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Abstract
Immunotherapy that targets checkpoints, especially programmed cell death protein 1 and programmed cell death ligand 1, has
revolutionized cancer therapy regimens. The overall response rate to mono-immunotherapy, however, is limited, emphasizing the
need to potentiate the efficacy of these regimens. The functions of immune cells are modulated by multiple stimulatory and
inhibitory molecules, including lymphocyte activation gene 3 (LAG-3). LAG-3 is co-expressed together with other inhibitory
checkpoints and plays key roles in immune suppression. Increasing evidence, particularly in the last 5 years, has shown the
potential of LAG-3 blockade in anti-tumor immunity. This review provides an update on the biological properties and clinical
applications of LAG-3 in cancers.
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Introduction

Immune checkpoint inhibitors (ICIs) significantly improve
survival in patients with multiple cancers, and representa-
tive targets are programmed cell death protein 1 (PD-1)
and programmed cell death ligand 1 (PD-L1).[1,2]

However, the overall objective response rate (ORR) of
mono-immunotherapy in cancers is unsatisfactory.[3,4]

Activating immune cells and restoring anti-tumor immu-
nity are the main action mechanisms of ICIs, but diverse
co-stimulatory and co-inhibitory molecules regulate
immune cells activity. Compared with inhibition of PD-
1/PD-L1 pathway alone, the anti-tumor effect of immu-
notherapy can be potentiated by multiple combination
immunotherapy protocols, such as combinations of
immunotherapy with immunotherapy or chemotherapy
or radiotherapy.

In the era of immunotherapy, targeting of novel immune
checkpoints can also achieve a degree of anti-tumor
immunity.[5,6] Lymphocyte-activation gene 3 (LAG-3;
CD223) is a novel immune checkpoint receptor associated
with CD4. Our previous review described the roles of
LAG-3 in inflammatory and autoimmune diseases and
cancers.[7] Many preclinical and clinical studies over the
last 5 years, however, have demonstrated the anti-tumor
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effects of LAG-3-targeted agents.[8] The present review
summarizes recent researches on the biological properties
and clinical applications of LAG-3 in cancers.
Structure and Ligands of LAG-3

LAG-3 is a transmembrane protein consisting of four
immunoglobulin (Ig)-like extracellular domains (D1–D4)
and a cytoplasmic domain,[9] as we show in Figure 1A.
The extracellular region of LAG-3 is similar to that of
CD4, with 20% amino acid identity, but the genomic
regions encoding the intracellular regions vary, leading to
different functions.[10] In addition, a connecting peptide
located between D4 and the transmembrane domain
makes LAG-3 more susceptible to cleavage by a
disintegrin and metal-loproteinase domain-containing
protein (ADAM), producing soluble LAG-3 (sLAG-3)
that consists of the four extracellular domains.[11] The
cytoplasmic domain is composed of three motifs: a serine-
based motif, a “KIEELE” motif, and a glutamic acid and
proline dipeptide repeat (EP) motif, with the “KIEELE”
motif being mainly responsible for the inhibitory activity
of this protein.[12]

One of the most principal ligands of LAG-3 was major
histocompatibility complex class II (MHC class II),[13,14]

and a proline-enriched loop in D1 mediates their
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Figure 1: The structure and ligands of LAG-3. (A) The structure of LAG-3 and its main ligand MHC II; (B) Other ligands include FGL1, LSECtin, galectin-3, and a-synuclein. APC: Antigen-
presenting cells; FGL1: Fibrinogen-like protein 1; LAG-3: Lymphocyte-activation gene 3; LSECtin: Liver sinusoidal endothelial cell lectin; MHC II: Major histocompatibility complex class II;
TCR: T cell receptor.
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interactions, as shown in Figure 1A. And plentiful studies
have demonstrated that the interactions between LAG-3
and MHC class II modulate the proliferation, activation,
apoptosis, and cytokine secretion of multiple immune
cells.[7,15,16]

In the following years, multiple other ligands are found,
and Figure 1B displays other reported ligands including
galectin-3,[17] liver sinusoidal endothelial cell lectin
(LSECtin),[18] fibrinogen-like protein 1 (FGL-1),[19,20]

and a-synuclein preformed fibrils from neurons.[21] And
LAG-3 binding to its ligands can hamper anti-tumor T cell
immunity, leading to tumor immune evasion.[18,22]
Regulation of LAG-3 at the Epigenetic, Transcriptional, Post-
transcriptional, and Post-translational Levels

The regulation mechanisms of LAG-3 at multiple levels
are increasingly excavated, particularly in recent
5 years.[23] And they can be categorized into four types:
epigenetic, transcriptional, post-transcriptional, and post-
translational levels.

Epigenetic alterations have been reported to regulate
LAG-3 expression in various cancers, such as renal cell
cancer (RCC),[24] melanoma,[25] breast cancer,[26] and
colorectal cancer.[27,28] In patients with RCC and
melanoma, LAG-3 is broadly hypomethylated in tumor
vs. normal tissues, and LAG-3 promoter methylation
status correlated negatively with levels of LAG-3 messen-
ger RNA (mRNA) expression.[24,25] LAG-3 promoter
hypomethylation on T cells in peripheral blood and
dysregulation of histone methylation of LAG-3 have been
associated with high levels of LAG-3 expression.[27,29]

Moreover, LAG-3 methylation status is associated with
the infiltration of immune cells, such as CD4+/CD8+ T
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cells, interferon-g (IFN-g) signature, and survival.[24,25]

These results suggest that LAG-3 methylation is a likely
predictive and prognostic biomarker, as well as a
therapeutic target in cancer patients.

At the transcriptional level, multiple transcription regu-
lators have been found to potentiate the expression of
LAG-3, such as thymocyte selection-associated high
mobility group box protein (TOX),[30,31] a nuclear factor
of activated T-cells family member,[32] nuclear receptor
subfamily 4, group A,[33] and early growth response gene
2.[34,35] Moreover, glycogen synthase kinase-3 was found
to reduce LAG-3 transcription by enhancing the expression
of Tbet, which inhibits the transcription of LAG-3.[36]

In head and neck squamous cell carcinoma (HNSCC),
microRNA (miR)-7704, miR-21-5p in the extracellular
vesicles (EVs) could increase the expression of LAG-3.[37]

These transcription factors and miRNAs in EVs exert roles
in LAG-3 expression and T cell exhaustion and may be
potential targets for cancer immunotherapy.

N6-methyladenosine (m6A) modifications are also
involved in the post-transcriptional regulation of LAG-
3. For example, AlkB homolog 5 (ALKBH5) and YTH
domain family, member 1 (YTHDF1), which act as RNA
demethylase during m6A modifications, have been
associated with the expression of 14 genes, particularly
LAG-3.[38] In addition, checkpoint expression levels are
higher in colon cancer patients with higher levels of
ALKBH5 and lower levels of YTHDF1 expression.[38]

Post-translationally, LAG-3 is degraded in lysosomes in
the absence of antigen stimulation but is translocated to
the cell surface upon stimulation through protein kinase C
signaling in an intracellular domain-dependent man-
ner.[39] However, the specific mechanism of translation
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remains to be determined. LAG-3 cleavage by ADAM10
and ADAM17 produces sLAG-3, which alleviates T cell
inhibition;[11] positively regulates CD8+ T cells, interleu-
kin (IL)-12, IFN-g, and dendritic cells (DCs); and
functions as a prognostic marker in multiple can-
cers.[15,40-43]

Collectively, these results show that LAG-3 expression is
regulated through multiple mechanisms, including at the
epigenetic, transcriptional, post-transcriptional, and post-
translational levels. Agents targeting LAG-3 regulators
may contribute to novel combination immunotherapy
treatment strategies in cancers.
Expression of LAG-3 and Its Role in Immune Suppression
and Anti-tumor Immunity

LAG-3 can be constitutively expressed or induced on
multiple immune cells, including CD4/CD8+ T cells,
natural killer (NK) cells, invariant NK T cells, plasmacy-
toid DCs (pDCs), and B cells.[44] Overexpression of LAG-
3 has been detected in various cancers, where it
participates in immune regulation and resistance to
treatment, thus affecting patient survival.[45,46]
LAG-3 on CD4+ T cells

LAG-3 is rarely expressed on resting T cells but is
expressed on CD4+ T cells following antigen stimulation,
making it a biomarker of T cell exhaustion.[8] LAG-3
interacts with MHC class II to downregulate CD4+ T cell
proliferation and cytokine secretion [Figure 2A].[47]

Removal of the “KIEELE” motif of LAG-3 was found
to lead to the complete abrogation of LAG-3 function,
suggesting that the “ KIEELE” motif is key to the
activation of downstream signaling pathways in CD4+ T
cells.[12,48] To date, however, the binding partner of the
intracellular “KIEELE” motif has not been identified.
LAG-3 on CD8+ T cells

LAG-3 is expressed on CD8+ T cells within multiple
tumors, such as non-small-cell lung cancer (NSCLC)
particularly non-adenocarcinoma,[49,50] esophageal carci-
noma,[51,52] RCC,[53] ovarian cancer,[54] and breast
cancer.[55] LAG-3 inhibits effector T cells and inflamma-
tory cytokine production.[17,54] In RCC, CD8+ tumor-
infiltrating lymphocytes (TILs) expressing the co-inhibi-
tory molecule LAG-3 were accompanied by low-density
mature DCs and predicted a higher risk of disease
progression.[53] The effector functions of CD8+LAG-3+
TILs are hampered in ovarian cancers, manifesting as
reduced production of IFN-g and tumor necrosis factor-a.
Inhibition of LAG-3 alone or together with PD-1
inhibition augments the activation and immune responses
of T cells.[56]

The inhibitory mechanism of LAG-3 on CD4+ T cells is
dependent on LAG-3 binding to MHC class II molecules.
In contrast, MHC class I-restricted CD8+ T cells have
different and more sophisticated LAG-3-mediated inhibi-
tory mechanisms [Figure 2B]. Many LAG-3 ligands have
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been reported to be involved in the effects of LAG-3 on
CD8+ T cell functions. Galectin-3, one of the ligands of
LAG-3, suppresses the anti-tumor response of CD8+ TILs
in mice, with this activity restored by the depletion of
galectin-3.[17] Moreover, LSECtin was found to promote
melanoma tumor growth, mainly by weakening antitumor
T cell responses.[18] Mechanistically, LSECtin could
markedly inhibit the proliferation of CD8+ rather than
CD4+ T cells by preventing CD8+ cells from entering cell
cycles, manifesting as decreased cyclin-dependent kinases
(CDK) 2, CDK4, and CDK6 expression.[18] FGL-1 was
found to inhibit anti-tumor immunity dependent on CD8+
T cells.[19] FGL-1 expression, in turn, was downregulated
by oxysophocarpine through the IL-6-mediated Janus
kinase/signal transducer and activator of transcription
(STAT) pathway, sensitizing the LAG-3 immunotherapy
effect on CD8-positive T cells.[57]Moreover, a type of C25
peptide was reported to inhibit LAG-3/MHC class II
interactions, stimulating the activation of CD8+ T cells
and inhibiting tumor growth.[58] The intrinsic mechanism,
however, remains poorly understood. LAG-3 expression
correlated positively with the expression of nearly all
MHC-associated genes in various cancers,[59] indicating
that LAG-3 may not just cooperate with MHC class II.
Additional studies are needed to determine whether MHC
class I molecules participate in LAG-3-mediated inhibitory
function. Together, these findings show that the mecha-
nisms of action of LAG-3 onCD8+ T cells involvemultiple
ligand interactions, and that blockade of LAG-3 enhances
CD8+ T cell functions and promotes anti-tumor immunity.
LAG-3 on CD4+ T regulatory (Treg) cells

LAG-3 is also expressed on CD4+CD25+ Treg cells,
binding toMHC class II molecules on immature DCs. This
binding suppresses DC maturation and immunostimula-
tory activities through an immunoreceptor tyrosine-based
activation motif-induced repressive signaling, recruiting
Src homology region 2 domain-containing phosphatase 1
mediated by Fc gamma receptor and extracellular signal-
regulated kinase [Figure 2C].[60] Although LAG-3 is only
slightly expressed on CD4+CD25+ forkhead box P3
(FOXP3)+ Treg cells, it is specifically detected on T cells
negative for CD25 and Foxp3, which secrete massive
amounts of IL-10.[61] These cells, also known as LAG-3+
Treg cells, produce high levels of transforming growth
factor-b3, which suppresses B cell responses.[62] More-
over, co-expression of LAG-3 and CD49b is specific to
CD4+ type 1 T regulatory (Tr1) cells,[63,64] which have
strong immunosuppressive activity through secreting
massive IL-10 [Figure 2C].[65]
LAG-3 on other immune cells including NK, natural killer T
(NKT), pDCs, and B cells

LAG-3 can be detected on NK cells, but does not
participate in natural killing activities.[66] Moreover,
blockade of LAG-3 does not affect the natural killing
by NK cells of various target cells.[67] IFN-g production is
impaired in LAG-3-positive NKT cells.[68] pDCs are a
unique subgroup of DCs that produce massive amounts of
type I IFNs upon pathogen stimulation.[69] LAG-3
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Figure 2: Mechanisms of LAG-3 in immune suppression. The inhibitory mechanisms of LAG-3 on CD4+T cells (A), CD8+ T cells (B), Treg cells, and Tr1 cells (C). APC: Antigen-presenting
cells; DC: Dendritic cells; ERK: Extracellular signal-regulated kinase; FcgRg: Fc gamma receptor gamma; FGL1: Fibrinogen-like protein 1; IL-10: Interleukin 10; ITAM: Immunoreceptor
tyrosine-based activation motif; LAG-3: Lymphocyte-activation gene 3; LSECtin: Liver sinusoidal endothelial cell lectin; MHC II: Major histocompatibility complex class II; SHP-1: Src
homology region 2 domain-containing phosphatase 1; Treg: T regulatory cells; Tr1 cells: Type 1 T regulatory cells.
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expression is ten-fold higher on activated pDCs than on T
effector or Treg cells, and sLAG-3 secretion by activated
pDCs is five-fold higher than secretion by activated T
cells.[70] LAG-3 expressed on pDCs intrinsically regulates
the homeostasis of pDCs and extrinsically modulates the
homeostasis of T cells.[70] Moreover, a natural plasma cell
subset of B cells with unique transcriptomic and
epigenomic characteristics also expresses LAG-3 and
suppresses memory T cell formation through IL-10
production.[71]

Taken together, these results show that LAG-3 is
expressed on various immune cells and is closely
associated with immune escape. Recent studies have
focused primarily on the inhibitory mechanisms of LAG-3
on these cells. Additional studies are required to determine
the mechanisms by which downstream inhibitory signals
are transmitted in each type of immune cell and the
dependence of these signals on specific ligands.
Associations of LAG-3 with Immunoregulatory Factors in
Cancers

Increasing evidence has shown that LAG-3 acts together
with other inhibitory modulators, including immune
checkpoints and immune cells.[72] Our previous review
summarized the co-expression patterns of LAG-3 with the
immune checkpoints PD-1, PD-L1, and cytotoxic T
lymphocyte antigen 4 (CTLA-4) in autoimmune and
infectious diseases.[7] LAG-3 is also co-expressed with PD-
1/PD-L1 in various types of cancer, including NSCLC[49]

breast cancer,[55,73,74] RCC,[75] ovarian cancer,[76] gastric
cancer,[77] and colorectal cancer.[78] Evaluation of the
expression patterns of LAG-3 and other checkpoints in 33
types of cancer using samples from a public database
showed multiple high expression patterns in various
cancers, including LAG-3 and PD-1 in urogenital tumors;
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LAG-3 and CTLA-4 in HNSCC; and LAG-3, PD-1, and
CTLA-4 in skin melanoma.[59] The most common co-
expression patterns of checkpoints varied among different
cancer types, such as LAG-3 and PD-1 in RCC,[75] LAG-3
and CTLA-4 in triple-negative breast cancer,[79] and PD-1
and T cell Ig and mucin domain-containing protein 3 in
ovarian cancer.[74] Evaluation of five checkpoints in TILs
isolated fromRCC patients showed that the most frequent
co-expression pattern was PD-1 and LAG-3 onCD4/CD8+
TILs.[75] Dual positive expression of LAG-3 and PD-1 was
found to be associated with the inflamed immunotype in
breast cancer,[80] and inhibition of PD-1 and LAG-3
resulted in the release of IFN-g.[81] ICIs enhanced the
expression of multiple immune checkpoints, including
LAG-3, both in vitro and in vivo.[82,83] Co-blockade of PD-
1/PD-L1 in breast cancer cell lines enhanced the expression
of LAG-3 on CD25-positive T cells and FOXP3-positive
Treg cells in a tumordependentmanner, suggesting that this
maybearesistancemechanism.[84] InKrasG12Dmicemodels
of lung cancer, LAG-3 and CTLA-4 significantly increased
on CD8+ T cells in tumors resistant to PD-1 inhibitors.[85]

These findings indicate that the co-expression patterns of
checkpoints and compensatory inhibitory mechanisms of
immunotherapy in various tumor types should be consid-
ered to optimize the effectiveness of combination immuno-
therapy and reverse tumor resistance to immunotherapy.

LAG-3 was also shown to be associated with other
immunoregulatory factors, including immune cells and
inflammatory factors. An investigation of the relationship
of LAG-3 gene expression with abundance of TILs and
chemokines in 30 kinds of cancer using samples from a
public database showed that LAG-3 expression was
correlated with activated CD8+ T cells, Treg cells,
myeloid-derived suppressor cells, and certain chemokines
and their receptors.[59] And in RCC and glioblastoma,
LAG-3 had a more robust association with CD8A than
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checkpoints.[86] In HNSCC, LAG-3 had a positive
correlation with C-X-C motif chemokine ligand 9/10/
11.[87] In melanoma patients, LAG-3 showed a positive
correlation with CD163, a biomarker of M2-type tumor-
associated macrophages, with high co-expression of LAG-
3 andCD163 being related to poor pathological indicators
and worse prognosis.[88] In HNSCC, LAG-3 expression
was closely correlated with the infiltration of pDCs.[89]

These results indicate that LAG-3 has negative effects on
the tumor microenvironment and patient outcomes.
Correlation between LAG-3 and Efficacy and Prognosis in
Cancers

LAG-3 expression has been shown to be a predictive
biomarker of the efficacy of immunotherapy in cancers.
For example, high LAG-3 expression on CD4+/CD8+
TILs before and after the first cycle of nivolumab predicted
a longer progression-free survival (PFS) in patients with
gastric cancer.[90] Moreover, a gene signature based on
CD274, CD8A, LAG-3, and STAT1 was found to be
associated with greater efficacy of nivolumab or nivolu-
mab combined with ipilimumab in gastric cancer[91] and
nivolumab in hepatic cancer.[92] Conflicting results,
however, have been observed in other cancers. For
example, increased LAG-3 in patients with advanced
NSCLC being treated with PD-1 inhibitors was signifi-
cantly associated with poorer PFS and greater resistance to
PD-1 inhibitors.[93] Elevated LAG-3 in tissues was found
to be a biomarker of resistance to ICIs in breast cancers
and mouse cancer models.[94,95] Moreover, high baseline
sLAG-3 was associated with poorer PFS in HNSCC
patients receiving ICIs or chemotherapy.[41] A mutation in
the LAG-3 gene, preventing cleavage by ADAM-10/17,
led to elevated levels of LAG-3, which may be a
mechanism of resistance to ICIs.[96]

Higher LAG-3 expression in tumor tissues is related to an
adverse prognosis in most types of cancer, including
pancreatic cancer,[97] high-grade soft-tissue sarcoma,[98]

salivary gland carcinomas,[99] clear cell renal cell carci-
noma,[100] HNSCC,[101] esophageal squamous cell car-
cino-ma,[52] and oral squamous cell carcinoma.[102] In
contrast, higher LAG-3 expression correlates with longer
survival in other types of cancer, such as high-grade serous
ovarian cancer,[103] blood cancer,[104] esophageal adeno-
carcinoma,[105] and advanced gastric cancer.[90] Studies
on the association of LAG-3 with prognosis in patients
with NSCLC, colorectal cancer, and breast cancer have
yielded contradictory results. For example, one study
reported that LAG-3 positivity on TILs in patients with
NSCLC was predictive of shorter recurrence-free sur-
vival,[49] whereas another study found that LAG-3 on
TILs in the intraepithelial and stromal parts of tumors and
metastases predicted better disease-specific survival in 553
patients with stage I-IIIB NSCLC.[106] A study in 773
patients with stage I-III colorectal cancer found that high
tumor expression of LAG-3 was related to a shorter
survival, whereas high LAG-3 on immune cells in the
stroma correlated with better survival.[107] Another study
found that LAG-3 on TILs was a good prognostic factor in
89 patients who underwent resection for microsatellite
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instability-high colon cancers,[108] whereas LAG-3+
CD49b+ Tr1 cells were predictive of a poor prognosis
and higher LAG-3 mRNA levels predicted advanced
stages in colorectal cancer.[109,110] An evaluation of the
levels of expression of LAG-3 on stromal and intra-
epithelial TILs (sTILs or iTILs) in breast cancers found
that patients with LAG-3+iTILs had a better progno-
sis.[111] Flow cytometry analysis of dynamic changes of
multiple checkpoints in the peripheral blood of HNSCC
patients from before to after treatment showed that LAG-
3 expression increased at the time of tumor recurrence.

Collectively, these findings indicate that LAG-3 expression
is closely associated with the efficacy of ICIs and with
patient prognosis. Tumor origin, tumor stage (early vs.
advanced), tumor location (stromal vs. intraepithelial;
primary tumor vs. metastasis; tissue vs. blood), and
different cut-off values for positivity may partly account
for the differences among cancers in the correlation of
LAG-3 expression with treatment efficacy and patient
prognosis. Dynamic quantification of LAG-3 in tumor
tissues and peripheral blood may help predict the efficacy
of ICIs and guide treatment options, including whether
and when to block LAG-3 pathways.
Clinical Application of Targeting LAG-3 in Cancers

Preclinical studies and preliminary clinical trials have
shown that LAG-3 is involved in immune suppression and
anti-tumor immunity. Drugs targeting LAG-3 have been
developed to treat cancer patients, particularly during the
past 5 years. At least 21 kinds of LAG-3-targeting agents
are being tested in clinical trials in various types of cancer
(https://clinicaltrials.gov/). These agents can be divided
into three types: anti-LAG-3 monoclonal antibodies,
sLAG-3, and bispecific antibodies targeting LAG-3 and
PD-1/PD-L1/CTLA-4 [Table 1].

Anti-LAG-3 monoclonal antibodies are the first class of
LAG-3 targeting agents to be developed. These agents
include relatlimab, SHR-1802, Sym-022, ieramilimab
(LAG525), MK-4280, INCAGN-2385, TSR-033, LBL-
007, DNV-3, IBI-110, BI754111, and REGN3767
(fianlimab). Most of them have been or are being tested
in phase one or two clinical trials, showing that they
possess acceptable safety and a certain efficacy.[112-116]

For instance, relatlimab plus nivolumab (PD-1 inhibitor)
obtained an ORR of 11.5% in melanoma patients
resistant to PD-1/PD-L1 inhibitors. Moreover, ORR
was higher in patients with ≥1% than with <1% LAG-
3 expression (18% vs. 5%).[112] The 2021 American
Society of Clinical Oncology annual meeting reported
positive results of a phase 2/3 trial (RELATIVITY-0477,
NCT03470922) of relatlimab in melanoma patients.[117]

In that study, 714 patients with melanoma were treated
with nivolumab alone or nivolumab plus relatlimab as first
line therapy. PFSwas significantly longer in patients treated
with nivolumab plus relatlimab than in those treated with
nivolumab alone (10.1 vs. 4.6 months; P= 0.0055);
although the rate of grade three or higher adverse events
associated with therapywas also higher in the combination
therapy group, it was acceptable (18.9% vs. 9.7%).

https://clinicaltrials.gov/
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Table 1: Summary of LAG3-targeted agents in cancers under clinical trial.

Drug name Company Drug type Phase Combination

Relatlimab (BMS-986016) BMS Anti-LAG3 1/2/3 PD-1
SHR-1802 Hengrui Anti-LAG3 1 –

Sym-022 Symphogen Anti-LAG3 1 PD-1
Ieramilimab (LAG525) Immutep Anti-LAG3 1/2 PD-1
MK-4280 MSD Anti-LAG3 1/2 PD-1
INCAGN-2385 Incyte Anti-LAG3 1/2 PD-1/TIM-3
TSR-033 Tesaro Inc Anti-LAG3 1 PD-1/TIM-3
LBL-007 Nanjing Leads Biolabs Anti-LAG3 1 PD-1
DNV-3 Zhejiang Shimai Anti-LAG3 1 PD-1
IBI-110 Innovent Biologics Anti-LAG3 1/2 PD-1
BI754111 Boehringer Ingelheim Anti-LAG3 1/2 PD-1
REGN3767 (Fianlimab) Regeneron Anti-LAG3 1 PD-1
89Zr-DFO-REGN3767 MSKCC Anti-LAG3 labeled with 89Zr 1/2 PD-1
IMP321 Immutep Soluble LAG3 1/2 PD-1/PD-L1/vaccine
MK-4280A MSD Bispecific anti-LAG-3/PD-1 1/2 PD-1
MGD013 (Tepotelimab) Macrogenics Bispecific anti-LAG-3/PD-1 1/2/3 B7-H3
EMB-02 Anmai Bispecific anti-LAG-3/PD-1 1/2 –

RO-7247669 Roche Bispecific anti-LAG-3/PD-1 1/2 –

FS 118 F-Star Bispecific anti-LAG-3/PD-L1 1/2 –

IBI-323 Innovent Biologics Bispecific anti-LAG-3/PD-L1 1 –

XmAb-22841 Xencor Inc Bispecific anti-LAG-3/CTLA-4 1 PD-1

CTLA-4: Cytotoxic T lymphocyte antigen 4; LAG-3: Lymphocyte-activation gene 3; PD-1: Programmed cell death protein 1; PD-L1: Programmed cell
death ligand 1; TIM3: T cell immunoglobulin domain and mucin domain-3; B7-H3: B7 homolog 3 protein; –: Not available.
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IMP321, a soluble recombinant protein of LAG-3 consisting
of the four extracellular domains, has been shown to activate
antigen presenting cells by binding to MHC II, while not
inducing inhibitory signals due to the absence of an
intracellular domain.[118] Twelve trials have tested
IMP321 alone or with PD-1/PD-L1 inhibitors or IMP321
vaccine in the treatment of multiple solid tumors
(NCT00324623, NCT00349934, NCT00351949,
NCT00365937, NCT00732082, NCT02614833, NCT02
676869, NCT03252938, NCT03625323, NCT042 52768,
NCT01308294, and NCT04811027). Results to date have
shown that vaccination with IMP321 induces durable
cellular antitumor immune responses.[119,120] Patients vacci-
nated with IMP321 plus melanoma antigen recognized by T
cells1 (MART-1)peptidehadsignificantlyhighernumbersof
antigen-specific CD8+ T cells and lower numbers of
exhausted T cells and Treg cells.[120] The TACTI-002 study
(NCT03625323), which enrolled NSCLC/HNSCC patients
naïve to ICIs, found that IMP321 plus pembrolizumab was
safe, achieving an ORR of 47% as first line treatment in
patients with NSCLC and an ORR of 40% (6/15) as second
line treatment in patients with HNSCC.[121] Similarly, this
combinationachievedanORRof50%inPD-1naïvepatients
with melanoma.[122] sLAG-3 has shown encouraging
antitumor activity, but additional studies are needed to
determine the roleof ligand-receptor interactions in reversing
inhibitory signaling.

Given that co-expression of LAG-3 and other checkpoints
often occurs in cancers and cooperatively mediates
immune escape, multiple bispecific antibodies that
synchronously target LAG-3 and PD-1 or PD-L1 or
CTLA-4 have been developed, including MK-4280A,
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MGD013 (Tepotelimab), EMB-02, RO-7247669, FS 118,
IBI-323, and XmAb-22841 [Table 1]. Preclinical studies
have shown that IBI-323, a bispecific antibody synchro-
nously targeting LAG-3 and PD-L1, exhibited a greater
immune stimulatory effect than each parent antibody.[123]

Interestingly, bispecific antibodies of LAG-3 and PD-L1
decreased LAG-3 expression, whereas LAG-3 inhibitors
combined with PD-L1 inhibitors increased LAG-3 expres-
sion.[124] The mechanism of action of bispecific antibodies
in antitumor immunity remains to be determined.

Collectively, LAG-3-targeting drugs have exhibited great
potential in cancer immunotherapy, especially when
combined with PD-1/PD-L1 inhibitors. Dynamic quanti-
fication of LAG-3 expression may help to predict the
efficacy of LAG-3 inhibitors and optimize the treatment
strategy. Additional studies are needed to evaluate the
ability of LAG-3 inhibitors to block ligand-receptor
interactions and the specific action mechanisms of
bispecific antibodies and each parent antibody inhibiting
both PD-1/PD-L1 and LAG-3 signaling.
Conclusions

The synergistic effects of LAG-3 and PD-1/PD-L1
inhibitors in preclinical and clinical studies suggest that
blockade of LAG-3 can potentiate the efficacy of
immunotherapy in cancer and expand the numbers of
patients who may benefit from immunotherapy. Although
LAG-3 is expressed on multiple immune cells and plays
key roles in immune escape by interacting with its ligands,
the mechanism responsible for the transmission of
downstream inhibitory signals and the ligand responsible
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for activation of each immune cell in response to LAG-3
blockade remains to be determined. In addition, further
studies are needed to assess the mechanisms of action of
dual blockade of LAG-3 and other checkpoints, and
whether the molecules that regulate the expression of
LAG-3 act synergistically with ICIs. In conclusion, this
review summarizes recent research on LAG-3, including
its biological properties and clinical applications in
cancers. These findings may result in a more comprehen-
sive understanding of LAG-3 signaling and may direct
future studies.
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