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Due to the explosion of cancer genome data and the urgent needs for cancer

treatment, it is becoming increasingly important and necessary to easily and

timely analyze and annotate cancer genomes. However, tumor heterogeneity is

recognized as a serious barrier to annotate cancer genomes at the individual

patient level. In addition, the interpretation and analysis of cancer multi-omics

data rely heavily on existing database resources that are often located in

different data centers or research institutions, which poses a huge challenge

for data parsing. Here we present CCAS (Cancer genome Consensus

Annotation System, https://ngdc.cncb.ac.cn/ccas/#/home), a one-stop and

comprehensive annotation system for the individual patient at multi-omics

level. CCAS integrates 20 widely recognized resources in the field to support

data annotation of 10 categories of cancers covering 395 subtypes. Data from

each resource are manually curated and standardized by using ontology

frameworks. CCAS accepts data on single nucleotide variant/insertion or

deletion, expression, copy number variation, and methylation level as input

files to build a consensus annotation. Outputs are arranged in the forms of

tables or figures and can be searched, sorted, and downloaded. Expanded

panels with additional information are used for conciseness, and most figures

are interactive to show additional information. Moreover, CCAS offers

multidimensional annotation information, including mutation signature

pattern, gene set enrichment analysis, pathways and clinical trial related

information. These are helpful for intuitively understanding the molecular

mechanisms of tumors and discovering key functional genes.
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1 Introduction

Cancer is one of the leading causes of human death all over

the world (Jemal et al., 2007; Ferlay et al., 2013; Torre et al., 2016).

The occurrence and development of each cancer is driven by a

unique set of abnormalities in its genome (Stratton et al., 2009;

Garraway and Lander, 2013; Birkbak and McGranahan, 2020).

Therefore, dissecting changes in the cancer genome at the multi-

omics level could significantly improve our understanding of the

molecular mechanisms of tumorigenesis and help the

development of new treatments (Tebani et al., 2016; Olivier

et al., 2019). To date, a series of large cancer genome

sequencing projects have been launched as the next

generation sequencing (NGS) technology becomes more and

more widely used in cancer researches (Cerami et al., 2012;

Gao et al., 2013; ITP-CAoWG, Consortium, 2020). Genome

annotation, as an effective approach, provides a

comprehensive perspective of cancers’ abnormalities by using

multi-omics data. However, there are still a number of challenges

that need to be addressed. Firstly, inter-tumor heterogeneity is

increasingly recognized as a serious barrier in annotating cancer

genome at the individual patient level. Secondly, comprehensive

annotation relies heavily on existing data resources that are often

located in different data centers or research institutions, which

poses a huge challenge to integrate those resources. Finally,

additional essential knowledge such as clinical trials, drug

interactions, literature of the abnormalities are needed because

they have far-reaching significance for understanding tumors.

In order to make cancer genome annotation convenient and

efficient, several tools, online databases, and web servers have

been developed over the past decades. ANNOVAR (Wang et al.,

2010), Ensembl-VEP (McLaren et al., 2016), and SnpEff

(Cingolani et al., 2012) were developed as annotation tools for

variants function based on population frequencies in normal or

disease cohorts, as well as damage predictions at genomic level.

PCAWG-Scout (Goldman et al., 2020a), UCSC Xena (Goldman

et al., 2020b), and OpenCRAVAT (Pagel et al., 2020) were

designed for complex visualization and analysis services of

large scale cancer datasets. PCGR (Nakken et al., 2018),

GenomeChronicler (Guerra-Assuncao et al., 2020), and PORI

(Reisle et al., 2022) were developed for cancer genome annotation

at the individual patient level, providing many useful functions,

such as mutation signature analysis, mutation burden analysis,

drug interactions, as well as clinical trials analysis. However,

these tools are more focused on parsing genomic level data, while

lacking comprehensive annotations based on the integration of

multiple cancer-related databases, or have limitations in data

analysis at the individual patient level.

Here, we present Cancer genome Consensus Annotation

System (CCAS), which is a comprehensive annotation server

for individual cancer genome at multi-omics level. CCAS builds

two ontology frameworks and integrates 20 data resources, which

are commonly used in cancer researches. Information and

knowledge in CCAS can be classified into 6 aspects: genomics,

disease, normal/cancer cohorts, clinical trials, literature, and drug

interactions (Supplementary Table S1), enabling comprehensive

annotation at the individual patient level. The integration of these

information allows CCAS to annotate not well studied

abnormalities in patient-specific cancer subtypes by

transferring knowledge across cancer subtypes and databases.

Moreover, CCAS uses a two-step process to identify key

functional genes that significantly change in the individual

patient and play important roles in tumorigenesis.

Furthermore, CCAS offers analysis including mutation

signature pattern, gene set enrichment analysis. Overall, CCAS

is aimed at annotating cancer genome precisely and effectively in

the individual patient level.

2 Materials and methods

2.1 Data collection

To provide high-quality annotation results, CCAS integrated

20 resources (Supplementary Table S1) to build the annotation

results at 6 aspects including genomics, disease, normal/cancer

cohorts, clinical trials, literature, and drug interactions (Figure 1).

Genomics aspect data were collected from Ensembl (Zerbino

et al., 2018), dbNSFP (Liu et al., 2020), dbSNP (Sherry et al.,

2001), HGNC (Tweedie et al., 2021), and UniProtKB (UniProt,

2021). Those resources provided knowledge of gene descriptions,

IDs (gene IDs, protein IDs, and variant IDs) in different

databases, protein function descriptions, and protein damage

predictions. For the disease aspect, data were integrated from

COSMIC (Tate et al., 2019), Disease Ontology (Schriml et al.,

2022), MeSH (Baumann, 2016), single sample GSEA (ssGSEA)

(Subramanian et al., 2005) and Reactome (Gillespie et al., 2022).

Those data provided insights of patient’s cancer subtype

including disease description, disease synonymous names,

disease ontology name, and related pathways. Besides, the

mutation signature analysis and ssGSEA analysis were used to

reveal underlying biological processes of the patient. For the

normal/cancer cohorts aspect, ExAC (Karczewski et al., 2017),

gnomAD (Karczewski et al., 2020), intOGen (Martinez-Jimenez

et al., 2020), the 1000 Genomes Project (Genomes Project et al.,

2010), Cancer Hotspots V2 (Chang et al., 2016; Chang et al.,

2018), Cancer Genome Interpreter (Tamborero et al., 2018) were

collected. Those data provided the frequencies of variants both in

cancer and normal cohorts. The ClinicalTrials.gov (https://

clinicaltrials.gov/ct2/home) database was integrated into

Clinical trial aspect. Those data provided related clinical trials

information of patient’s cancer subtype including study design,

eligibility criteria, and intervention. The Literature aspect was

built mainly in the aid of the CancerMine (Lever et al., 2019)

database, providing relationships between genes and cancer

subtypes. DGIdb (Freshour et al., 2021) and Open Target
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Platform (Koscielny et al., 2017; Carvalho-Silva et al., 2019) were

used to build the Drug interactions aspect, providing potential

drug interactions of abnormalities. Disease Ontology (Schriml

et al., 2022), MeSH (Baumann, 2016), Ensembl (Zerbino et al.,

2018), and HGNC (Tweedie et al., 2021) databases were used to

build the ontology frameworks which were used to integrate data

from multiple resources. The detailed description of the

databases can be found at CCAS documentation (https://ngdc.

cncb.ac.cn/ccas/docs/#/, 2.3 Data sources integrated into CCAS).

2.2 Ontology frameworks construction

To integrate multiple data sources, we built two ontology

frameworks respectively: ontology of cancers and genes. For the

ontology of cancers, we downloaded data from Disease Ontology

and parsed them by the Pronto package (https://pypi.org/project/

pronto/). Cancer subtypes with MeSH IDs were recursively

extracted starting from the node “cancer” (DOID: 162).

Ultimately, 395 cancer subtypes were integrated into the

CCAS. To make it easier for users to specify cancer types, all

cancer subtypes were manually classified into 10 groups

according to the human tissue type. MeSH terms

corresponding to each cancer were fetched by using NCBI’s

E-utilities. For ontology of genes, we retrieved gene IDs from

the Ensembl database (release version 104) and converted them to

NCBI gene IDs and UCSC gene IDs by using the HGNC database.

2.3 Data standardization and integration

Human protein records were extracted from UniProtKB’s

XML file using Python library of BeautifulSoup4. Data in Open

Target Platform, DGIdb, CancerMine, and intOGen were

downloaded in tabular format. Pathway information along

with diagrams were extracted from the Reactome database.

Data from Cancer Hotspots V2 were converted into the VCF

format and indexed by Tabix (Li, 2011) after sorting by

chromosomes. For the ClinicalTrials.gov database, NCT ID

(Clinical trial ID) and other metadata were extracted by the

Python XML module. After that, clinical trials with drugs were

retained. The MeSH terms in clinical trial records were linked to

Disease Ontology by MeSH IDs. Data in Ensembl, dbNSFP,

1000 Genomes Project, ExAC, gnomAD, and dbSNP were

FIGURE 1
The workflow of CCAS can be divided into three modules: Submission, Pre-processing and Annotation, and Interpretation. After the user
submits data to CCAS, CCAS first converts the format of the files. SNV/Indels data will be converted to VCF format and other data types will be
converted to “Gene ID \t Value” format. CCAS will then annotate the patient data using the integrated data sources at multiple levels. Mutation
Signature and ssGSEA calculations are also performed. The annotation results are stored in sqlite3 database (a single file database) and json file.
CCAS has built user-friendly interface to help users navigate and interpret the annotation results, enabling efficient identification of key functional
genes at the individual patient level.
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retrieved by using Ensembl-VEP (McLaren et al., 2016) and

ANNOVAR (Wang et al., 2010). CrossMap tool was used to

convert data with different genome coordinates (Zhao et al., 2014).

2.4 Overall workflow of CCAS

The overall workflow of CCAS can be divided into three

modules: Submission, Pre-processing and Annotation, and

Interpretation (Figure 1).

The Submission module was used to collect user’s uploaded

data as well as the reference genome version and cancer subtype of

the patient (Figure 1). A submission portal was built to provide

user-friendly interface at the home page of the web application.

Cancer subtype can be selected at the left part of portal. The multi-

omics data files along with reference genome version can be

uploaded at the right part of the submission portal (Figure 2A).

The mandatory inputs were reference genome version, cancer

subtype, and the data file in SNV/Indels level.

The Pre-processing and Annotation module consists of four

main parts: format conversion, variant level annotation, gene

level annotation, and patient level annotation (Figure 1). At the

format conversion part, SNV/Indels level files including

mutation annotation format (MAF) or 5 columns tabular

(5coltsv) format were converted into the VCF format. “chr”

prefix was added if it did not exist. For data in expression,

CNV andmethylation level, files in region format were converted

to 2 columns table (“Ensembl Gene ID \t Value”) by using

bedtools (https://bedtools.readthedocs.io/) (Figure 1). At the

variant level annotation part, data in SNV/Indels level were

annotated. the pipeline integrated ANNOVAR, Ensembl-VEP,

Vcfanno (Pedersen et al., 2016), vt-normalize (Tan et al., 2015),

DeconstructSigs (Rosenthal et al., 2016), GSVA package

(Hanzelmann et al., 2013), and GSEAbase (https://

bioconductor.org/packages/GSEABase/) package to conduct

the entire annotation. Briefly, vt-normalize was used to

normalize the variants in the VCF file, then split multi-allele

variants into different records. Then, CCAS used Ensembl-VEP

FIGURE 2
The workflow of submitting data and checking job progress in CCAS. (A) Submitting portal at home page. CCAS receives data at multi-omics
level including SNV/Indels (required), Expression, Copy Number Variation (CNV), and Methylation along with, job title, notification email, the Disease
Ontology ID, and reference version. (B) Check results page in CCAS. On this page the user can check the progress of the job. (C) Notification emails
sent to users at the start of a job and at the end of a job.
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to annotate variants with data from the Ensembl database, and

used ANNOVAR to annotate the VCF file with dbNSFP,

1000 Genomes Project, ExAC, gnomAD, and dbSNP database.

Vcfanno was used to annotate variants with the Cancer Hotspots

and Cancer Genome Interpreter database. Output of this part

was an annotated VCF file. At the gene level annotation part,

annotated VCF and data in other level were converted in to json

format. All abnormalities in different level were converted to

gene level and were annotated by multiple databases including

DGIdb, CancerMine, Reactome, intOGen, Open Target

Platform, UniProtKB, and ClinicalTrials.gov. User specified

reference genome version was used both in variant level

annotation and gene level annotation. At the patient level

annotation part, Disease Ontology, ClinicalTrials.gov, and

Reactome were used. Briefly, Disease overview information

were extracted from Disease Ontology database. Related

clinical trials were annotated according to the cancer subtype

by using ClinicalTrials.gov database. Pathways information

aggregated related pathway of each abnormal gene. Besides,

the mutation signature analysis and ssGSEA analysis were

performed using DeconstructSigs package, GSVA package,

and GSEAbase package (Figure 1). Output of this module had

a single sqlite3 database file (https://www.sqlite.org/index.html),

an annotated json file, Mutation signature analysis results, and

ssGSEA analysis results (Figure 1).

The Interpretationmodule was used to help users understand

the annotation results (Figure 1). The annotation results can be

divided into two parts: patient level annotation and gene level

FIGURE 3
Overview of the annotation results. The annotation results of CCAS consists of patient level annotation and gene level annotation. Gene detailed
pages can be viewed by clicking “View” button at the end of each record in the gene annotation table.
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annotation (Figures 1, 3). The patient level annotation results

included Disease overview, Mutation signature analysis, ssGSEA,

Clinical trials and Pathways. The gene level annotation results

included a gene annotation table and gene detail pages for each

gene. Annotation results from variant level databases were

integrated in the gene detail page for each gene. Several filters

were built in CCAS to help users to filter abnormalities. Basic

filters were used to filter abnormalities by gene symbols, gene

names, Ensembl gene IDs and locus types. Advance filters were

built to data at different level. For SNV/Indels level data, CCAS

provided filters based on the IMPACT value from the Ensembl-

VEP tool. For other level data, range filters were developed for

filtrations (Figure 1; Supplementary Figure S2A).

2.5 Web server implementation

The web application was compatible with major web

browsers, including Firefox and Chrome. CCAS used the

front-end and back-end separation mode. The back-end APIs

was built using FastAPI (https://fastapi.tiangolo.com/). MySQL

relational database was used for data storage. The front-end

pages were constructed using Vue.js (https://vuejs.org/index.

html) along with Vue-router (https://router.vuejs.org/) and

Vuex (https://vuex.vuejs.org/index.html). Axios (http://www.

axios-js.com/) was used to send AJAX requests to convey data

from the back-end. The whole system was deployed in the Nginx

server (http://nginx.org/). CentOS (https://www.centos.org/) was

used to host pipelines and web applications. Back-end job queue

and annotation pipeline were built by using Python, R and Shell

scripts, and running for each user submission.

2.6 Run annotation

Users can submit a job on the home page, fill in the job title and

notification email, select the cancer type, upload the file and specify

the file type. Submission is started by clicking the “Start” button

(Figure 2A). Users can check the progress of the annotation on the

Check Results page (Figure 2B). An email notification will be sent

to the user at the beginning and the end of the job (Figure 2C). The

whole annotation process typically takes around 5–10 min, but

depends on the size of the uploaded data.

3 Results

3.1 Glance of the annotation results

The annotation results of CCAS can be divided into two

parts: patient level annotation and gene level annotation

(Figure 3). The patient level annotation provides a whole

picture on patient’s tumor characteristics. The gene level

annotation offers a summarizing table combined with filters

and gene detail pages for each abnormal gene (Figure 3).

Tables can be searched, sorted, and downloaded. Most figures

are interactive to show additional information. In a word, users

can easily understand the tumor characteristics and screen for

key functional genes in the individual patient level by

using CCAS.

3.1.1 Overview of tumor characteristics at
patient level

Patient level annotation presents the overview of the patient’s

tumor. CCAS shows the type of data submitted by the user, the

synonymy of the disease and the associated IDs in the “Job &

Disease Overview” section. In order to decipher biological

processes involved in tumorigenesis, CCAS calculates the

mutation signature based on the patient’s SNV profile and

compares it with COSMIC mutation signatures in the

“Mutation Signatures” section. In addition, CCAS provides the

results of the ssGSEA analysis, which helps user to gain insight into

the patient’s tumor characteristics from the enriched gene sets in

the “ssGSEA” section. Furthermore, CCAS provides disease-

related clinical trials to help users understanding the progress of

cancer treatment in the “Clinical trials” section. Finally, CCAS

provides the pathways consisting of all the abnormal genes in the

“Pathways” section (Figure 3; Supplementary Figure S1).

3.1.2 Understanding abnormalities
comprehensively at gene level

The gene annotation table provides a detailed view of

abnormal gene functions. The left side of the table shows

basic information, including gene symbol and gene name. The

right side shows the number of annotation hits in patient’s multi-

omics data and the resources integrated in CCAS (Figure 3;

Supplementary Figure S2B).

Gene detail pages are used to display comprehensive

information about genes. Gene basic information, including

gene IDs in various databases, and gene functional description

are shown on the top of the page (Figure 3; Supplementary Figure

S3A). The lower part of the page shows the patient’s

abnormalities in the gene (Figure 3; Supplementary Figures

S3B–G). Especially, CCAS describes the abnormalities at the

SNV/Indels level, including the frequency of variants in normal

and cancer populations, and damage predictions. This helps

users to gain deep insight into the variants. In addition, CCAS

provides pathway information to help users to understand the

gene function (Figure 3; Supplementary Figure S3C). Gene

frequencies are provided if the gene has been detected in

cancer cohorts (Figure 3; Supplementary Figure S3D). The

Literature section provides current research status on this

gene (Figure 3, Supplementary Figure S3E). Finally, CCAS

offers interactions of genes and drugs, which helps users to

evaluate whether a gene is targetable (Figure 3, Supplementary

Figures S3F,G).
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3.2 Identifying key functional genes at
individual patient level

Key functional genes not only have significant functional

changes in patients’ tumors, but also play a key role in

tumorigenesis. Because of the heterogeneity between tumors,

these key functional genes may be different at the individual

patient level and have not been well studied in the current tumor

type. CCAS provides complete annotation on those genes by

transferring knowledge across cancer subtypes and databases.

Based on the CCAS annotation results, users can find key

functional genes through a two-step process. Firstly, filters can

be used to screen significant functionally changed genes. The

basic filters can filter genes by gene symbols, gene names,

Ensembl gene IDs and locus types. Advanced filters can be

applied to specific data types (SNV/Indels, expression, CNV

and methylation) (Figure 3; Supplementary Figure S2A).

Secondly, essential genes in tumorigenesis are screened by

examining information in associated literature, drug

interactions, pathways, and cancer cohorts (Figure 3).

3.3 Case study

To evaluate the performance of CCAS, we carry out a case

study for a patient with prostate cancer (DOID:10283). The

patient’s multi-omics data are downloaded from GDC data

portal (https://portal.gdc.cancer.gov/) at SNV/Indels level

(MAF format), expression level (tabular format), CNV level

(tabular format) and methylation level (tabular format). We

perform basic filtering on data at expression level, CNV level

and methylation level to simulate input data by users (Details can

be found at https://ngdc.cncb.ac.cn/ccas/docs/#/, 5. Case study).

The results of the case study can be viewed by clicking the demo

button on the home page or the check results page. At the patient

level annotation, the mutation signature analysis reveals that the

tumor cells may have a deficiency of DNA mismatch repair

function. ssGSEA analysis indicates that multiple cancer related

pathways harbor abnormalities including the AKT pathway and

the PDGF pathway, which are consistent with previous studies

(van der Poel, 2004; Shorning et al., 2020; Shen et al., 2021). At

the gene level annotation, by selecting high impact variant at the

SNV/Indels level filter above the gene annotation table, users

obtain four genes with significant functional alterations:

ARID1A, ZFHX3, GADL1, and ARID2. Based on the results,

ARID1A has 2 related pathways, 70 related cancer cohorts,

55 related publications, and 7 related drug interactions. The

gene detail page of ARID1A shows that ARID1A is a subunit of

the SWI/SNF chromatin remodeling complex, and plays an

important role in changing chromatin structure by altering

DNA-histone contacts within a nucleosome in an ATP-

dependent manner. Abnormalities occur at SNV/Indels levels

(Abnormalities in user’s upload data section). Moreover,

ARID1A is involved in 2 pathways including the RUNX1

pathway, which plays an important role in the development of

leukemia (Pathways section) (Kaisrlikova et al., 2022). The

literature section indicates that ARID1A is observed in a

variety of cancers including bladder cancer (Saito et al., 2018;

Cao et al., 2020), ovarian cancer (Kim et al., 2016), liver cancer

(Sun et al., 2017) and colon cancer (Mathur et al., 2017; Iftekhar

et al., 2021). The Cancer cohorts section also reveals ARID1A

mutations in multiple cancer subtypes, which is consistent with

the Literature section. The Drug interactions section suggests

that Atezolizumab is likely to interact with this gene. In

summary, we suggest that although ARID1A is not frequently

mutated and well-studied in prostate cancer, it may be one of the

important factors in tumorigenesis of prostate tumors and may

act as a potential biomarker for this cancer.

Taken together, we conclude that CCAS provides complete

annotation on the individual cancer genome both at patient level

and gene level by integrating 20 data resources. Especially, genes

which are not frequently mutated and well-studied in the

patient’s cancer subtype can be well annotated in CCAS.

4 Discussion

Cancer is known as a complex disease and is often driven by

abnormalities in key cancer genes that occur in cells at multiple

omics levels (Chakraborty et al., 2018; ITP-CAoWG,

Consortium, 2020). With the explosion of cancer genome

data, cancer genome annotation has become an effective way

to uncover the underlying mechanisms of tumorigenesis and

help the development of treatment strategies (Tebani et al., 2016;

Olivier et al., 2019). However, there are still some challenges to be

addressed. Firstly, inter-tumor heterogeneity, as a fundamental

characteristic of cancer genome, causes incomplete annotation in

individual patients. Abnormalities that play crucial roles in

individual patients may have low population frequencies and

may not be well studied in the cancer type. Secondly, knowledge

which is important for cancer genome annotation is usually

deposited in different databases with various data structure.

Finally, vital knowledge such as clinical trials, drug

interactions, literature is lacking in cancer genome annotation.

Existing tools have been developed to facilitate annotation on

cancer genome but have limitations on providing more

comprehensive annotation for individual patients at multi-

omics level. CCAS is designed to annotate multi-omics data

from the individual patient and has the following features: Firstly,

CCAS has built two ontology frameworks to integrate resources.

To date, CCAS has enrolled 20 widely recognized databases in the

field. Secondly, within CCAS, knowledge about normal/cancer

cohorts, clinical trials, literature, and drug interactions are

integrated, providing deep insights into patient’s tumor

characteristics. Thirdly, genes which are not frequently

mutated and well-studied in one cancer subtype can be well
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annotated in CCAS by transferring knowledge from other cancer

subtypes. This can help users to understand deeply of

heterogenous cancer genomes with the aid of existing

knowledge across cancer subtypes. Moreover, CCAS provides

a two-step process to identify key functional genes that are

significantly changed in the patient and play important roles

in tumorigenesis, which may provide aid to biomarker

identification. Finally, CCAS has a user-friendly web interface,

one-click input data submission, smooth and efficient data

analysis. No installation or command lines skills are necessary

for using CCAS, making it very efficient for users. The current

version of CCAS still has some shortcomings, which only

integrates knowledge in the resources but with the lack of

consensus score to evaluate abnormalities in patients. In a

future version, we plan to design an algorithm to support

consensus ranking score for each abnormality.
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