estimating group averages.

Accuracy of bias correction
A healthy adult brain MR model was processed by means of the al-

gorithm discussed here, using the brain and spinal cord templates pre-
viously constructed as tissue priors. Different levels of noise and bias field
were added to the uncorrupted synthetic data, to test the behaviour of the
proposed modelling scheme in different noise (1%, 3%, 7%) and bias
conditions (20% and 40%).

The noise in these simulated images has Rayleigh statistics in the
background and Rician statistics in the signal regions and its level is
computed as a percent standard deviation ratio, relative to the MR signal,
for a reference tissue (Cocosco et al., 1997).

Regarding the bias field instead, 20% bias is modelled as a smooth
field in the range [0.9, 1.1] while 40% bias is obtained by rescaling of the
20% field, so as to range between 0.8 and 1.2.

Table 3 reports the Pearson product-moment correlation coefficients
between the ground truth and the estimated bias fields, for the different
bias ranges and noise levels. Results indicate that the similarity between
the estimated and true bias decreases for more intense non-uniformity
fields and higher noise levels.

Indeed this is not surprising, as the penalty term, which enforces

http://www.cma.mgh.harvard.edu/ibsr/
http://brainweb.bic.mni.mcgill.ca/
http://brainweb.bic.mni.mcgill.ca/


Fig. 6. Registration accuracy achieved by the presented method, compared to the performance of the diffeomorphic groupwise template construction method distributed with ANTs.
Boxplots, in green for the proposed method and blue for ANTs, illustrate the distributions of overlap measures (Dice score coefficients) obtained by considering all possible pairs of spatially
normalised test images, whose labels were not used for model fitting. Stars indicate statistically significant differences between the two methods, assessed by means of paired t-tests without
correcting for multiple comparisons. Star colours encode the method that achieved higher performance (black for the proposed algorithm and red for ANTs).
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smoothness of the bias field, has a greater impact in determining the
shape of the estimated bias when the non-uniformity fields have a larger
dynamic range. Nevertheless, results reported in the following section
will show how this increased mismatch between the estimated and true
bias, for higher non-uniformities, does not seem to affect the accuracy of
tissue segmentation. On the other hand, the accuracy of bias correction is
directly related to the amount of noise corrupting the data, mainly due to
how this affects the precision associated with estimation of the Gaussian
mixture parameters. For a comparison of these results with the
128
performance of SPM12 bias correction on simulated T1-weighted scans
from the Brainweb database see Blaiotta et al. (2016).

Accuracy of tissue classification
For the same synthetic data the accuracy of tissue classification was

also evaluated, by comparing the similarity between the estimated gray
and white matter segmentations and the underlying anatomical model.

Results are reported in Fig. 8, which shows the Dice score coefficients
obtained under different bias and noise conditions.



Table 2
Options selected to perform groupwise registration with ANTs, using the antsMul-

tivariateTemplateConstruction script provided with the ANTS package.

Option Value

Similarity Metric Cross-correlation (CC)
Transformation model Greedy SyN (GR)
Initial rigid body yes
N4 Bias Correction yes
Number of resolution levels 4
Number of iterations 100� 70� 50� 10
Gradient step 0.2
Number of template updates 4

Fig. 7. Brain segmentation accuracy of the presented method in comparison to SPM12
image segmentation algorithm. Boxplots indicate the distributions of Dice score co-
efficients, with overlaid scatter plots of the estimated scores. Red stars denote outliers.

Table 3
Pearson's correlation coefficients between the ground truth bias fields and those estimated
by the presented algorithm, for simulated T1-weighted data.

Bias Noise

1% 3% 7%

20% 0.86 0.86 0.70
40% 0.72 0.72 0.51

Fig. 8. Dice scores between the estimated and ground truth segmentations for brain white
matter and brain gray matter, under different noise and bias conditions, for synthetic T1-
weighted data.
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The Brainweb database has been extensively used in the neuro-
imaging community to validate MR image processing algorithms.
Therefore the results reported here should be directly comparable to the
performance of many brain segmentation techniques present in the
literature.

Conclusions

This paper presented a comprehensive generative modelling frame-
work, suitable to capture anatomical variability from large cross-
sectional MR data sets. From a theoretical perspective, such a frame-
work relies on variational probability density estimation techniques to
model the observed data (i.e. MR image intensities). Additionally, a hi-
erarchical modelling perspective is proposed, where observations from a
population of subjects are used to construct empirical intensity priors,
which can then serve to inform models of new data. Shape modelling is
performed via groupwise diffeomorphic registration, thus ensuring
bijective (i.e. one-to-one) differentiable mappings between anatomical
configurations (Miller, 2004). Such an approach enables a rigorous
mathematical encoding of anatomical shapes via deformable template
matching (Christensen et al., 1996), therefore providing a quantitative
framework for the analysis of shape variation and covariation.

Data for validating the method was collected from many different
brain databases, most of which are publicly accessible to the research
community. Results of our experiments, performed both on training and
unseen test data, indicate that the proposed approach can accurately
align complex anatomical shapes, such as the brain and spinal cord, and
segment data into tissue types, while being robust to inter-scanner signal
variations. Therefore, the proposed algorithm defines a convenient
framework to extract volumetric and morphometric information from
large structural neuroimaging data sets, in a fully automated manner. At
the same time it provides outputs that can be readily interpreted, for
instance via statistical hypothesis testing, with the ultimate goal of
comparing different populations, treatment effects etc. (Ashburner and
Friston, 2000).

Additionally, our results suggest that the proposed approach could be
useful to construct templates capable of capturing the peculiar anatom-
ical features of populations poorly represented by standard anatomical
atlases (such as young or elderly populations, diseased populations, or
individuals belonging to different ethnic groups (Tang et al., 2010; Fill-
more et al., 2015)). This would not only lead to more accurate segmen-
tation results, but as a direct consequence, also increase the reliability of
subsequent data analyses, which build models of the segmented data to
infer or predict clinically meaningful information.

It should be noted that, in spite of having been tested on neuro-
imaging data sets, our method was intentionally formulated as a general
approach, which makes it potentially suitable to solve a wide range of
imaging problems, for instance in the context of animal imaging studies
or for the analysis of different human organs using multispectral MR data
sets. We aim to explore some of this applications as part of our
future work.

Acknowledgments

Claudia Blaiotta is co-funded by UCL and Zurich Balgrist Hospital, as
part of the ‘UCL Impact’ award scheme. This research was supported by
Wings for Life - Spinal Cord Research Foundation [WFL-CH-007/14]. The
Wellcome Trust Centre for Neuroimaging is supported by core funding
from the Wellcome Trust (091593/Z/10/Z). The OASIS project was
funded by the National Institutes of Health grants P50 AG05681, P01
AG03991, R01 AG021910, P50 MH071616, U24 RR021382, R01
MH56584. The IXI project was supported by the EPSRC grant GR/
S21533/02.



C. Blaiotta et al. NeuroImage 166 (2018) 117–134
Appendix A. Derivatives of the lower bound with respect to the affine parameters

The affine parameters, for each subject i, can be estimated (i.e. optimised) in a Gauss-Newton fashion, so as to maximise of the following objec-
tive function
ðiÞ ðiÞ ðiÞ
E af ¼ D þℛaf
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with respect to ai.
The gradients and Hessians, which are useful to solve this problem are reported below. In particular, for the matching term, the following derivatives

need to be computed
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where gπjk is defined as
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Gradients and Hessians of the penalty term are instead given by
ðiÞ
∂ℛaf

∂ai
¼ �Σ�1

a ai ; (A.7)
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i
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a : (A.8)

Appendix B. Derivatives of the lower bound with respect to the initial velocities

Optimisation of the initial velocities, for each image i, requires maximising the following objective function
ðiÞ ðiÞ ðiÞ
E dif ¼ D þℛdif

¼
X
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γijk log
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�
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M

jjLuuijj2L2 ;
(B.1)

with respect to ui.
Here, we report the first and second derivatives of this objective function, which are useful to solve the registration problem using gradient-based

techniques, such as the Gauss-Newton algorithm.
The gradient of the matching term D ðiÞ with respect to ui is given by
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which, making use of
PK

k¼1γijk ¼ 1 , can be rewritten as
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where gπk is computed, at each voxel j, by
� �T � � � ���

gπ
jk ¼ Ti; J

ξ
ij ∇ log πk ξij ; (B.4)

and Jξi indicates the Jacobian matrix of ξij.
An approximated positive semidefinite Hessian ofD can instead be computed by discarding the second derivatives of the logarithm of tissue priors
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Finally, the first and second derivatives of the penalty term ℛ, which are also required to optimise (B.1), can be computed by
ðiÞ
∂ℛdif
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Appendix C. Variational Gaussian mixtures: inference of missing data

The variational Bayes EM algorithm for fitting Gaussian mixture models, described in Blaiotta et al. (2016), can be generalised to handle the case
where some components of the D-dimensional observation xj are missing.

Having denoted
� 


xj ¼ oj

hj
; (C.1)

with oj being the observed data and hj the missing (hidden) data, the Gaussian likelihood pðxj
��zjk ¼ 1; μk;ΣkÞ can be expressed as
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by making use of block matrix notation to partition the mean vector μk and the precision matrix Λk.
In this case hj is treated as an unobserved random variable. Thus, in a variational Bayes setting, an additional posterior factor can be introduced for

each missing data point hj to give
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Making use of the general result qbsðΘbsÞ∝expðEs≠bs ½logpðX;ΘÞ�Þ (Bishop, 2006), an approximated posterior on the missing data point hj can be
computed by
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where Θπ denotes the mixing proportion parameter set, treated here via maximum likelihood, and pðΘμ;ΘΣÞ is a conjugate Gaussian-Wishart prior on
the means and covariances of the model.

Ignoring the terms independent from hj, equation (C.4) can be rewritten as
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The previous equation indicates that the unobserved value hj is drawn from a Gaussian mixture distribution with mixing proportions equal to the
posterior (after having observed oj) membership probabilities fγjkgk¼1;…;K , while the Gaussian means fnjkgk¼1;…;K and covariances fPjkgk¼1;…;K are
given by
 � � � � h;h���1
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Given the posteriors qðZÞ and qðHÞ, the following sufficient statistics of X can be computed
2 N 3

s1k ¼

6664
X
j¼1

γjkoj

X
j¼1

N

γjknjk

7775 ; (C.8)

2 N 3

S2k ¼

6664
X
j¼1

γjkojoT
j

P
j¼1

N

γjkojnT
jkX

j¼1

N

γjknjkoT
j

P
j¼1

N

γjk



nknT

jk þ ðPkÞ�1
�7775 : (C.9)

Once such sufficient statistics have been evaluated, they can be used to update the Gaussian-Wishart posteriors qðΘμ;ΘΣÞ in the exact same way as in
Blaiotta et al. (2016). Such posteriors are in turn used to compute the expectations that appear in equation (C.6) and (C.7), in an iterative EM fashion.

An inner product naturally induces a norm by
������x������ ¼ 〈x;x〉1=2, therefore every inner product space is also a normed vector space (Dieudonn�e, 2013).
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