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Abstract

Background: Most single stranded RNA (ssRNA) viruses mutate rapidly to generate large number
of strains having highly divergent capsid sequences. Accurate strain recognition in uncharacterized
target capsid sequences is essential for epidemiology, diagnostics, and vaccine development. Strain
recognition based on similarity scores between target sequences and sequences of homology
matched reference strains is often time consuming and ambiguous. This is especially true if only
partial target sequences are available or if different ssSRNA virus families are jointly analyzed. In such
cases, knowledge of residues that uniquely distinguish among known reference strains is critical for
rapid and unambiguous strain identification. Conventional sequence comparisons are unable to
identify such capsid residues due to high sequence divergence among the ssRNA virus reference
strains. Consequently, automated general methods to reliably identify strains using strain
distinguishing residues are not currently available.

Results: We present here RECOVIR ("recognize viruses"), a software tool to automatically detect
strains of caliciviruses and picornaviruses by comparing their capsid residues with built-in databases
of residues that uniquely distinguish among known reference strains of these viruses. The databases
were created by constructing partitioned phylogenetic trees of complete capsid sequences of these
viruses. Strains were correctly identified for more than 300 complete and partial target sequences
by comparing the database residues with the aligned residues of these sequences. It required about
5 seconds of real time to process each sequence. A Java-based user interface coupled with Perl-
coded computational modules ensures high portability of the software. RECOVIR currently runs
on Windows XP and Linux platforms. The software generalizes a manual method briefly outlined
earlier for human caliciviruses.

Conclusion: This study shows implementation of an automated method to identify virus strains
using databases of capsid residues. The method is implemented to detect strains of caliciviruses and
picornaviruses, two of the most highly divergent ssRNA virus families, and therefore, especially
difficult to identify using a uniform method. It is feasible to incorporate the approach into
classification schemes of caliciviruses and picornaviruses and to extend the approach to recognize
and classify other ssRNA virus families.
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Background

Most non-bacterial epidemic outbreaks are caused by sin-
gle stranded RNA (ssRNA) viruses. Typically, these viruses
undergo rapid genetic mutations that result in a large and
dynamic population diversity, which are seen as different
virus strains utilizing multiple hosts [1]. Relationships
among the strains are usually inferred through conven-
tional homology based comparisons using complete cap-
sid sequences or other genomic regions. Such
comparisons seek to identify clusters of similar sequences
that comprise major groups (genogroups or genera) and
sub-groups (species and serotypes). These groupings are
targeted by various diagnostics [2-13] to recognize and
classify the viruses.

Four calicivirus genera (noroviruses, sapoviruses, lagovi-
ruses and vesiviruses) and nine picornavirus genera
(apthoviruses, cardioviruses, enteroviruses, erboviruses,
hepatoviruses, kobuviruses, parechoviruses, rhinoviruses
and teschoviruses) are known [14-18]. Further divisions
of these genera reflect more detailed sequence relatedness
among these viruses. For example, among caliciviruses,
noroviruses are divided into two genogroups GI and GII
each of which contains seven sequence clusters (GI.1-
GIL.7 and GII.1-GII.7) [18-21], sapovirus sequences are
grouped into 2-5 genogroups, of which, each contains
several clusters [22-24], vesivirus sequences are known to
contain at least 40 immune response related antigenic
serotypes and lagovirus sequences cluster into proposed
sero-specific groups [25]. Similarly, the 9 picornavirus
genera are classified into several species, each of which
consists of a large number of serotypes (Table 1).

The total number of genera, species, serotypes and the
associated strains may be taken as a measure of the diver-
sity of a given virus family. Based on this measure, the
picornaviruses and the caliciviruses are two of the most
highly divergent ssRNA virus families [14,15,17]. Within
the genomes of these two virus families, the coat protein
sequences show the lowest overall identity, possibly due
to the large number of mutations that the viruses undergo
to evade host immune responses.

The coat protein consists of a single subunit for the calici-
viruses and four subunits (VP1-VP4) for the picornavi-
ruses [15,26]. Structures of picornavirus coat protein [27-
31] show that the exposed parts of VP1 subunits contain
most of the important neutralization sites [29,32,33] thus
making VP1 the immunodominant regions. Additionally,
in comparison with the other genomic regions, VP1
sequences show the strongest statistical and phylogenetic
support in establishing consistent genetic and antigenic
relationships among picornaviruses [15,34]. Therefore,
VP1 sequences are most frequently used in molecular evo-
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Table I: Species and serotypes of all picornavirus genera

Genera Species #Number of serotypes#

Aphthoviruses Foot-and-mouth disease virus (FMDV) #7#
Equine rhinitis A virus (ERAV) #1#
Encephalomyocarditis virus (EMCV) #1#
Theilovirus (TMEV/TLV/VHEV) #2 or 3#
Human enterovirus A (HEV-A) #12#
Human enterovirus B (HEV-B) #36#
Human enterovirus C (HEV-C) #1 I1#
Human enterovirus D (HEV-D) #2#
Bovine enterovirus (BEV) #2#

Poliovirus (PV) #3#

Porcine enterovirus A (PEV-A) #1#
Porcine enterovirus B (PEV-B) #2#
Simian enterovirus (SEV) #5#

Aichi kobuviruses (AKV) #1#

Bovine kobuviruses (BKV) #1#

Human parechoviruses (HPeV) #3#
Ljungan viruses #1#

Human rhinovirus A (HRV-A) #75#
Human rhinovirus B (HRV-B) #25#
Porcine Teschoviruses (PTEV) #1 1#

Cardioviruses

Enteroviruses

Kobuviruses

Parechoviruses

Rhinoviruses

Teschoviruses

Abbreviations for species are shown within parentheses and the
number of serotypes for given species are shown boldfaced within #
signs.

lution and strain characterization studies in picornavi-
ruses.

Although caliciviruses appear to be relatively simpler
because of the presence of only one coat protein sequence
whose structure is known for a human and an animal
strain [35,36], experimental difficulties arise in identify-
ing strains of human caliciviruses as these viruses cannot
be antigenically characterized due to their non-cultivabil-
ity. Consequently, computational techniques offer the
most feasible ways to recognize and predict strains of
these viruses. Among the different parts of the genome,
the coat protein sequences offer the best choice in compu-
tation-based strain prediction methods in caliciviruses,
mainly because, of their highest overall variability and
antigenic correlations as compared with sequences of the
other genomic regions. This is true even for the human
caliciviruses for which antigenic relationships are often
deduced on the basis of antigen and antibody ELISAs
using expressed capsid proteins as has been done for
noroviruses [21,37-39]. We examine here a computa-
tional approach to predict strains in both picornaviruses
and caliciviruses on the basis of capsid sequences.

Strain predictions critically depend on sequence informa-
tion. Most existing prediction methods for caliciviruses
and picornaviruses use sequence similarity cut-off values
derived from homology-based sequence comparisons
between target sequences and known reference sequences
[20,34]. Although recent reports indicate reliable estima-
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tion of such cut-off values in distinguishing three peak
regions that correspond to the genogroups, clusters and
strains in noroviruses [40], no uniform criteria exist to
accurately estimate these values for the other caliciviruses.
Additionally, these cut-off values may be impossible to
estimate when different virus genera or families are ana-
lyzed together. These difficulties are further compounded
when only partial sequences from smaller and relatively
more conserved regions are available [12,20,41-44]. Even
for complete capsid sequences, homology based similar-
ity scores pose limitations in determining strains of
viruses due to the exponential dependence of computa-
tion time on the sequence lengths and the number of
sequences thereby negatively impacting prediction accu-

racy.

One approach to address the computational bottleneck is
to efficiently align sliding windows of target virus
sequences against databases of reference sequences and
use the highest overall alignment scores to genotype the
target sequences [45]. However, such methods critically
depend on parameters such as window sizes and reference
sequences. Incorrect choice of these parameters may intro-
duce error-inducing biases while significantly increasing
the computation time due to repetitive runs using differ-
ent trial values of these parameters [45].

Thus, strain recognition methods using sequence identity
scores have not been easily amenable to reliable and
robust automation across ssRNA virus families. Based on
an earlier analysis of noroviruses [46], we describe here an
implementation of a residue-wise comparison approach
to automate strain predictions using both complete and
partial amino acid capsid sequences of caliciviruses and
picornaviruses.

Implementation

Method

Basis

The method is demonstrated using calicivirus and picor-
navirus capsid sequences. Defining some of these
sequences as references, phylogeny based databases of
capsid residues that uniquely distinguish among the refer-
ence sequences were created. Residue-wise comparisons
of the input target sequences with the databases identify
those phylogenetic branches whose reference sequences
most closely resemble the target sequences. These
branches, in turn, yield the genogroup and other classifi-
cation characteristics of the target sequences thereby iden-
tifying their strains.

Phylogenetic trees of caliciviruses and picornaviruses

Partitioned phylogenetic trees were constructed for each
of the 4 calicivirus genera and the 9 picornavirus genera
following the procedure described earlier [46] based on
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evolutionary trace approaches [47]. The virus sequences,
obtained from public databases [26,48], were aligned
using ClustalW [49] in which the Gonnet-250 distance
matrix model [50] was used with penalties for gap open-
ing, closing, extension and separation set to 10, -1, 0.2
and 4 respectively.

The Fitch-Margoliash distance matrix was calculated for
each set of aligned sequences and phylogenetic trees were
constructed for each such distance matrix using the neigh-
bor-joining Kitsch algorithm of PHYLIP package [51] as
implemented on the Cambridge server [52]. The mutation
rate was assumed constant throughout the tree. Each tree
was displayed with the branches horizontal, the 'root' on
the left and the tips on the right.

The topology of these trees, defined in terms of the con-
nectivity and the relative branch lengths, was compared
with those of other trees generated using other neighbor
joining methods including the unweighted pair group
method with arithmetic mean (UPGMA) distance crite-
rion and the minimum evolution criterion using Poisson
distance models of amino acid residues as implemented
in the MEGA4 package [53,54]. Similar comparisons were
also done between the capsid sequence trees and the trees
constructed using non-capsid sequences such as those of
the RNA-dependent RNA polymerase regions or of the
non-coding regions. Because the topology of capsid trees
alone remained almost insensitive to the method used, it
was deduced that the capsid sequences were phylogeneti-
cally most robust. Therefore, any of the neighbor joining
methods could be used to draw the trees for capsid
sequences, and the Fitch-Margoliash based trees were cho-
sen for further analysis. In contrast, the topologies of the
non-capsid trees were quite sensitive to the tree construc-
tion method used and hence, these trees were not consid-
ered.

Partitioning of phylogenetic trees yield groups of similar
sequences

The trees were divided into ten equally spaced partitions
P01-P10. The inter-partition spacing was calculated from
the maximum evolutionary distances within the trees. Ten
partitions were optimum for all trees as no significant
changes in node distributions were observed in any tree
with a further increase in partition numbers. The
sequences used to construct the trees are called "reference"
sequences and the corresponding trees are called "refer-
ence" or "genus" trees because each reference tree repre-
sents a calici or a picornavirus genus.

Each partition acts as a "similarity filter" by creating differ-
ent sequence groups each of which contains similar
sequences emanating from a given node within the parti-
tion. Examples of such sequence groups are illustrated for
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a hypothetical representative tree (Fig. 1a). Starting from
the root node, partition 1 contains all of the aligned
sequences. Sequence comparisons in this partition, there-
fore, are equivalent to conventional sequence compari-
sons that consider all of the sequences together. Partitions
2 and 3 are identical and contain the sequence groups s1-
s11 and s12 belonging to nodes A and B respectively. Sim-
ilarly, the two nodes C and D belong to partition 4 while
nodes E and F belong to partition 5. Node C of partition
4 contains sequence groups s1 and s2 while node D of the
same partition contains nine (s3-s11) of the remaining
groups. Similarly, the eight groups (s3-s10) in partition 5
belong to node E while group s11 belongs to node F in the
same partition (Fig. 1a). Henceforth, sequence clusters or
sequence groups will be referred to simply as groups.

Comparisons among sequence groups reveal characteristic
residues within genus trees

For each tree, sequences belonging to different groups of
a given partition were separately aligned and the resulting
aligned classes were compared to obtain the consensus
residues for that partition. These consensus residues were
identified as "characteristic residues" that are conserved
within each group but not among the different groups of
the partition. For example, characteristic residue X; at
location 1 of partition 2 of a given tree may be a conserved
Ala for Group A of node A in contrast to a conserved Gly
(X;") for Group B of node B (Fig. 1a). Such residues were
partition-wise generated for each tree.

Database creation

Entire information about the genus trees including their
partitions, all sequence groups for each partition and all
of the characteristic residues taken group-wise, were
stored in multiple 2-dimensional arrays that formed the
calici and the picornavirus databases.

Strain identification through partition-wise comparisons

To identify the strain of the input query ("target")
sequence whose genus is known, the program matches the
target residues with the characteristic residues of each
group of a given partition stored in the appropriate genus
database. This is done by first aligning the target sequence
with a database reference sequence. Next, starting with the
second partition from the root (partition 2 in Fig. 1a),
each characteristic residue of a given group in this parti-
tion is compared with the target residue at the correspond-
ing location. Such comparisons are carried out for all
partition 2 groups. The input target sequence is assigned
to the partition 2 group with the maximum number of
matches.

The program proceeds to the next partition, where,
instead of testing all partition groups, the program tests
only those that are directly tree-linked with the most

http://www.biomedcentral.com/1471-2105/8/379

recently accepted group. This greatly reduces the number
of groups to be searched. The process continues until all
partitions have been searched. Testing only a limited
number of connected groups per partition guarantees an
optimal tree search time, thereby making the program
computationally efficient.

Within a given partition, once input target sequence resi-
dues are matched, they are flagged as "marked" and not
considered in subsequent partitions. Exceptions to the
flagging procedure are carried out only in case of ambigu-
ities. For example, if all of the groups in a partition show
an identical number of characteristic residue matches, an
ambiguity is declared and no match is flagged. This
ensures that all such matched residues of the input
sequence are available again for matching purposes in
subsequent partitions thereby helping resolve the ambi-
guity. Ambiguities may also occur when all groups within
a given partition show no matches with the input
sequence, or, if two successive partitions show identical
numbers of characteristic residue matches. In both these
cases, the program ignores the ambiguous partition(s)
and proceeds to the next one without marking any resi-
due. This allows all of the unmarked residues in the cur-
rent partition to be compared in subsequent partitions.

To illustrate the method, consider an input sequence cor-
responding to a known genus whose characteristic resi-
dues X;, X, and X, for partition 2 are Ala, Pro and Ser
respectively for group A and the corresponding group B
residues (X', X,"' and X,') are Gly, Thr and Met respectively
(Fig. 1a). If the aligned target sequence shows more
matches for X, X, and X; of group A in comparison with
that of X, ', X," and X;' of group B, it implies that the input
sequence belongs to group A in partition 2 and not to
group B. Thus, residues X, X, and X are flagged and com-
parisons in subsequent partitions follow along those
branches that are connected to group A (Fig. 1a). The pro-
gram therefore proceeds to groups C and D in partition 4
ignoring partition 3 as it is identical to the previous parti-
tion 2 (Fig. 1a).

In partition 4, if both groups C and D show equal number
of matches i.e. say, X, and X,' are both Trp and X5 and X'
are both Leu (Fig. 1a) and the aligned target sequence also
contains Trp and Leu at these locations, then the program
will not flag these characteristic residues but will instead
carry them over to partition 5 where these residues will
again be matched in groups E and F (Fig. 1a) to determine
which of these two groups maximally matches the target
sequence. Similar comparisons in subsequent partitions
6-10 unambiguously identify the database strain that
most closely resembles the input target sequence thereby
yielding its strain characteristics.
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a: Sequence groups and characteristic residues in partitioned phylogenetic tree: Representative phylogenetic tree
with sequence groups s|—s|2 forming the branches of the tree. Each group may consist of one or more sequence clusters. Ver-
tical lines divide the tree into phylogenetic distance based partitions |—-10. Nodes closest to a given partition line and located to
the left of the lines define the sequence groups belonging to that partition. Root node and other nodes (A-F) up to partition 5
are shown. Groups corresponding to the different nodes are denoted as "Group n" where n is the node name. For a given par-
tition, characteristic residues (i.e. those residues which are conserved within individual groups but not across the groups) are
designated as X and color matched with their node and group names. Subscripts of X denote residue locations which are num-
bered with respect to a user-defined reference sequence. b: RECOVIR package GUI screenshot. Three options are
shown in the orange encircled region at the top left hand corner of the GUI; File: Allows the output display to be saved in a
file; Tree view: Displays genus tree in database; Help: Provides only limited help as most of the GUI options are self-explana-
tory through mouse attached tips. The user input and the program output parts of the GUI are indicated at the bottom. The
program output part of the GUI displays the output results of the program. The user input area is divided into three parts
shown using green arrows: "query sequence input", "database input” and the "output control options". These three parts cor-
respond to the "select sequences", "database" and "view results" options in the GUI. Details of each of these parts are shown
using differently colored arrows. The white board/"browse files" button (grey arrow) is used to input query sequence(s). Drop-
down menus and toolbars in GUI's database input part are shown using orange arrows along with accompanying numbers; |:
"Choose a database" drop-down menu allows users to select the input target sequence genus, if known. An "unknown" option
may be chosen if the genus is not known; 2: "Select a reference” allows users to select a reference sequence from the drop-
down menu; 3: "View individual database sequence” option allows users to display a sequence from the selected database; 4:
"View all sequences in the database" option allows users to display all the sequences in the selected database; 5: "View group
members in a partition" allows users to select a partition whose all sequences within the different groups are displayed; 6:
"Run" button allows program activation. The yellow arrows and their accompanying numbers in GUI's "View results" part indi-
cate output display options: 7: "Sequence order": displays ID number of each input target sequence; 8/9: Display brief sum-
mary/details respectively of partition-wise matches of characteristic residues for an input target sequence identified by its ID in
box shown using arrow '(a)'; 10: Displays details of characteristic residue matches for a chosen partition specified in box
shown using arrow (b).
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When the genus of the target sequence is not known, the
sequence is first compared with groups of representative
reference sequences (< 3 sequences per group) from each
of the genus trees in the database using ClustalW [49].
Alignment scores are computed for each group. The high-
est alignment score is used to select the most appropriate
genus tree from the databases. Detailed strain identifica-
tion is then conducted as described earlier. The use of a
small number of representative sequences per group
ensures rapid genus determination regardless of the
number of reference sequences present in the genus tree.

Detecting recombination and spontaneous mutations
Partition-wise comparisons allow RECOVIR to detect
abrupt changes in phylogenetic sequence groupings
among trees constructed using sequences from different
genomic parts. Assuming that absence of recombination
creates similar phylogenetic relationships among
sequences from different regions of multiple sequence
alignments, these abrupt changes or incongruities indi-
cate nodes that may possibly contain recombination sites.
For example, an abrupt change is schematically shown
using a pair of hypothetical phylogenetic trees constructed
using sequences from two different genomic regions of a
given set of virus strains (Figs. 2a &2b). A simple incon-
gruity has artificially been built in by interchanging
sequences s1 and s10 between the two trees. Conse-
quently, sequences belonging to nodes A and B that are
distinguished by residues (X, X,, X;) and (X;;" X,;", X34")
in the two trees will not define the recombination sites.
However, subsequent nodes C, D, E and F which reflect
the incongruity between the two trees up to partition 5,
will likely define the recombination sites (Figs. 2a &2b).
For example, if nodes C and D are distinguished by resi-
dues (X, X5, X,) and (X, Xs', X4') in one part of the
genome (Fig. 2a) and by (Y,,, Y53 Ye;) and (Y4, Yss3',
Y,,') in the other part (Fig. 2b), recombination events
must involve some of these residues to explain the incon-
gruity between the trees. Similarly, nodes E and F that are
distinguished by residues (X, Xg, X,) and (X;', Xg', X,') in
one part of the genome (Fig. 2a) and by (Y, Yg5, Yo,) and
(Y5, Yg3', Yo,') in the other part must include the recom-
bination sites (Fig. 2b). Similar systematic comparisons of
the strain distinguishing residues in nodes G through T of
the remaining partitions show that recombination events
can not involve sequences s3-s8 and s11-s12 as the
topology of the nodes involving these residues are identi-
cal in both trees (Figs. 2a &2b). Instead, interchange of
region 1 between sequences s2 and s9 may be a possible
recombination mechanism that leads to the incongruence
between the two trees (Fig. 2¢).

In contrast, if there are changes in some of the strain dis-
tinguishing residues of a given region without changes in
the tree topology, it indicates possible spontaneous muta-
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tions. Detection of possible recombination or spontane-
ous mutations is done manually at present as an
automated version of this feature has not yet been built
into the software.

Program testing and validation

RECOVIR was initially validated by identifying the closest
strains for five noroviruses and five enteroviruses of
known genera from their respective complete and partial
amino acid sequences of the capsids (Table 2). These
viruses were chosen because of their sequence diversity
and the availability of sequences of a large number of
strains or serotypes in public databases. The enteroviruses
included the complete VP1 sequences of Poliovirus-2
(serotype), human enterovirus (HEV)-B including the
Coxsackie viruses, serotypes of the HEV-D species and the
simian enteroviruses.

RECOVIR was further validated using more than 200
complete and partial sequences of different caliciviruses
and more than 100 such picornavirus sequences. Among
the calicivirus sequences, nearly 120 were of norovirus
strains with the remaining ones being of other calicivi-
ruses. Of the picornavirus sequences, nearly 50 were
enterovirus partial sequences including those of echovi-
ruses and other HEV-B serotypes [26], with the remainder
chosen from other picornavirus genera and species (Table
1). Most of the partial sequences were randomly chosen
from different regions of the capsid with some of the par-
tial sequence lengths being only ~20% of the complete
capsid sequence lengths. All norovirus and enterovirus
sequences were selected from the NCBI databases [48].
None of the selected sequences were among those from
the program databases to minimize possible errors due to
biased sequence choices.

Software description

All functional modules of RECOVIR were written in Perl
programming language on Windows XP and the Linux
platforms. A Java-based graphical user interface (GUI) has
been designed to access all functionalities through user-
friendly I/O options (Fig. 1b).

Program input and output

Input selections on the GUI have been divided into three
categories: sequence, databases and options to control
output (Fig. 1b). Any number of query sequences may be
input by either pasting them on the white board area or by
browsing one or more directories for single or multiple
sequence files. There is no limit to the number of input
sequence files. The present version reads sequences only
in FASTA format ignoring all white spaces and non-alpha-
bet characters.
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a, b, c: lllustrating recombination detection using RECOVIR: (2a) & (2b): Phylogenetic trees corresponding to genomic
regions | and 2 of sequences sl—s|2. The different nodes (A-T), partitions (1-10) and the hypothetical node-distinguishing res-
idues (X, Xy, ..., Y|, Yy, ... etc.), are shown. Sequences sl and s10 have been interchanged to create incongruous trees that
depict a simple hypothetical recombination event. (2c): Schematic representation of genomic regions | and 2 of sequences s|—
s10. Rectangular boxes denote the two regions. Different symbols are used to compare the two genomic regions in sequences
sl, s2, s9 and s10 that may cause incongruity between the two trees of figs. (a) and (b). Region | is similar in sequence pairs (sl,
s9) and (s2, s10) while region 2 is similar in sequence pairs (sl, s2) and (s9, s10). Interchange of region | between sequences s2
and s9 would remove the incongruity between the two trees as similar symbols will be brought together in a similar way in
both the trees. Blank boxes indicate that those sequences do not cause incongruities between the trees.

A dropdown menu in the GUI database section allows
specifying the input sequence genus, if known (Fig 1b). A
default reference sequence, used for aligning the input
sequences and for assigning the aligned location numbers
to the input sequence, then pops up in the "Select a refer-
ence" box (Fig. 1b). The default reference sequence may

be changed if required. In case the genus of the input
sequence is not known, the "unknown" option in this box
(Fig. 1b) allows the program to automatically determine
the genus and reference sequence from the built-in data-
bases.
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Table 2: Strains detected from amino acid sequences of noro and enterovirus capsids

Input amino acid

Output

Complete capsid sequence Partial capsid sequence

Detected strains corresponding to input cols

Col (1) Noro Col (2) Entero Col (3) Noro Col (4) Entero Col (1) Noro Col (2) Entero Col (3) Noro Col (4) Entero
Seacroft Polio_2 UK Cox-B5 Minireovirus Polio_3 Beeskow Cox-B5
[AJ277620] [DQ841140] [DQ665819] [AF114383] [U02030] [AF448782] [Q915C5] [AF114383]
Appalachicola Simian_A 2Pl Echo-11 Chiba Simian-7 Chiba Echo-11
[AF414406] [NP_714932] [AB264170] [AB239122] [AB042808] [AF326759] [AB042808] [AF081326]
Baltimore_a HEV-D 3)P2 Echo-13 Minireovirus HEV-D Norwalk Echo-13
[AF414408] [NP_740741] [AB264158] [AB239091] [U02030] [D17595] [IIHM] [AF081327]
Baltimore_b HEV-71 4)P3 HEV-B Chiba HEV-A7I Potsdam Cox-B3
[AF414404] [AAY59418] [AB264152] [DQ842180] [AB042808] [AF135944] [AF439267] [AF231763]
Boxer Cox-B5 5TPI HEV-75 Potsdam Cox_B5 Bitburg Proposed HEV-75
[AF538679] [AAWT71476] [DQ263739] [DQ468142] [AF439267] [AF114383] [AF427112] [AF152298]

Input complete capsid sequences are shown in cols | and 2 while the input partial sequences are shown in cols 3 and 4. The corresponding closest
database strains detected by the program are shown in the last 4 cols whose headers are color matched with those of the input sequence cols. The
NCBI accession codes are enclosed within square brackets for all capsid sequences except for Norwalk virus whose PDB code is correspondingly
shown. The enterovirus capsid sequences refer to those of VP| subunits. Abbreviations used: HEV: Human enterovirus; Cox; Coxsackievirus.

The "Run" button activates the program, displays a
progress bar of the percentage of input sequences proc-
essed and displays results in the output section of the GUI
(Fig. 1b). Depending on the "View results" options cho-
sen, the output includes only a summary or the complete
details of partition-wise matches between the database
residues and the residues of the input sequences. Different
GUI options allow many other details of such matches to
be viewed (Fig. 1b).

Results and discussion

Strain identification of complete and partial norovirus
capsid sequences

Databases

Detailed strain identification results are described here for
selected norovirus strains among the caliciviruses and
some enterovirus strains among the picornaviruses. Com-
plete details for the other caliciviruses and the picornavi-
ruses can be found with the authors.

Sequences belonging to the norovirus genus tree have
been described elsewhere [46]. Briefly, these sequences
form a single group in partition P1 (Fig. 3a). Partition P2
splits this sequence group into the 2 known major geno-
groups GI and GII of noroviruses (Additional file 1)
[18,46]. Group GI further divides into Gla and GIb in par-
tition P3 while group GII divides into Glla and GIIb in
partition P4 (or P5 that is identical with P4) (Fig. 3a &
Additional file 1). Partition 6 further splits both GI and
GII groups. Group Gla is divided into Glal and Gla2
while group GlIa splits into 4 groups (GIlal-a4). In par-
tition 7, Group Gla splits into 4 groups Glal-a4 while
GllIa3 splits further into the Glla3_1 and GIlIa3_2 groups
(Fig. 3a & Additional file 1). Groups GIb, GlIla4 and GIIb

do not split up any further in this partition. Details of the
remaining partitions P8-P10 are available with the
authors.

Characteristic residue comparisons and strain identification for
complete sequences

The characteristic residues of the norovirus genus tree
stored in the program databases unambiguously identi-
fied the closest strains of target norovirus complete capsid
sequences (Table 2). For example, comparisons of the
characteristic residue locations with the corresponding
residues of the norovirus "Seacroft" sequence (NCBI:
AJ277620) showed that the maximum number of
matches in partition P2 occurred in the aligned locations
70V and 203T of group GII and not for GI (Fig. 3a). The
corresponding GI locations were 701 and 201V respec-
tively when mapped to the unaligned reference Norwalk
virus (PDB ID: 1IHM) sequence (Fig. 3b). Thus, the pro-
gram searched only along the GII branch of the norovirus
genus tree in subsequent partitions. In partition P3, the
query sequence maximally matched the GII characteristic
residues 4A, 55, 36V, 44P, 104A, 106G, 205S, 4461, 455P,
508R, 511N and 519F while the corresponding GI resi-
dues in the reference Norwalk virus sequence are 4A, 58,
36V, 44A, 104V, 106N, 203A, 405L, 414F, 460H, 463D
and 471G respectively (Figs. 2a &2b). In partitions P4 and
P5, the maximum number of matches (102G, 206C,
2288, 482D, 562A) occurred in Glla, indicating that fur-
ther database searches in subsequent partitions should be
restricted only to those groups that originate from GllIa.

Of the 4 possible Glla choices (GIlal-a4) in the following
partition P6, the maximum number of characteristic resi-
due matches occurred in group Glla3 (Fig. 3a) corre-
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(Gla2_1)| 193N 209L 220F 231K 238L [4A 5S 36V 44P 104A 106G 205S
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Figure 3

a, b: Partition-wise matching of norovirus characteristic residues: (3a): Wheel representation of the 10 partitions P1—
P10 showing partition-wise matches for the aligned input target sequence (norovirus "Seacroft"; NCBI accession no.
AJ277620). Single letter codes of input target sequence residues that match the characteristic residues in the norovirus data-

base are shown within square brackets for partitions PI1-P7. For

each partition P1-P6, all sequence groups Gn, where n repre-

sents letter combinations, are color coded within parentheses outside the wheel. Of these, sequence groups that match the
database characteristic residues are shown in black. Details about the remaining partitions are available with the authors. Sym-

bols Pn+ indicates that all characteristic residues of the previous

partition "n" are also included in the current partition. (3b):

Detailed partition-wise mapping characteristic residue locations of aligned target sequence (norovirus "Seacroft"; NCBI acces-
sion no. AJ277620) on to reference Norwalk virus (PDB ID: 1IHM) sequence. The last residue in each line is numbered and

@ .
every tenth residue is marked using the g symbol. The symbols ", <> ] J and " map all of such residues from parti-
tions |1, 2, 3, 4, 5 and 6 respectively of Fig. 2a where these symbols are shown near the edge of each partition.

sponding to residues 11S, 13D, 82D, 83L, 103W, 181R,
185M, 227K, 2501, 306G, 329H, 3975, 409V, 436L, 492D,
516V and 519A of the unaligned reference sequence (Fig.
3b). Comparisons in partition P7 showed that of the 2
groups Glla3_1 and GIla3_2 originating from the GlIa3

group of the previous partition P6, the GIla3_2 group
maximally matched the characteristic residues (Fig. 3a).
These matches occurred at 63A, 84S, 110R, 119T, 125V,
1268, 133G, 1391, 145F, 154T, 163E, 184C, 192T, 193G,
207M, 218F, 229R, 236L, 257P, 259N, 347T, 402A, 419V,
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420F, 4478, 448E and 504V of the unaligned reference
sequence (Fig. 3b). Similar comparisons in partitions P8-
P10 conclusively showed that the query sequence is most
similar to the minireovirus-like norovirus strain (Fig. 4)

Similarly, the input Appalachicola Bay, the Baltimore 'a'
and 'b' and the Boxer strain sequences most closely resem-
bled the Chiba, minireovirus and the Potsdam strains of
noroviruses (Table 2). Strains were also correctly pre-
dicted after removing random stretches of 10-15 amino
acids from these sequences indicating thereby that the
strain prediction capability of the program is quite robust
and is independent of the locations of the input target
sequences.

Strain identification of input partial amino acid target sequences of
noroviruses

Strains of five partial amino acid capsid sequences of
noroviruses were consistently predicted using both the
"noro" and "unknown" database options of the GUI (Fig.
1b). Only one of the 5 input sequences (1UK1) explicitly
included the N-terminus residues while the remaining

Query sequence number: 55 (1)

Query file: C:\seq.txt 2)

Query organism name: NV/|Seacroft|tr|Q9IV37 Capsid protein - Human calicivirus
Seacroft/90/UK. (Searching Noro database) (3)

Proceeding path: -->G2-->G2-->G2-->.-->G5--> G9-->G10-->G11-->G10 (4)
P6 ps P9 P10 (5)

P2 |[P3 |[P4 P
(GID)| (GIN)| | (GlIa)

(Gl1a3)||(Gl1a3_2)

Analysis indicates that the input sequence belongs to group/class 10 of partition 10.
This group consists of the following sequences

51_NV|Arg320 (Q9PYA7)

52_NV|Japan (23830)

53_NV|Arg320 (QIPYAT)

54_NV|Bitberg (Q915D2)

55_NV|Oberhausen (Q916E5) (6)

56_NV|Bham132 (Q91V46)

57_NV|Rbh (Q91V40)

58_NV|minireovirus (U02030)

59_NV|Toronto (Q66296)

61_NV|Mexico (Q68291)

62_NV|Mexico (Q68291)

60_NV|Auckland (U46039)

Conclusion: This query sequence is closest to 58 NV|minireovirus in Noro database

Figure 4

Sample output from 'overall classification' button in
GUI: Output summary of partition-wise matches of charac-
teristic residues for a typical norovirus query sequence with
output line numbers shown within parentheses in red.
Details of the query sequence such as its number, input file,
organism and sequence accession number are shown in lines
[-3. The partition-wise search results are shown in line 4.
Each arrow indicates search progression to partition 'Pn’
shown in blue, where n is the partition number. Line 5 shows
the matched sequence groups of Fig. 2a within parentheses
and in magenta color. The "' symbol indicates a partition
which is identical with the previous one. The block of lines
indicated as "6" shows the identified strain of the target
sequence and details the sequences of the strain containing

group.
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sequences 2JP1, 3JP2, 4]JP3 and 5TP1 were from different
capsid regions (Table 3).

Despite the short sizes of the input partial sequences and
the variations in their capsid locations, the program
unambiguously recognized the strains of all of them from
their matches with the characteristic location residues.
Location 70 in partition P2 determined the major geno-
group in all but one sequence. Sequences 1UK1 and 5TP1,
both containing 70V, belonged to genogroup GII while
2JP1 and 3JP2 belonged to genogroup GI based on the
corresponding 701 residue (Table 3; Figs. 2a &2b). All of
the GI residues (2JP1 & 3JP2) contained 20Q in partition
P2. However, the major genogroup of sequence 4JP3
appeared to be ambiguous as it showed features of both
GI and GII groups in partition P2 (ambiguity shown as **
in Table 3). It contained not only 70V, which is typical of
GII sequences, but also the Gl-indicator 20Q. In addition,
this sequence also presented the additional ambiguity of
having an equal number of characteristic residue matches
in both GI and GII groups for partition P2 (Table 3). To
resolve this ambiguity, the program carried over the parti-
tion P2 matches of this sequence (4JP3) to partition P3.

In partition P3, the program examined characteristic resi-
due locations 4, 5, 26, 36 and 44 for all of the sequences
(Figs. 2a, 2b). Residue 44 unambiguously confirmed the
distinction between the GI and the GII group sequences in
this partition. Sequences 2JP1, 3JP2 and 4JP3, by virtue of
44A, were all characterized as GI sequences similar to the
reference Norwalk virus sequence (Fig. 3b; Table 3). In
contrast, sequences 1UK1 and 5TP1, containing 44P, are
genogroup GII sequences. In addition, because 1UK1 has
4A and 5S and sequences 2JP1, 3JP2 and 4JP3 have 26N
in partition P3, choices of their genogroups were unam-
biguously confirmed in this partition (Figs. 2a, 2b; Table
3). Residue 36V, being conserved in all of the sequences
in P3, was not of much help in determining the sequence
groups in this partition (Table 3).

The program ignored partitions P4 and P5 for the 1UK1
and 5TP1 sequences due to ambiguities in residue
matches. The next partition P6 showed another ambiguity
of having more than one group with the highest number
of matches for both these sequences (Table 3). However,
matches in partition P7 clearly indicated that sequence
1UK1 belongs to Gllal while 5TP1 belongs to group
GIIa3_2 (Table 3; Figs. 2a &2b). Further matches in parti-
tions P8-P10 (Table 3) confirmed that 1UK1 and 5TP1
were most similar to the Beeskow and the Bitburg strains
respectively (Tables 2, 3; Additional file 1).

Thus, the identified strain of the partial sequence 1UK1 is
consistent with its NCBI classification as a member of the
GIL4 cluster. However, 5TP1 appears to belong to the
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Table 3: Input partial sequences of norovirus capsids and corresponding database matches

Input target partial capsid sequences of norovirus capsids -A-

>1UKI| [NCB:DQ665819]

MKMASSDANPSDGSTANLVPEVNNEVMALEPVVGAAIAAPVAGQQNVIDPWIRNNFVQAP

GGEFTVSPRNAPGEILWSAPLGPDLNPYLSHLAR
>2JP1| [NCBI:AB264170]

SADGATGAGQLVPEVNTADPIPIDPVAGSSTALATAGQVNLIDPWIINNFVQAPQGEFTI

SPNNTPGDV
>3)P2| [NCBI:AB264158]

GASGAGQLVPEVNASDPLAMDPVAGSSTAVATAGQVNPIDPWIINNFVYQAPQGEFTISPNNTPGDV

>4)P3| [NCBI:AB264152]

GTSGAGQLVPEANTAEPISMDPVAGAATAVATAGQINMIDPWIMSNFVQAPQGEFTVSPNNTPGDV

>5TPI| [NCBI:DQ263739]

DGAAGLVPEINNEAMALDPVAGAAIAAPLTGQQNIIDPWIMNNFVQAPGGEFTVSPRNSP

GEVLLNLELGPEI
>6ST 1| [NCBI: AB058547]

MMMASKDAPTNMDGTSGAGQLVPEANTAEPISMDPVAGAATAVATAGQINMIDPWIMSNF

VQAPQGEFTVSPNNTPGDVLFDLQLGPQLNPFLAHASQ

>6ST5|[Simulated sequence by mutating sequence 6ST| in locations |1, 30 & 40 highlighted in green)
MMMASKDAPTSMDGTSGAGQLVPEANTAEQISMDPVAGASTAVATAGQINMIDPWIMSNF

VQAPQGEFTVSPNNTPGDVLFDLQLGPQLNPFLAHASQ

-B-
Partial Partition-wise maximally matching characteristic residues (Corresponding sequence group)
sequence
P2 P3 P4 P5 Pé6 P7
1UKI 70V (GII) 4A, 5S, 36V, 44P (GlI) ok 1S, 46A, 63A, 65G, 82S, 83A, 84P, 89L
(Gllal)
2)PI 20Q, 701 (GI) 26N, 36V, 44A (Gla) - - 11S,13D, 14G ok
(Glal)
3JP2 20Q, 701 (GI) 26N, 36V, 44A (Gla) - - KK #H
4JP3 ok 26N, 36V, 44A (Gla) - #H#
5TPI 70V (GII) 36V, 44P (GII) it 13D, 14G, 46T, 63A, 65G, 82N, 83L, 84E,
891 (Glla3_2)
6STI 20Q, 70V (##) 4A,5S,26N,36V,44A - - 1IN 13D 14G 82D 46A 63A 65Q 84Q 89L (Gla2_I)
(Gla) 83L (Gla2)
6ST5 20Q, 70V (##) 4A,5S,26N,36V,44A - - 11SI13D 14G 82D 46A 63A 65Q 84Q 89L (Glal_2 or Glal_4)
(Synthetic sequence) (Gla) 83L (Glal)

Ambiguities detected during search process:

**: Equal number of characteristic residue matches found in all of the groups

Blank entry: No matches found for the characteristic residues
--: Identical to previous partition

##: Ambiguity detected: More than one relevant group had equal no. of highest matches
In Table (3B), the maximally matching sequence groups for each partition are shown within parentheses. Residues and sequence groups in Table (3B) use
notations of Figs. 2a & 2b. Residues are color matched in Tables (3A) & (3B). One of the mutated residues in the simulated sequence 6ST5 is highlighted

in green.

GIIL.3 sequence cluster according to the present analysis
and not to GII.4 as shown in the NCBI database. Simi-
larly, partitions P6-P10 allowed the program to confirm
that the remaining sequences 2JP1, 3JP2 and 4JP3 indeed
belong to genogroup GI (Tables 2 &3) which is consistent
with the NCBI classification of these sequences. In addi-
tion, the program determined from residue comparisons
that these sequences 2JP1, 3]JP2 and 4JP3 are most similar
to the norovirus GI Chiba, Norwalk and the Potsdam
strains respectively (Tables 2 &3). Such detailed strain
information is seldom available for partial sequences in
public domain databases.

Strain detection for complete and partial amino acid
sequences of enterovirus and other picornavirus capsids
The program first correctly identified the strains for 5
complete and 5 partial enterovirus capsid sequences. The
complete capsid sequences were those of the VP1 subunits
of poliovirus, simian enterovirus, echovirus and the Cox-
sackievirus strains (one sequence per strain) (Table 2).
Different reference sequences were tested for use in align-
ment with the target sequences. The target sequence
strains were all correctly identified regardless of the choice
of the reference sequences (Tables 2 &3). As an example,
strain identification for the poliovirus strain (NCBI:
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DQ841140) using the porcine enterovirus-8 sequence
(PEV-8: NCBI accession number AF406813) as reference
is briefly described. The second partition P2 of enterovi-
ruses contains only 2 reference groups 1 and 2 in the pro-
gram database (Table 4). Of these, group 2 contains only
the porcine enteroviruses (PEV) serotype 9 (PEV-9; NCBI:
AF363453) indicating that the PEV-9 strains are distinct
from the other enterovirus strains all of which (including
the PEV-8 strain) belong to group 1. This group is charac-
terized by nine residues 40P, 421, 44A, 46E, 48G, 72E,
124T, 125Y, 127R, 150Q, 155P, 157G, 169W, 176S, 191D,
199Y, 202F and 203Y (reference sequence PEV-8 number-
ing) in the database (Table 4). Because all of these resi-
dues match the corresponding locations in the target
poliovirus sequence, the program assigns group 1 to the
target sequence in partition P2 and skips the next partition
P3 as it is identical to P2 (Table 4).

The program detects the separation of group 1 into two
groups 1a and 1b in partition P4. This creates a total of 3
groups (1a, 1b and 2) in this partition (Table 4). While
group la contains only the PEV-8 sequences which have
independently diverged from group 1 of partition P2/P3,
group 1b contains the remaining group 1 sequences of
these partitions. Group 2 of partition P2/P3 remains unal-
tered in partition P4. On comparing the characteristic res-
idues of these three groups, the program determines that
the target sequence most closely resemble group 2 in par-
tition P4 because of the matches with residues 61L, 62Q,
78L, 106S, 115S, 131D, 1521, 170N and 174S (PEV-8

http://www.biomedcentral.com/1471-2105/8/379

numbering) that characterize this group (Table 4). Simi-
larly, matches with residues 43T 55G 64T 84L 156H in
partition P5 allow the program to assign group 6 to the
target sequence in this partition which contains nearly 60
other similar enterovirus sequences including those of
polioviruses (Table 4). Similarly, residue 158G distin-
guishes group 7 as the maximally matching group out of
the eight groups in partition P6. This group includes many
similar strains in the program database including 12
strains of different coxsackievirus serotypes, one echovirus
strain and strains of all 3 poliovirus serotypes (Table 4).

The three poliovirus serotypes, which remain clustered
with several other human enteroviruses in partition P7,
finally separate as an independent group in partition P8
(group details not shown). However, partitions P7 and P8
showed an ambiguity with reference to the input target
sequence. Both of these partitions have more than one
group having an identical highest number of residue
matches with the target. This ambiguity did not allow the
program to decide the best group in these partitions. Con-
sequently, all group information of these partitions was
carried over to the subsequent partition P9 (Table 4).

Partition P9 contains a total of 72 sequence groups
including an independent group (#62) containing only
the poliovirus-2 strains. The program detected this group
to be the maximally matching group for the target
sequence and this detection was confirmed in the next
partition P10. Thus, the input target sequence was cor-

Table 4: Partition-wise strain determination of a poliovirus-2 (PV-2) sequence

Partition  Total no. of groups Matching residues (Numbering based on Reference database strains present in maximally
(Maximally reference PEV-8Tsequence) matching group
matching group no.)
P2,P3  2(I) 40P 42L 44A 46E 48G 72E 124T 125Y 127R 150Q I55P  All enteroviruses including various human (Coxsackie, echo
157G 169W 176S 191P 199Y 202F 203Y and polio) strains and some animal strains like bovine and
simian enteroviruses. Includes the PEV-8 strain but does not
include the PEV-9 strain (More than 100 strains)
P4 3(2) P3+ [61L 62Q 78L 106S 115S 131D 152L 170N 174S] All of the P2/P3 partition strains except PEV-8 strains
P5 7(6) P4+ [43T 55G 64T 84L 156H] 32 echoviruses, 2| coxsackieviruses, all polioviruses and 7
other human and animal enteroviruses (Total of ~60 strains)
Pé6 8(7) P5+ [158G] All polioviruses, 12 coxsackieviruses and | echovirus
P7, P8 14, 44£ ok
P9 72(62) P6+ [4K 19L 35N 47T 49E 51D 52T 60E 63A 66C 68F  Poliovirus-2 strains
69S 70L 73T 77Y 79M 80S 8IR 83S 85M 90L 109T 113S
1171 119K 120F 123F 126W 129D 137L 138E 140K
I53F 154T 166S 167Q 171A 172P 173N 175T 178Y
180R 184C 185P 187S I89R 192F 195V 197N 198Y
206D 207G 209F 216Y 217G 2181 221G 222D 225G
228S 230R 233N 242G 249F 250L 252P 253V 254N
256E 258Y 262P 264V 266Y 268A]
Pl0 75(64) P9+ [I11 17N 33M 36Q 37G 45A 50S 57S 58T 7IR 76E  Poliovirus-2 strains

103Y 121K 122A 130L 146N 147L I59A 179T 186A
200T 210D 2271231M 232A 2481 251R 263L 265S 281P]

*; Ambiguity: 2 or more groups have identical number of matches in both these partitions.

1l: Porcine enterovirus (NCBI accession no.: AF406813)

£: No matching reference group for partitions P07, P08 due to ambiguity; Strains not shown for these two partitions. All strains of poliovirus serotypes (I, 2 & 3)

cluster as an independent group in partition P8.

The complete capsid sequence of input PV-2 target sequence (NCBI accession: DQ841 140) was used as input. Symbol Pn+: Indicates "including all matching

residues of the earlier partition Pn".
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rectly detected as a poliovirus-2 strain (Table 4). Strains
for the remaining picornaviruses (Tables 2 &3) were also
unambiguously detected regardless of the choice of the
reference strains.

Spontaneous mutations and recombination

Spontaneous mutations

Partition-wise matches for the norovirus partial sequence
6ST1 indicated spontaneous mutations. While residue
20Q in partition P2 indicates that 6ST1 belongs to GI, res-
idue 70V in the same partition indicates that this sequence
may belong to GII as seen for sequence 5TP1 (Table 3).
The program, therefore, checks both these possibilities for
maximum number of matches in subsequent partitions.
Each subsequent partition confirms that this sequence
indeed belongs to GI and is closest to the Potsdam strain
(NCBI accession AF439267). Therefore, location 70,
which is an isoleucine for other GI sequences (Table 3),
may be a spontaneous mutation site given the relatively
large number of matches found which, in turn, are
expected to maintain the topology of the tree. However, a
complete sequence would be required to completely rule
out the involvement of this site in recombination events.

Residue-wise comparisons may suggest that a few sponta-
neous mutations may be sufficient to force RECOVIR to
detect a wrong genogroup of the target sequences. For
example, it may appear that the single mutation 44A to
44P in sequence 6ST1 might switch it to a GII group
(Table 3). However, the fact that the program checks the
maximum number of matches of strain diversifying resi-
dues in each partition ensures that such single mutations
within the capsid does not randomly change the strain
type of the sequence. This is one of the major strengths of
the present method.

For the software to branch off to a different strain on the
phylogenetic tree, several mutations are usually required.
For example, if locations 11, 30 and 40 of sequence 6ST1
are mutated without changing the rest of the sequence, it
results in the synthetic GI sequence 6ST5 belonging to
group Glal in partition P6 instead of Gla2 that corre-
sponded to 6ST1 (Table 3; Additional file 1). Compari-
sons of strain diversifying residues in further partitions
result in sequence 6ST5 belonging to a different GI cluster
than that of 6ST1 (data not shown). Thus, the present
method is able to identify spontaneous mutations that
may lead to subtle changes in the phylogenetic groups of
partial sequences.

Recombinations

Only a few enterovirus strains could be analyzed for
recombination using RECOVIR due to the manual nature
of such analysis in the present version of the software. Par-
tition-wise comparisons of strain diversifying residues of
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VP1-VP3 genes of the hepatitis-A (HAV) strains at the
nucleotide and the amino acid levels indicated that the
SLF88 (AY032861) and the MBB (M20273) strains may
be putative parental strains that yield the recombinant
product strain 9F94 (AJ519487) (data not shown). This is
consistent with recent results obtained using conventional
topology comparisons of phylogenetic trees by sliding
windows across the corresponding multiple aligned
sequences [55].

Despite the limited results, it appears that the present
approach may be more efficient in detecting recombina-
tion sites than current methods which are inherently time
consuming as their accuracy depends on detailed topolog-
ical comparisons obtained from multiple runs using dif-
ferent sequence windows. In addition, the entire
procedure must be repeated every time a new sequence
needs to be analyzed. In contrast, the present method
does not repeatedly compare phylogenetic trees using
sliding sequence windows. Instead, it efficiently performs
node-wise comparisons of the trees using a one-time cre-
ated database of strain distinguishing residues.

Approximate processing times

The program rapidly identified the calicivirus and the
picornavirus strains. In typical runs on outbreak sequence
data available from public databases, it took only 6 and 9
minutes of real time respectively to identify the strains of
a number of norovirus sequences contained in 2 files. The
first file had 71 complete norovirus capsid sequences
while the second file had 117 norovirus capsid sequences
of which 22 were complete sequences while the remain-
ing 95 were partial sequences each of which was between
75 and 85 residues long. This indicates a real time (includ-
ing I/O) of approximately 5 seconds per sequence. Com-
parable speeds were also observed in processing mixtures
of calicivirus and picornavirus sequences when the
"unknown" database option (Fig. 1b) was required. Com-
plete benchmark details of such strain identification runs
are available with the authors.

Advantages of the software

Trees based on complete capsid sequences are robust

A significant computational advantage of using complete
capsid sequences to construct the RECOVIR databases is
that these databases are very robust with respect to the
method used to construct the database trees. The overall
topology of the trees, described by the relative branch
lengths and the connectivity among the branches, remain
essentially unchanged regardless of the neighbor-joining
method used to draw the tree. For example, in all of the
trees constructed using the complete capsid sequences,
the sequence groups and the characteristic residues of the
groups remain unchanged for partitions P2-P9. Only the
P10 sequence groups show minor changes depending on
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the tree construction method used (data not shown but
are available with the authors). Consequently, strain iden-
tification results using RECOVIR are very reliable.

In contrast, trees constructed using a partial capsid
sequences or using amino acids of more conserved and
relatively smaller non-capsid regions (such as the
polymerase or the non-coding parts of the virus genomes)
are relatively unstable because the topology of these trees
critically depend upon the method of tree construction.
Therefore, databases generated from such trees are not as
reliable as the ones generated using trees of complete cap-
sid sequences.

Tree-structured databases

The partitioned residue databases in RECOVIR confer
important advantages to this software over existing
homology-based strain identification techniques. Because
each partition and its nodes highlight branching orders
that provide evolutionary context of sequence relation-
ships, the databases in RECOVIR most likely indicate bio-
logically significant residues as seen for the noroviruses
[46].

More practically, searches using the database residues are
able to show increasing similarities between the target
sequences and appropriate database sequences as subse-
quent partitions are considered. Consequently, ambigui-
ties in strain identification, such as those occurring due to
the partial nature of the sequences or those due to possi-
ble mutations in the target sequences, may be resolved at
least in the first few partitions where appropriately
matched sequence groups are found. Such matches are
not possible using conventional homology based
sequence comparisons.

Advantages in classification

Residues of the RECOVIR databases may be used to deter-
mine relatedness among the corresponding sequence
groups in a partition-dependent manner thus helping in
virus classification. For example, while the database resi-
dues of P2 distinguish among two of the major norovirus
groups and the murine norovirus group, the correspond-
ing residues in subsequent partitions distinguish among
the more closely related sequence groups. Such residue-
based distinctions among the sequence groups provide
useful ways to uniquely identify many tentatively classi-
fied sequences like those of the bovine and the alphatron
noroviruses.

Bovine and the alphatron norovirus groups

Our earlier analysis had indicated that the bovine norovi-
ruses may belong to genogroup I while the alphatron-like
sequences may belong to genogroup II [46]. One way to
understand this is to compare the inter-group evolution-

http://www.biomedcentral.com/1471-2105/8/379

ary distances, measured in evolutionary units (eu),
between GI, GII and the groups containing the bovine and
the alphatron sequences. These distances refer to the
number of mutations among the sequences. In trees con-
structed using neighbor-joining methods and Gonnet-
250 distance matrices, the GI-GII distance, calculated
between the GI and the GII groups after excluding the
bovine sequences, is 0.20919eu while the corresponding
Gl-bovine distance, calculated between the GI and the
bovine groups, is 0.18303eu (Fig. 5). Thus, the difference
between these distances (0.02586eu) is less than the par-
tition width which results in clustering the bovine
sequences together with the GI sequences in the same P2
group. Similarly, the GI-GII distance, calculated after
excluding the alphatron-like sequences, is more than the
GlI-alphatron distance calculated between the GI and the
alphatron groups thereby clustering the alphatron-like
sequences in the GII group of partition P2. Thus, the phy-
logenetic distances are consistent with the proposal that
the bovine sequences appear to share sequence similari-
ties with the GI genogroup while the alphatron sequences
share GII sequence features [46].

These relative phylogenetic distances among the sequence
groups may be further understood by comparing the
sequences of the P2 groups. On aligning the three differ-
ent P2 sequence groups, the conserved residues among
the bovine sequences show significant similarities with
those of the GI sequences but not with the conserved
sequences of GII. For example, the conserved GI residues
45T, 46A, 47G, 48Q, 49V and 50N (Norwalk virus num-
bering) are also conserved in the bovine sequences (Fig.
6). Similarly, the alphatron sequences show more residue
similarities with the GII sequences than with those of GI
(Fig. 6). Such similarities are further confirmed in subse-
quent partitions P3-P10 of RECOVIR. Therefore, the soft-
ware places the bovine-like sequences in GI and the
alphatron-like sequences in the GII group. Although these
assignments are consistent with our earlier analysis [46],
they do not agree with recent sequence clustering studies
that assign independent genogroups to the bovine and the
alphatron sequences [40]. Experimental determination of
the possible biological roles of the conserved residues
(Fig. 6) will help resolve the issue.

Other advantages

Many of the RECOVIR database residues are involved in
putative capsid related functions in noroviruses [46]. This
indicates that these residues and the corresponding
sequence groups may critically identify subtle changes in
capsid related functions among the genogroups, species
and serotypes. Hence, RECOVIR may provide functional
insights not currently available with current classification
schemes of caliciviruses and picornaviruses.
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Figure 5

Phylogenetic tree of noroviruses with and without
the bovine sequences: The names and NCBI accession
number are shown for each strain. The GI, Gll and the
murine sequence groups are indicated. The evolutionary
units (eu) are the distances in terms of number of mutations.
The tree that includes the bovine norovirus sequences is
shown in black while changes in tree topology due to the
exclusion of the bovine sequences are shown in red. Red
slashes indicate the bovine branches AB, CD, CE and DF that
get excluded in the tree constructed without the bovine
sequences. Instead, branch C'E' connects the Gl group to the
Gl group. Distances which undergo the maximum changes
are enclosed within green boxes while the corresponding
changed distances are enclosed within red boxes. All other
distances remain nearly identical in both trees. The bigger
green and the red boxes at the top left hand corner of the
figure show calculations of the Gl-bovine distance in one tree
and the GI-GII distance in the other tree. The green square
bracket indicates a cluster of Gll sequences whose branch
lengths are within the values shown. The sequences used in
the trees are identical with those used in earlier analysis
(Chakravarty et al., 2005). Both trees were drawn using the
same neighbor-joining methods under identical distance
models and sequence alignment parameters as described in
the text.
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Figure 6

Alignment of the three norovirus sequence groups of
partition P2: GROUP_I consists of the aligned Gl
sequences that include the bovine sequences while
GROUP_2 consists of the aligned GlI including the alphatron
sequences. Group_3 consists of the murine sequences. All
amino acid residues are shown using single letter alphabets.
Dashes (-) indicate variable locations and dots (.) indicate
insertions/deletions. The SUMMARY lines indicate the align-
ment results of these two groups. The X, highlighted in
magenta, denote group-specific locations i.e. locations which
are conserved within each group but not among the groups.
Such locations distinguish among the different sequence
groups and form part of the RECOVIR databases. The yellow
highlighted regions denote some residues that are conserved
in Gl and the bovine sequences but are not identical with the
corresponding Gll locations. The corresponding locations
that are conserved in Gll and the alphatron-like sequences
are highlighted in grey.

Software limitations

A limitation of the present version of the software is that
the implemented residue databases may become outdated
given the rapidly increasing number of emerging strains of
calici and picornaviruses. Therefore, the databases need to
be regularly upgraded. However, upgrades should be car-
ried out only when changes become statistically signifi-
cant. In our experience, this would mean that at least 50%
of the emerging sequences must show changes in the same
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residue locations before those residues are considered reli-
able enough to be incorporated in the databases.

Conclusion

A software package RECOVIR that can efficiently and
accurately characterize strains of the highly divergent cali-
civiruses and picornaviruses is described. In contrast to
current techniques that largely rely on sequence similarity
scores to identify strains, RECOVIR implements a method
indicated previously for noroviruses [46]. The software
creates partitioned databases of capsid residues that
unambiguously distinguish among a large number of cal-
icivirus and the picornavirus reference strains. Using effi-
cient tree-based search techniques, residues of target
capsid sequences are compared with the residue databases
to rapidly identify strains of the target sequences of all cal-
iciviruses and picornaviruses. Strains of more than 300
complete and partial capsid sequences of calici and picor-
naviruses were successfully identified with an average
time (real time including I/O) of approximately 5 seconds
per sequence. The method is general enough to be appli-
cable to the nucleotide sequences of calici and picornavi-
rus capsids thereby providing rapid and powerful
alternatives that complement current strain determina-
tion and classification techniques of these and other
ssRNA viruses.

Availability and Requirements
¢ Project home pages: http://prion.bchs.uh.edu/recovir

e Operating systems: Windows-XP and Linux
¢ Programming language: Perl and Java

e Other requirements: X-Windows support (such as Cyg-
win) is needed for remotely running the program under
Linux environment.
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