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Abstract. We have used fluorescent microscopy to 
map DNA replication sites in the interphase cell nu- 
cleus after incorporation of biotinylated dUTP into 
permeabilized PtK-1 kangaroo kidney or 3T3 mouse 
fibroblast cells. Discrete replication granules were 
found distributed throughout the nuclear interior and 
along the periphery. Three distinct patterns of replica- 
tion sites in relationship to chromatin domains in the 
cell nucleus and the period of S phase were detected 
and termed type I (early to mid S), type II (mid to 
late S) and type III (late S). Similar patterns were 

seen with in vivo replicated DNA using antibodies to 
5-bromodeoxyuridine. Extraction of the permeabilized 
cells with DNase I and 0.2 M ammonium sulfate re- 
vealed a striking maintenance of these replication 
granules and their distinct intranuclear arrangements 
with the remaining nuclear matrix structures despite 
the removal of >90 % of the total nuclear DNA. The 
in situ prepared nuclear matrix structures also incor- 
porated biotinylated dUTP into replication granules 
that were indistinguishable from those detected within 
the intact nucleus. 

D 
SPITE considerable progress in defining specific mo- 
lecular components involved in eucaryotic DNA rep- 
lication such as DNA polymerases a, di, and DNA 

primase (Kornberg, 1988), our understanding of native 
replicational sites and their structural organization and as- 
sociations in the cell nucleus has lagged behind. Most previ- 
ous studies designed to localize the sites of DNA replication 
in eucaryotic cells have used autoradiographic microscopy. 
These techniques have been very useful in determining cells 
active in DNA replication and the general distribution of 
replication sites in the cell nucleus over peripheral versus in- 
ternal sites and over condensed heterochromatin versus 
diffuse euchromatin (Hay and Revel, 1963; Milner, 1969; 
Huberman et al., 1973; Fakan and Hancock, 1974; Fakan, 
1978; Smith et al., 1984). The level of resolution of these 
techniques, however, severely limits their potential useful- 
ness for studying the structural organization of individual 
replicational sites in the cell nucleus. 

This has prompted us to explore more sensitive and 
higher-resolution approaches to this problem. Langer et al. 
(1981), who first synthesized biotin-labeled nucleotides for 
use as nucleic acid-affinity probes also demonstrated that 
5-([N-biotinamidocaproyl]-3-aminoallyl)-2'-deoxyuridine-5'- 
triphosphate (biotin-ll-dUTP) ~ is effectively incorporated 
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1. Abbreviations used in this paper: biotin-lI-dUTP, 5-([N-biotinamidocap- 
royl]-3-aminoallyl)-2'-deoxyuridine-5'-triphosphate; BrdU, 5-bromodeoxy- 
uridine; glycerol buffer, 20 mM Tris-HCI, pH 7.4, 25% glycerol, 5 mM 
MgCt2, 0.5 mM EGTA, 0.5 mM PMSF; TBS buffer, 10 mM Tris-HC1, 

into DNA by a variety of DNA polymerases, including the 
mammalian replicative enzyme DNA polymerase cc Nu- 
merous studies have also indicated that permeabilized cell 
systems maintain many basic features of eucaryotic replica- 
tion in vivo, including semiconservative replicative-like syn- 
thesis, which continues DNA synthesis at in vivo initiated 
replication sites (Berger et al., 1977; Reinhard et al., 1977; 
van der Velden et al., 1984), Okazaki fragment synthesis 
and ligation into DNA of replicon size (Berger et al., 1977; 
Gautschi et al., 1977; van der Velden et al., 1984a; Miller 
et al., 1985), and bidirectional replication at discrete repli- 
con subunits that are of similar size as replicons active in 
vivo and arranged in tandemly repeated arrays or replicon 
clusters (Hand and Gautschi, 1979). 

With this in mind, we developed a permeabilized cell sys- 
tem to study the incorporation of biotin-ll-dUTP into newly 
replicated DNA. The sites of the biotinylated, newly synthe- 
sized DNA were then directly visualized by fluorescent mi- 
croscopy after reaction with Texas red-streptavidin. Al- 
though our study is the first reported attempt with this 
technique for visualizing DNA replication sites in cells from 
multicellular organisms, Olins and Olins (1987) recently 
used biotin-11-dUTP in an in vitro nuclear system to visual- 
ize DNA synthesis in the macromolecular replication band 
of the ciliated protozoa Euplotes eurystomus. Their studies 
demonstrated that the biotin-11-dUTP incorporation system 
maintained certain characteristic structural features of DNA 
synthesis which were previously derived from in vivo 
studies. Our results demonstrate that DNA synthesis in the 

pH 7.4, 0.15 M NaCl, 5 mM MgCI2; TBS-Tween buffer, 10 mM Tris-HC1, 
pH 7.4, 0.15 M NaCI, 0.2 mM MgCI2, 0.2% Tween 20. 
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cell nucleus occurs at several hundred discrete granular sites 
termed replication granules. The distribution of these 
replicational sites in relationship to chromatin domains in the 
cell nucleus was altered markedly as the cells traversed S 
phase. Three distinct S phase-dependent patterns were 
defined (types I, II, and III) and there was a remarkable 
maintenance of each of these three replication types in the 
nuclear matrices prepared from the corresponding permea- 
bilized cells. 

Materials and Methods 

Cell Culture and Synchronization 

Kangaroo kidney PtK-l cells (CCL35; American Type Culture Collection 
[ATCC], Rockville, MD) and mouse Balb/3T3 fibrobtasts (ATCC CCL163) 
were grown in DME (4.5 g glucose/liter; Gibco Laboratories, Grand Island, 
NY) supplemented with 10% FCS, 20 p,g/liter penicillin G (Gibco Labora- 
tories) and l ml/liter gentamicin (Gibco Laboratories) in 6-well tissue cul- 
ture dishes (Falcon Labware, Oxnard, CA). At 50-60% saturation, the cells 
were transferred onto cover slips (".,1.5 × 104 cells/cm 2) and allowed to 
grow for 40-48 h. For synchronization, the culture medium on cover slips 
(",,0.5 ml) was replaced by the same medium supplemented with 0.5% FCS 
instead of 10% and cultured for 72 h in this low serum medium. To count 
the cell number and mitotic index, the cells on cover slips were fixed in ab- 
solute methanol at -20°C  for at least l0 min and stained with Hoechst 
33258 dye (Sigma Chemical Co., St. Louis, MO) for easy observation of 
mitotic chromosomes. After this serum starvation, the number of mitotic 
cells decreased to 0%. The arrested cells were released from the GO stage 
by replacement with 10% serum medium and incubated for 0-24 h in a 
CO_+ incubator. 

In Situ Incorporation of Biotin-lI-dUTP 

PtK-I or 3T3 cells on cover slips were washed twice with TBS buffer (10 
mM Tris-HCl, pH 7.4, containing 0.15 M NaCl and 5 mM MgCI,.), then 
with glycerol buffer (20 mM Tris-HCI, pH 7.4, containing 25% glycerol, 
5 mM MgCI2, 0.5 mM EGTA and 0.5 mM PMSF), and then permeabi- 
lized with glycerol buffer containing 0.04% or 0.5% Triton X-100 at room 
temperature for 3 min and washed with glycerol buffer. The cover slips were 
then covered with 50/~l of 50 mM Tris-HCI, pH 7.4, containing 10 mM 
MgCI2, 0.5 mM EGTA, 25% glycerol, 40 ~M dATE 40 ~M dGTE 40 ~M 
dCTP, 16/~M biotin-ll-dUTP (Bethesda Research Laboratories, Gaithers- 
burg, MD) and 2 mM ATP (DNA synthesis medium), incubated at 37°C 
for 2-60 min, and washed with TBS buffer containing 0.5% Triton X-100. 
To minimize disruption of nuclei, the permeabilized cells were treated with 
TBS buffer containing 0.5 mM CuSO4, 0.5 mM sodium tetrathionate, 0.5% 
Triton X-100, and 0.5 mM PMSF at room temperature for 10 min, or they 
were fixed in absolute methanol at -20°C  for 10 min. Both treatments gave 
the same results. The addition of ATP in the DNA synthesis medium is not 
absolutely required for incorporation of biotin-ll-dUTP. With ATE how- 
ever, the fluorescence increased severalfold in intensity. 

Preparation of In Situ Nuclear Matrix 

Preparation of in situ nuclear matrix was carried out before or after incorpo- 
ration of biotin-dUTE The samples (untreated or permeabilized cells after 
biotin-dUTP incorporation) were washed twice with TBS buffer, then 
treated with the same buffer containing 0.5% Triton X-100 and 0.5 mM 
PMSF at room temperature for 30 min. The chromatin was digested with 
100 p.I of DNase I (5 U/ml of TBS buffer, at room temperature for l0 min; 
U; Sigma Chemical Co.), then extracted with 200/~l of 20 mM Tris-HCl, 
pH 7.4, containing 0.2 M ammonium sulfate and 0.2 mM MgCl2 at room 
temperature for l min. The samples were then washed twice with TBS- 
Tween buffer (10 mM Tris-HCI, pH 7.4, containing 0.15 M NaCl, 0.2 mM 
MgC12, and 0.2% Tween 20). For DNA synthesis on in situ nuclear ma- 
trix, the samples were washed twice with glycerol buffer and incubated with 
DNA synthesis medium at 37°C for 5 min as described above. 

In Vivo Incorporation of S-Bromodeoxymidine (BrdU) 
Mouse 3T3 ceils grown on cover slips were incubated at 37°C for 30-120 
min. with DME containing 10/zM BrdU and 1 ~M fluorodeoxyuridine. Af- 

ter four rinses in TBS, the cells were fixed with 4% paraformaldehyde 
freshly made in TBS buffer at 4°C for 15 min, washed with TBS six times, 
permeabilized in TBS containing 0.5 mM CuSO+ and 0.5% Triton X-100 
for l0 rain at room temperature, and rinsed four times in TBS buffer. 

Fluorescent Microscopy 

To detect biotinylated DNA, the appropriately rinsed permeabilized cells 
or in situ nuclear matrix were washed twice with TBS-Tween buffer, and 
incubated with 60 #l of Texas red-conjugated streptavidin (5 #g/ml in TBS- 
Tween; Sigma Chemical Co.) at 37°C for 30-60 rain. We found streptavidin 
was much better than avidin for our purposes. Because of its very basic pl 
("~10), fluorochrome-conjugated avidin stained nucleoli slightly with or 
without biotin-dUTP incorporation. Moreover, it has been reported that 
avidin nonspecifically binds to chromatin. These problems were eliminated 
with streptavidin. 

To detect BrdU-substituted DNA, the rinsed permeabilized cells were in- 
cubated in 4 N HCI for 30 min at room temperature to denature the DNA, 
rinsed five times in TBS-Tween, incubated at 37°C for 1 h with an afffinity- 
purified monoclonal mouse IgG antibody to BrdU in TBS-Tween, rinsed 
five times in TBS-Tween and reacted with a rhodamine-conjugated rabbit 
anti-mouse IgG (1:50 in TBS-Tween; Cooper Biomedicals, Malvern, PA). 

All samples were then stained with Hoechst 33258 dye (0.5 #g/ml in 
TBS-Tween buffer) at room temperature for 10 min, washed four times with 
TBS-Tween buffer, mounted with 5 #1 of PBS containing 50% glycerol, and 
observed immediately under a Zeiss Photomicroscope III equipped with a 
Ill RS vertical illuminator for epifluorescence, a 100-W mercury lamp, and 
Zeiss filter sets (nos. 48-77-02 and 44-7-14) for visualizing Hoechst and 
Texas red or rhodamine staining, respectively. Photographs were taken 
using Kodak technical pan film 2415 (ASA 400; Eastman Kodak Co., Roch- 
ester, NY). Exposure time was generally 2 rain for newly synthesized DNA 
or 15 s for Hoechst 33258 staining. 

Results 

Incorporation of Biotin-ll-dUTP in 
Permeabilized Cells 

We have used a highly sensitive fluorescent microscopic 
technique to study the structural localization of newly syn- 
thesized DNA in permeabilized cells. Briefly, kangaroo kid- 
ney PtK-1 or mouse 3T3 fibroblast cells were grown on cover 
slips and permeabilized as described in Materials and 
Methods. DNA synthesis was performed with biotin-ll- 
dUTP, an analogy of dTTP that is effectively incorporated 
into DNA by eucaryotic DNA polymerases (Langer et al., 
1981). The structural localization of the newly synthesized 
DNA in the cells was then visualized under the fluorescent 
microscope after treatment with Texas red-conjugated strep- 
tavidin. 

About 25% of the nuclei of exponentially growing PtK-1 
cells were stained by this fluorescent probe. The other cells 
were completely devoid of stain and were likely non-S phase 
cells. The nascent DNA was located in numerous granules 
that were distributed throughout the nuclear interior, except 
for the nucleoli (Fig. 1, a and d). The replication granules 
were of similar size (ranging from 0.4 to 0.6 ~m in diameter 
with most "~0.5/zm) and often appeared to be clustered into 
tandemly linked, chain-like arrays (Figs. 1, a and c, 2, a, d, 
g, and j) .  Whereas the nuclei of most cells that incorpo- 
rated biotin-ll-dUTP showed a similar granular pattern, 
some nuclei ('~10%) had mainly peripheral staining (data 
not shown). From results to be described later (see Fig. 6), 
we believe that the peripheral staining represents DNA repli- 
cation during the latter stages of S phase. Preincubation with 
inhibitors of the replicative enzyme DNA polymerase 
(aphidicolin or N-ethylmaleimide), completely prevented the 
incorporation of biotin-11-dUTP into the nuclear DNA (Fig. 
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Figure 1. Incorporation of biotin-dUTP into PtK-1 nuclei. Kangaroo 
kidney PtK-1 cells on coverslips were permeabilized as described 
in Materials and Methods using 0.5% Triton X-100, and incubated 
with DNA synthesis medium at 37°C for 10 min. Complete DNA 
synthesis medium contained 50 mM Tris-HCl, 7.4, containing 10 
mM MgCI2, 0.5 mM EGTA, 25% glycerol, 40 #M dNTP, 16/zM 
biotin-ll-dUTP, and 2 mM ATP. (a and d) Complete medium; (g) 
Preincubated with 10/~g/ml aphidicolin in glycerol buffer at 0°C 
for 30 rain; (i) Preincubated with 10 mM N-ethylmaleimide as g; 
(k) Complete medium - dNTP + biotin-dUTP; (rn) Complete 
medium - biotin-dUTP; (b and e) Corresponding Hoechst 33258 
staining of a and d; (c,f, h,j, l, and n) Corresponding phase micros- 
copy to a, d, g, i, k, and m, respectively. Visualization of newly 
synthesized biotinylated DNA and Hoechst 33258 staining are de- 
scribed in Materials and Methods. Bars, 4/~m. 

1, g-j) .  There was also no fluorescence within nuclei in the 
absence of dNTP (Fig. 1 k) or biotin-I 1-dUTP (Fig. 1 m). 

A time study of incorporation from 2 to 60 min is shown 
in Fig. 2. The granular intranuclear replication sites do not 
appreciably increase in size or number as DNA synthesis 

continues in the cells. Rather, there is a progressive increase 
in the intensity of individual replication granules with in- 
creasing time of incorporation. At any given incorporation 
time, the staining intensity of most of the granules appeared 
to be very similar. The total number of replication granules 
in each nucleus was estimated by direct counting of granules 
from prints of photographed structures. The values ranged 
from 180 to 300 granules per nucleus with an average of 

250. This represents a minimal estimation, because some 
of the granules in each nucleus were not visible in the partic- 
ular focal plane that was photographed. These results sup- 
port the notion that replication occurs at a multitude of dis- 
crete structural domains within the cell nucleus and further 
suggest that these numerous sites are carrying out DNA syn- 
thesis at comparable rates. 

Newly  Syn thes i zed  D N A  on In  S i tu  Nuc lear  Matr ix  

As an approach to identifying the structural associations of 
the replication granules within the cell nucleus, we extracted 
the cells after DNA synthesis with a series of treatments 
(e.g., DNase I and 0.2 (NH4)2504, see Materials and Meth- 
ods) designed to remove chromatin and soluble nuclear com- 
ponents while minimizing perturbation of the general size, 
shape, and nonchromatin structures of the cell nucleus. The 
remaining in situ nuclear matrix was surrounded by a cyto- 
skeletal framework that likely adds to the stability of this nu- 
clear substructure. A detailed study of these in situ prepared 
nuclear matrices will be published elsewhere (Nakayasu, H., 
and R. Berezney, manuscript in preparation). The prepara- 
tions were very similar to those previously described (Capco 
et al., 1982; Staufenbiel and Deppert, 1984; Fey et al., 
1986). They were devoid of histones, contained <10 % of the 
total nuclear DNA and EM revealed a typical nuclear matrix 
structure consisting of a surrounding nuclear lamina, resid- 
ual nucleoli, and an elaborate intranuclear fibrogranular 
network. 

As shown in Fig. 3, there was a remarkable maintenance 
of the replication granules after preparation of DNA- 
depleted in situ nuclear matrices. Both the size of individual 
granules and their distribution throughout the in situ ma- 
trices (Fig. 3 c), including exclusion from residual nucleoli, 
were strikingly similar to the corresponding nuclei of per- 
meabilized ceils (Fig. 3 a). Because the intranuclear fibro- 
granular structure of the in situ prepared nuclear matrix is 
clearly visible under phase-contrast microscopy (Fig. 3 d), 
we were able to further observe that many of the replication 
granules are sequestered over this internal network. The ap- 
proximate number of granules per matrix structure (150- 
300) and the fluorescence intensity of the individual granules 
were also comparable to that in nuclei, despite the removal 
of >90% of the total nuclear DNA (the effective removal of 
DNA from individual matrices was always monitored by 
Hoechst staining). 

A number of investigations have demonstrated in vitro 
DNA synthesis in isolated DNA-depleted nuclear matrices 
that is mediated virtually exclusively by the replicative en- 
zyme, DNA polymerase c~ (Berezney and Smith, 1980, 
1982; Jones and Su, 1982; Mikhailov and Tsanev, 1983; 
Nishizawa et al., 1984; Smith et al., 1984; Foster and Col- 
lins, 1985; Wood and Collins, 1986; Tubo and Berezney, 
1987a). We, therefore, investigated the structural organiza- 
tion of DNA synthesis in the in situ nuclear matrix prepara- 
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Figure 2. Time course of incorporation of biotin-dUTP into permeabilized PtK-I cells. PtK-1 cells on coverslips were permeabilized with 
0.04% Triton X-100 and then incubated with DNA synthesis medium containing biotin-I 1-dUTP at 37°C for 2, 5, 20, and 60 min. Visualiza- 
tion of newly synthesized DNA and staining with Hoechst 33258 dye were carried out as described in Materials and Methods. Bars, 4 #m. 

tions after biotin-11-dUTP incorporation. The results dem- 
onstrated a granular pattern of localization strikingly similar 
to that of the in situ nucleus (Fig. 3 e). The matrix-bound 
replication granules were, again, preferentially distributed 
along the internal network of the nuclear matrix but not in 
residual nucleoli (Fig. 3, e and f )  and were of  similar size 
and found in similar numbers (150-300) as in permeabilized 
cells. 

Relationship of DNA Replication Patterns to 
Chromatin Structural Domains in the Cell Nucleus 

PtK-1 cells, due to their extraordinary flat shape (and conse- 

quently flat nuclei), are ideally suited for structural localiza- 
tion studies of the cell nucleus. Unfortunately, they have little 
visible condensed chromatin (heterochromatin). This made 
it virtually impossible to distinguish between incorporation 
over dense heterochromatic versus diffuse euchromatic 
regions in the nucleus. We, therefore, studied the structural 
localization of newly synthesized DNA in mouse 3T3 fibro- 
blasts, which have well-defined perinuclear and intranuclear 
heterochromatic regions in their nuclei. This is evident in 
Fig. 4, where Hoechst staining of 3T3 cells showed both ex- 
tremely intense staining regions (heterochromatin) and much 
fainter diffuse staining regions (euchromatin). Our observa- 
tions, which are described below, lead us to propose three 
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Figure 3. DNA synthesis in permeabilized cells and after extraction for in situ nuclear matrix. (a and b) PtK-I ceils on coverslips were 
permeabilized with 0.04% Triton X-100 and incubated with the DNA synthesis medium at 37°C for 5 min. In c and d, the cells were 
then treated with DNase I and 0.2 M ammonium sulfate to prepare in situ nuclear matrix structures (see Materials and Methods). In e 
and f, in situ nuclear matrices were first prepared followed by the incubation for DNA synthesis. Bars, 4/~m. 

distinct patterns of replication sites in the cell nucleus termed 
types I, II, and III. 

(a) ~ p e  I. Approximately 35 % of the total 3T3 cells ex- 
hibited detectable DNA synthesis. Of these, about half of the 
nuclei revealed discrete intranuclear granules (Fig. 4, a,  b, 
and g) that were very similar to those in PtK-1 cells. The 
replication granules were, again, completely excluded from 
nucleoli (visible as darker regions in phase microscopy and 
also as unstained regions in Hoechst staining), but were not 
excluded from heterochromatic regions (visible as slightly 
darker regions in phase microscopy and also as impressively 
bright regions after Hoechst staining). In cells of type I, 
therefore, DNA replication was proceeding at both euchro- 
matic and heterochromatic regions. 

(b) ~ II. About 25 % of nuclei synthesizing DNA showed 
a different replication pattern, termed type II. In these nu- 
clei, significant fluorescence appeared over the perinuclear 
region including the perinuclear heterochromatin (Fig. 4, c, 
d, and h). Whereas there were also many intranuclear gran- 
ules, these replication granules, unlike type I patterns, were 
preferentially associated with the intense Hoechst staining 
heterochromatic regions including the perinucleolar hetero- 
chromatin. The replication granules were also often arranged 
in small clusters. 

(c) l~ype I lL Another pattern (type III) was seen in the re- 
maining 25 % of nuclei synthesizing DNA. Extremely bright 
fluorescence was distributed over many of the intranuclear 
heterochromatic regions (Fig. 4, e, f, and i). These bright 
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Figure 4. DNA synthesis on permeabilized 3"13 cells. Mouse 3T3 cells were permeabilized with 0.04% Triton X and incubated with DNA 
synthesis medium at 37°C for 10 min. (a and b) Type I DNA replication pattern; (c and d) type II DNA replication pattern; (e and f )  
type Ill DNA replication pattern; (g, h, and i) enlargements of types I, II, and III, respectively; arrows point to replication granules forming 
ring-like structures surrounding nucleoli in type II structures. Bars, 4/an. 

regions often appeared to be composed of clusters of gran- 
ules with a size similar to the replication granules of  types 
I and II. This was most obvious in the perinucleolar heter- 
ochromatic, in which the replication granules clustered into 
ring- or horseshoe-like arrays. Fluorescent were also ob- 
served at the perinuclear heterochromatic region. In con- 
trast, the euchromatic regions were completely devoid of 
newly synthesized DNA. We conclude that DNA replication 
is proceeding virtually exclusively at heterochromatic re- 
gions in type III. 

These three patterns were well maintained during prepara- 
tion of in situ 3T3 nuclear matrix. Type I (Fig. 5 a), type II 
(Fig. 5 c), and type III (Fig. 5 e) distributions were easily 
recognizable and were found in similar proportions as in per- 
meabilized cells. 

DNA Replication Patterns in 313 Cells after 
Cell Synchronization 

To determine the possible relationship of these three different 
patterns of DNA synthesis to the S phase, we synchronized 
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Figure 5. Maintenance of newly synthesized DNA on in situ 3T3 
nuclear matrix. 3T3 cells on coverslips were permeabilized and 
DNA synthesis was performed as in the legend to Fig. 4. The cells 
were then treated with DNase I and 0.2 M ammonium sulfate to pre- 
pare in situ nuclear matrix structures (see Materials and Methods). 
(a) Type I structure on in situ nuclear matrix; (c) type II structure; 
(e) type III structure; (b, d, and f )  corresponding phase microscopy 
of a, c, and e, respectively, arrowheads point to replication granules 
forming ring-like structures surrounding residual nucleoli in type 
II structures on matrix; Bars, 4/xm. 

the 3T3 cells by serum deprivation (see Materials and 
Methods). 3T3 cells were arrested at the Go phase after incu- 
bation in medium containing 0.05% serum for 72 h. As 
shown in Fig. 6 a, DNA synthesis began between 10 and 
12 h after addition of 10% serum and mitosis after 22-24 h. 
Fig. 6 b indicates the frequency of each replication type dur- 
ing S phase. At early S phase, the bulk of the nuclei syn- 
thesizing DNA (,080%) were type I. In contrast, most nuclei 
synthesizing DNA during late S phase (,,o70%) were type 
III. These results indicate that type I is specific for early 
stages of DNA replication and type III is typical of the later 
stages. Whereas type II nuclei were found throughout S 
phase, the ratio of type II increased significantly during mid 
S phase (Fig. 6 b). The type II pattern may, therefore, repre- 
sent a transition stage from type I to type III. 

Relationship to In Vivo Sites of Replication 

Although considerable studies indicated that permeabilized 
cells are likely to be suitable in vitro model systems to study 

the structural organization of DNA replicational sites in the 
cell nucleus (see Introduction), it was important to attempt 
to test directly this assumption. Recently mAbs to BrdU have 
been effectively used to detect nuclei synthesizing DNA in 
vivo (Gratzner, 1982). We, therefore, pulsed 3T3 cells with 
BrdU and performed indirect immunofluorescent micros- 
copy after incubation of the cells with an affinity-purified 
mAb to BrdU and an appropriate rhodamine-conjugated sec- 
ondary antibody (see Materials and Methods). After incor- 
poration times ranging from 30 to 120 min, the newly repli- 
cated DNA was distributed in spatial patterns that were 
remarkably similar to the types I, II, and III patterns 
identified in permeabilized cells after biotin-11-dUTP incor- 
poration (Fig. 7). The replication sites in the type I-like pat- 
terns, however, displayed considerable size heterogeneity, 
with dimensions ranging from those of the replication gran- 
ules detected with biotin-ll-dUTP ('00.5 #m) to several 
microns. Moreover, many of these larger structures had ring- 
like or chain-like shapes (Fig. 7 a). Unfortunately, the 
fluorescent patterns of pulse periods <30 min were too weak 
to interpret accurately. We were, therefore, unable to deter- 
mine whether the larger structures correspond to actual sites 
of replicating DNA or postreplicated DNA organized into 
higher-ordered structures. In any case, a considerable por- 
tion (30-50 %) of the total nuclear sites that contained in vivo 
replicated DNA were strikingly similar in size and shape to 
the replicational granules detected with the biotin-11-dUTP 
system. 

Discussion 

Eucaryotic DNA is replicated in a series of tandemly re- 
peated subunits along the continuous DNA molecule, termed 
replicons (Huberman and Riggs, 1968; Hand, 1978). Adja- 
cent replicons are further organized into clusters that repli- 
cate as a unit at particular times in S phase (Huberman and 
Riggs, 1968; Hori and Lark, 1974; Hand and Tamm, 1974; 
Hand, 1975, 1978; Painter and Young, 1976; Painter, 1978; 
Lau and Arrighi, 1981). The numerous reports that specific 
DNA sequences are replicated at discrete times during S 
phase (Goldman et al., 1984; Pierron et al., 1984; Jalouzot 
et al., 1985; Gilbert, 1986), supports the conclusion that 
replicon cluster synthesis is temporally and spatially regu- 
lated along the chromosomal DNA (Hand, 1978). Our 
results further suggest that there are precise structural sites 
of replicon cluster synthesis in the cell nucleus. We find that 
DNA synthesis is sequestered within discrete sites dis- 
tributed throughout the nuclear interior and termed replica- 
tion granules. Each replication granule may correspond to a 
replicon cluster assembly, in which numerous tandemly ar- 
ranged replicons are coordinately synthesizing DNA. As- 
suming "05 x 104 replicons per average diploid mam- 
malian nucleus (Huberman and Riggs, 1968) and an average 
of "0 25 replicons per replicon cluster (Painter and Young, 
1976; Hand, 1978), the number of replication granules de- 
tected in type I nuclei (200-300) is consistent with the 
predicted number of replicon clusters presumed to be active 
at a given time in S phase. These discrete granular sites of 
replicon cluster synthesis are also maintained after extrac- 
tion of the permeabilized cells to prepare DNA-depleted nu- 
clear matrix (Figs. 4 and 5). Moreover, DNA synthesized on 
nuclear matrices was also arranged in similar replication 
granules (Fig. 4). 
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Figure  6. Synchronization of 3T3 cells. 
3T3 cells was arrested by serum starvation 
(see Materials and Methods) then released 
from the Go stage by the addition of 10% 
serum. (a) Changes of DNA synthesis 
and mitotic index after the addition of 
10% serum. (b) Percent of each structural 
pattern of newly synthesized DNA at sev- 
eral time points during S phase. 

The structural maintenance of these in situ sites of  DNA 
synthesis in nuclear matrix is consistent with numerous 
reports that conclude that the nuclear matrix contains the at- 
tachment sites for both replicon origins and replication forks 
(Berezney and Coffey, 1975; Dijkwel et al., 1979; McCready 
et al., 1980; Vogelstein et al., 1980; Berezney and Buch- 
holtz, 1981; Aelen et al., 1983; Valenzuela et al., 1983; van 
der Velden et al., 1984b; Tubo and Berezney, 1985; Carri 

et al., 1986; Dijkwel et al., 1986; Jackson and Cook, 1986a; 
for a recent review see van der Velden and Wanka, 1987). 
DNA polymerase c~, primase, and other putative replica- 
tional enzymes are associated with the nuclear matrix in a 
cell cycle and replicative dependent manner (Berezney and 
Smith, 1980, 1982; Jones and Su, 1982; Mikhailov and 
Tsanev, 1983; Nishizawa et al., 1984; Smith et al., 1984; 
Foster and Collins, 1985; Wood and Collins, 1986; Collins 

Figure  7. Visualization of in 
vivo DNA synthesis for 3T3 
cells using antibodies to BrdU. 
Exponentially growing 3T3 
cells were incubated at 37°C 
with 10 #M BrdU and 1 /xM 
flurodeoxyuridine and pro- 
cessed for immunofluorescence 
staining with antibodies to 
BrdU as described in Mate- 
rials and Methods. The results 
shown are after a 60-min 
BrdU pulse. No differences 
were seen in pulse periods 
ranging from 30 to 120 min. 
(a) Type I replication pattern; 
(c) type II replication pattern; 
(e) type III replication pat- 
tern; (b and f )  corresponding 
Hoechst 33258 staining to a 
and e; (d) corresponding phase 
microscopy to c to better see 
the relationship of type I1 rep- 
lication sites to the nucleoli. 
Bars, 4/xm. 
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and Chu, 1987; Jackson and Cook, 1986b; Tubo and Berez- 
hey, 1987a, b). Recently we demonstrated that the nuclear 
matrix-bound DNA polymerase and primase are organized 
into huge megacomplexes that sedimented at ~100-150 S on 
sucrose gradients (Tubo and Berezney, 1987c). The presence 
of only more typically sized 10 S complexes in nuclear ma- 
trices prepared just before the onset of S phase and the rapid 
in vitro conversion of the megacomplexes to 10 S complexes 
after release from the nuclear matrix led us to propose that 
the megacomplexes represent the corresponding clustering 
of the replicational assemblies which presumably underlie 
the replicon clusters (Tubo and Berezney, 1987c). We further 
speculated that the cell cycle-dependent and subsequent 
clustering of matrix-bound replicational complexes is a driv- 
ing force for the formation of these higher ordered assem- 
blies of DNA replication or"clustersomes" in the cell nucleus 
and may, thus, be an important factor in the regulation of 
DNA replication in the cell. The structural localization 
studies presented in this paper lend support to these previous 
biochemical studies and suggest that isolated nuclear matrix 
is a potentially important in vitro model system for studying 
the structural organization and regulation of higher ordered 
replicational assemblies in the cell nucleus. 

In this regard, the correlation of sites of DNA replication 
with chromosome banding patterns have led several investi- 
gators to conclude that chromosome bands correspond to the 
basic units of replication or replication clusters in the inter- 
phase nucleus (Latt, 1975; Stubblefield, 1975; Kondra et al., 
1978; Lau and Arrighi, 1981; Meer et al., 1981; Holmquest 
et al., 1982). Typically it is found that R bands (euchroma- 
tin) preferentially replicate in early S phase, G bands (non- 
centromeric heterochromatin) in late S phase, and C bands 
(centromeric heterochromatin) in very late S phase. (Kon- 
dra, 1978; Schempp and Vogel, 1978; Camargo and Cer- 
venka, 1982; Holmquest et al., 1982). 

The three types of structural patterns resolved in inter- 
phase cells by our study both confirm and extend these previ- 
ous investigations. The type I granules of early S phase thus 
likely correspond to sites of organization at which the chro- 
matin of R bands replicate. The type III patterns of late S 
phase over the intense Hoechst positive spots (see Fig. 4) 
correspond to the sites where the centromeric heterochroma- 
tin of C bands replicate (Pardue and Gall, 1970). The type 
II pattern particularly prominent in mid to late S phase likely 
represents a transition where both sites of R and G bands are 
replicating. Moreover, some G bands probably also replicate 
in type III. Such temporal overlap of R and G bands in mid 
S, and G and C band replication in late S was previously de- 
scribed (Schempp and Vogel, 1978; Camargo and Cervenka, 
1982). 

Replication units similar in dimensions to those of this 
study were also reported by Lau and Arrighi (1981) after 
premature chromosome condensation (PCC). In a scanning 
electron microscopic study, Mulinger and Johnson (1983) 
found that S phase PCC fragments were arranged in repeat- 
ing arrays of granular aggregates of fibers with diameters 
ranging from 0.25-1.6 #m and a mean of 0.75 #m. Most of 
the replication granules observed in our study ranged from 
0.4 to 0.6 #m in early S phase with much larger aggregates 
up to several microns observed in later stages. Significantly, 
Lau and Arrighi (1981) also observed a progressive increase 
in the size of replication units along PCC fragments from 0.4 
to 0.6 #m in early S to several microns in late S. Our results, 

therefore, provide support for the previously stated view 
(Lau and Arrighi, 1981; Holmquest et al., 1982; Marcus, 
1985) that replication structures corresponding to chromo- 
some bands and containing replicon clusters are associated 
with the replicational machinery on the nuclear matrix. 

Nakamura et al. (1986), using antibodies against BrdU, 
have also reported discrete structural sites of replicon cluster 
synthesis in the cell nucleus. Direct comparison with our 
results, however, is complicated by the relatively long cumu- 
lative labeling of cells with BrdU performed by these investi- 
gators. It may be significant, however, that replication gran- 
ules of similar size were detected in these experiments after 
relatively short labeling periods. Similarly we found that a 
significant proportion (30-50%) of the total replicational 
sites seen after BrdU incorporation appear identical in size 
and shape to the replication granules revealed by biotin-11- 
dUTP incorporation into permeabilized cells (Fig. 7). Struc- 
tures much larger than the replication granules are detected 
in the remaining replicational sites decorated by the anti- 
BrdU antibodies, which sometimes form ring- or horseshoe- 
like shapes. Nakamura et al. (1986) have proposed that these 
larger sites represent later stages in replicon cluster synthe- 
sis. This is conceivable, as one limitation of the permeabi- 
lized cell system is the apparent inability to ligate DNA of 
replicon size into larger units of replicated DNA (Berger et 
al., 1977). It is also possible, however, that these larger 
structures represent the close association of numerous in- 
dividual replication granules over heterochromatic areas, as 
strikingly demonstrated by the type II and III patterns of our 
studies. In this regard we also found type II and type III pat- 
terns in our experiment with BrdU incorporation (Fig. 7). 
We are currently developing more sensitive immunofluores- 
cent microscopic procedures to address this issue in BrdU 
labeled cells. 

Our studies also predict that various replicational enzymes 
such as DNA polymerase ~, and primase should colocalize 
within the discrete replication granules demonstrated in this 
study. Immunofluorescent microscopic studies of DNA 
polymerase ~ have indeed demonstrated a granular distribu- 
tion of this enzyme in the nucleus (Nakamura et al., 1984; 
Yamamoto et al., 1984) and maintenance of this granular or- 
ganization after preparation of nuclear matrix structures 
(Yamamoto et al., 1984). Moreover, Bravo and Macdonald- 
Bravo (1987) recently used immunofluorescent microscopy 
to demonstrate similar structural distributions of PCNA 
(proliferating cell nuclear antigen, also called cyclin), a 
presumptive subunit of DNA polymerase di (Bravo et al., 
1987; Prelich et al., 1987), with sites of in vivo replicated 
DNA. These latter findings confirm previous studies based 
on anti-PCNA immunofluorescence and autoradiographic 
analysis of newly replicated DNA (Bravo and Macdonald- 
Bravo, 1985; Cells and Cells, 1985; Madsen and Cells, 
1985). 
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