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Abstract

Genotype-by-environment (G�E) interactions are important for understanding genotype–phenotype relationships. To date, various statis-
tical models have been proposed to account for G�E effects, especially in genomic selection (GS) studies. Generally, GS does not focus
on the detection of each quantitative trait locus (QTL), while the genome-wide association study (GWAS) was designed for QTL detection.
G�E modeling methods in GS can be included as covariates in GWAS using unified linear mixed models (LMMs). However, the efficacy of
G�E modeling methods in GS studies has not been evaluated for GWAS. In this study, we performed a comprehensive comparison of
LMMs that integrate the G�E modeling methods to detect both QTL and QTL-by-environment (Q�E) interaction effects. Model efficacy
was evaluated using simulation experiments. For the fixed effect terms representing Q�E effects, simultaneous scoring of specific and
nonspecific environmental effects was recommended because of the higher recall and improved genomic inflation factor value. For ran-
dom effects, it was necessary to account for both G�E and genotype-by-trial (G�T) effects to control genomic inflation factor value.
Thus, the recommended LMM includes fixed QTL effect terms that simultaneously score specific and nonspecific environmental effects
and random effects accounting for both G�E and G�T. The LMM was applied to real tomato phenotype data obtained from two differ-
ent cropping seasons. We detected not only QTLs with persistent effects across the cropping seasons but also QTLs with Q�E effects.
The optimal LMM identified in this study successfully detected more QTLs with Q�E effects.

Keywords: genome-wide association study (GWAS); quantitative trait locus (QTL); genotype-by-environment (G�E) interaction; QTL-by-
environment (Q�E) interaction; linear mixed model (LMM)

Introduction
Phenotypes are determined not only by genetic potential but also

by environmental growth conditions. More specifically, the rank

of phenotypic values often changes when the same genotype set

is phenotyped under different environmental conditions (Cooper

and DeLacy 1994). The phenotypic response to the environment

is explained by reaction norms that describe the pattern of phe-

notypic expression of a genotype across different environments.

Genotype-by-environment (G�E) interactions occur when the

slopes of the reaction norms of two different genotypes are not

parallel across environments (Malosetti et al. 2013). G� E analysis

is important for a precise understanding of genotype–phenotype

relationships as well as for the design of crop varieties that fit a

given environment.
To date, various statistical approaches have been proposed for

G�E analysis (reviewed in Malosetti et al. 2013). The simplest

approach is analysis of variance, which compares the mean

and variance of the phenotypic values of genotypes in multiple

environments. However, more flexible methods were eventually

developed, beginning with the Additive Main effects and

Multiplicative Interaction (AMMI) model, which divides the

genetic contribution for a phenotypic value into additive main
effects (i.e., genetic effects not specific to the environment) and
G�E effects (Gauch 1988). Thus, G�E effects in the AMMI model
are expressed as multiplicative interaction terms consisting of
the products of genotypic and environmental scores. Next, princi-
pal component (PC) analysis of these scores is conducted (Gauch
1988). This approach allows graphical representation of the inter-
activity between genotypes and environments (Gauch 1988). In
particular, a genotype will show the highest performance in the
closest environment in the biplot. The Genotype main effects and
G�E (GGE) model resembles the AMMI model, but is focused on
the total genetic effect in each environment (Yan et al. 2000).
In the GGE model, both additive main effects and environment-
specific genetic effects are scored together; thus, genotypes in the
GGE biplot represent the overall genetic effect, while the AMMI
biplot represents only the G�E effect (Yan et al. 2000). The AMMI
and the GGE models provided an important perspective on G�E
analysis, and facilitated discussion about whether genetic
effects for a phenotypic value within a given environment should
be separated into specific and nonspecific environmental effects.

In the AMMI and GGE models, genotypic differences are
treated as categorical variables (Gauch 1988; Yan et al. 2000).
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However, the availability of molecular markers has allowed the
quantitative description of genotypic differences using a genomic
relationship matrix (GRM) (Endelman and Jannink 2012). GRM
applications in G�E analysis have advanced considerably in ge-
nomic selection (GS) studies (reviewed in Crossa et al. 2017). In
GS, a training population that have been phenotyped and geno-
typed is used to construct a model that predicts the genetic
potential of unphenotyped individuals (Meuwissen et al. 2001).
Most GS models that account for G�E effects are constructed as
linear mixed models (LMMs) (Crossa et al. 2017). LMMs treat
genetic effects as random effects using a variance–covariance
matrix designed using GRMs. The most straightforward method
is to consider G�E random effects as a lack of genetic correlation
between environments (Lopez-Cruz et al. 2015). If information on
the similarity among environments is available as a variance–co-
variance matrix, then G� E random effects can be designed as
the product of a GRM and the variance–covariance matrix
(Cuevas et al. 2017). If there are multiple options to model random
effects, then it may be preferable to integrate all random effect
terms into a single model and estimate their relative contribu-
tions to phenotypic values (Jarquı́n et al. 2014). In all of these
methods, random effects with G�E have common variance
across environments (Lopez-Cruz et al. 2015; Cuevas et al. 2017).
Sousa et al. (2017) extended the models to allow different
variances across environments, which resulted in increased GS
prediction accuracy in some experiments.

Generally, GS models do not test the significance of each
marker effect because their objective is phenotype prediction
and not the detection of quantitative trait loci (QTLs)
(Meuwissen et al. 2001; Crossa et al. 2017). For QTL detection,
genetic mapping approaches such as the genome-wide associa-
tion study (GWAS) are necessary (Tibbs Cortes et al. 2021) .
Currently, the most frequently used GWAS method is based on
unified LMMs (Yu et al. 2006). In the unified LMMs, total genetic
effects are divided into a fixed effect for each marker genotype
and random effects that are modeled for all marker genotypes
(Yu et al. 2006). Then, the statistical significance of the fixed ef-
fect is analyzed to estimate the QTL in linkage disequilibrium
(LD) with the marker.

Because the methods used to model G�E in GS studies were
designed for random effects (Jarquı́n et al. 2014; Lopez-Cruz et al.
2015; Cuevas et al. 2017; Sousa et al. 2017), they can be applied to
random effects in unified LMMs for GWAS. Although several
studies have detected QTL-by-environment (Q�E) interaction
effects using LMMs (Boer et al. 2007; Mathews et al. 2008), the effi-
cacy of G�E random effects methods in GS studies for Q�E
analysis has not been surveyed, because this is a recent applica-
tion. Therefore, the advantages and disadvantages of the various
methods developed to model G�E random effects in Q�E analy-
sis are poorly understood. In this study, we performed a compre-
hensive comparison of the methods used to model G�E random
effects in GWAS. The objective of this study was to identify the
most effective LMMs for detecting QTLs with Q�E effects. For
fixed QTL effects, we compared two methods that were designed
based on ideas represented in the AMMI (Gauch 1988) and the
GGE (Yan et al. 2000) models. The first method divides the total
genetic effects of a QTL in LD with a marker into two effects: the
additive main effect, which is not specific to the environment,
and the Q�E effect. The second method simultaneously scores
the additive main effect and the Q�E effect. All combinations of
the modeling methods for fixed effect terms and random
effect terms were compared using simulation experiments.
Finally, LMMs selected based on the simulation experiments

were applied to GWAS using tomato (Solanum lycopersicum L.)

phenotype data.

Materials and methods
Assumptions
To clarify the aim of this study and its differences from similar

recent studies (e.g., Moore et al. 2019; Dahl et al. 2020), we describe

our assumptions as follows:

Experimental design:

• The environment in this study can be geographic location,

weather condition, and other artificial experimental condi-

tions. In the real phenotype data used in this study, cropping

season was the environmental differences (Figure 1).
• Differences among environments and/or trials are repre-

sented as categorical variables.
• Phenotypic values of a genotype in an environment were

obtained for several trials (Figure 1).

Genetic effects:

• The target traits are controlled by several major QTLs and nu-

merous minor QTLs, and the major QTLs were the detection

target.
• Genetic effects in the same environment are affected by geno-

type-by-trial (G�T) effects.

LMMs:
We modeled the effects of Q�E and G�E using unified LMMs,

in which the total genetic effects were divided into fixed and

random effect terms:

y ¼ Ttþ Ssþ fFixedðxÞ þ fRandomðGÞ þ e; (1)

where y and e indicate n� 1 vectors for phenotypic values and

residuals, respectively; T is an n � TR design matrix that assigns

phenotypic values to trials, where TR is the number of trials; t is a

TR � 1 vector of population-wide mean for each trial; S is a n� c

matrix whose column elements are the eigenvectors from princi-

pal component analysis of genotype data from all markers. s indi-

cates a c� 1 vector of fixed effects for S. S and s are used to

decrease the rate of false signals generated by the population

structure (Price et al. 2006; Yang et al. 2011; Li et al. 2014). In our

analyses of simulations and real data in this study, S consisted of

the first and second eigenvectors, which explained 30.9% and

7.8% of the total genetic variation, respectively (Yamamoto et al.

2016). fFixedðxÞ represents the fixed effect terms for a major QTL

Figure 1 Environments and trials used in this study. Cropping season
(i.e., winter or spring harvest cropping seasons) was the environmental
variable in the tomato phenotypic data set. Each trial represents a period
of plant growth and phenotype evaluation.
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in LD with a single-nucleotide polymorphism (SNP) marker.

fRandomðGÞ represents the random effect terms for the background

genetic effects. x is an n� 1 vector of SNP genotype values coded

as f0, 1, 2g ¼ faa, Aa, AAg; G is an m�m GRM containing m geno-

types. In the GRM, the genetic relationship between individuals j

and k (Gjk) is defined as:

Gjk ¼
XI

i¼1
ðxij � 2piÞðxik � 2piÞ=2pið1� piÞ; (2)

where xij is the coded genotype value for the i-th SNP of the j-th

individual, pi is the minor allele frequency for the i-th SNP, and I

is the total number of markers. The GRM was calculated using

the A.mat function in the R package “rrBLUP” (Endelman and

Jannink 2012). Because the effect of major QTL and the Q�E

effects were included in fFixedðxÞ, the proportion of variance

explained by fFixedðxÞ was subjected to a statistical test, whereas

fRandomðGÞ and the other terms were covariates. Detailed descrip-

tions of fFixedðxÞ and fRandomðGÞ are provided in the sections

“Modeling fixed effects” and “Modeling random effects,” respec-

tively. In a standard unified LMM (Yu et al. 2006), Equation (1) is

described as follows:

y ¼ Ttþ Ssþ xaþ uG þ e; (3)

where a models the additive main effect of a QTL in LD with the

SNP. We refer to the fixed QTL effect term in Equation (3) (i.e., xa)

as the additive main effect term (Table 1). uG models the random

effects as follows:

uG � MVNð0; ZGGZ
0

G

h i
r2

GÞ; (4)

where MVN is the multivariate normal distribution; ZG represents

an n�m incidence matrix for the phenotype and random effects;

and r2
G is the variance for uG.

Modeling fixed effects:
To model Q�E as fixed effects in the LMMs, we used two formu-

lae. The first is as follows:

y ¼ Ttþ Ssþ xbþ
XL

l
fðpl8xÞclg þ fRandomðGÞ þ e; (5)

where b is the QTL effect not specific to the environment, and cl

is the QTL effect specific to the l-th environment. pl is an n� 1

vector containing indicator variables that determine whether the

phenotypic value is obtained from l-th environment f1g or not

f0g. The symbol 8 indicates the Hadamard product for the left

and right vectors or matrices. In this equation, xb is analogous to

the additive main genetic effect in the AMMI model (Gauch 1988).

Therefore, we refer to the fixed QTL effect terms for an SNP in

Equation (5) (i.e., xbþ
PL

l fðpl8xÞclg) as AMMI-type Q�E effect

terms (Table 1). The second formula used to model Q�E is as fol-

lows:

y ¼ Ttþ Ssþ
XL

l
fðpl8xÞflg þ fRandomðGÞ þ e; (6)

where fl is the QTL effect in the l-th environment. Unlike

Equation (5), Equation (6) does not include the QTL effect not spe-

cific to the environment (i.e., xb). Therefore, the Q�E effect terms

are analogous to the GGE model (Yan et al. 2000). We refer to the

Q�E effect terms in Equation (6) [i.e.,
PL

l fðpl8xÞflg] as GGE-type

Q�E effect terms (Table 1).

Modeling random effects:
Appropriate statistical modeling for random effects has been the

key to efficient GWAS using LMMs (Yu et al. 2006). In a standard

GWAS, random effects are modeled as in Equation (4). Therefore,

y ¼ Ttþ Ssþ fFixedðxÞ þ uG þ e: (7)

Notably, uG does not account for the G�E effects (Yu et al.

2006). Therefore, we extended Equation (7) as follows:

y ¼ Ttþ Ssþ fFixedðxÞ þ uG þ uGE þ e; (8)

where uGE models the G�E effects as follows:

uGE � MVN 0; ZGGZ0G
� �

8 ZEZ0E
� �

r2
GE

� �
; (9)

where ZE is the incidence matrix for the phenotypic values and

environmental differences (e.g., cropping season in Figure 1).

Thus, Equation (9) allows for different random effects among

environments. The third random effect model is as follows:

y ¼ Ttþ Ssþ fFixedðxÞ þ uG þ uGT þ e; (10)

where uGT models the reaction norm for G�T effects as follows:

uGT � MVNð0; ZGGZ0G
� �

8 ZTZ0T
� �

r2
GTÞ; (11)

where ZT is the incidence matrix for the phenotype and trials.

Thus, Equation (11) allows for independent random effects be-

tween trials and has the potential to capture the unexpected

G�T effects mentioned in the second assumption for genetic

effects. Equations (8) and (10) can be combined as follows:

y ¼ Ttþ Ssþ fFixedðxÞ þ uG þ uGE þ uGT þ e: (12)

Equation (12) can model both environment-specific and trial-

specific random effects. The above random effect models are

Table 1 Terms used for the linear mixed models examined in this
study

Terms Equation in
main text

Definition

Fixed effects
Additive main Equation (3) No Q�E effect assumed
AMMI-type Q 3 E Equation (5) QTL effect divided into additive

main and Q� E effects
GGE-type Q 3 E Equation (6) Additive main and Q� E effects

scored together
Random effects
uG Equation (7) No G�E random effects as-

sumed
uGE Equation (8) G�E random effects not corre-

lated between environments
but have common variance

uGT Equation (10) G�T random effects not corre-
lated between trials but
have common variancePTR

tr utr Equation (13) G�T effects not correlated be-
tween trials and have differ-
ent variances
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used in Jarquı́n et al. (2014) and Lopez-Cruz et al. (2015). The last

random effect model is as follows:

y ¼ Ttþ Ssþ fFixedðxÞ þ uG þ
XTR

tr
utr þ e; (13)

where TR is the total number of trials included in the phenotype

data.
PTR

tr utr is represented as follows:

XTR

tr
utr � MVNð0; r2

1

ZGGZ0G � � � 0 � � � 0

..

. . .
. ..

. . .
. ..

.

0 � � � 0 � � � 0
..
. . .

. ..
. . .

. ..
.

0 � � � 0 � � � 0

2
6666664

3
7777775

þ r2
2

0 � � � 0 � � � 0
0 ZGGZ

0

G 0 � � � 0
0 � � � 0 � � � 0
..
. . .

. ..
. . .

. ..
.

0 � � � 0 � � � 0

2
666664

3
777775
þ � � �

þ r2
TR

0 � � � 0 � � � 0
..
. . .

. ..
. . .

. ..
.

0 � � � 0 � � � 0
..
. . .

. ..
. . .

. ..
.

0 � � � 0 � � � ZGGZ
0

G

2
6666664

3
7777775
Þ: (14)

This random effect design is the same as that of Sousa et al.

(2017) and Dahl et al. (2020), which allow for different heritability

between trials. Therefore, the random effect model in Equation

(14) is more flexible and can capture G�T effects better than

Equations (9) and (11). Information on the random effect terms is

summarized in Table 1.

Fitting the LMMs:
The LMMs described above include different numbers of random

effect terms. For example, Equation (7) includes only one random

effect term (i.e., uG) whereas Equation (8) includes two (i.e., uG and

uGE). However, the model fitting in this study was performed

using the same procedure. To explain the procedure, we general-

ized, tentatively, the random effects as follows:

ur � MVN 0; ZGGZ
0

G

h i
8 ZrZ

0

r

h i
r2

r

� �
; (15)

where ur is the r-th random effect, Zr is the incidence matrix for

phenotype and r-th random effects, and r2
r is the variance for ur.

To solve the LMMs with R random effects, we estimated the ge-

netic variances without fixed QTL effect terms, as follows:

y ¼ Ttþ Ssþ
XR

r
ur þ e: (16)

The solution of Equation (16) was used to estimate a weight

(wr) for each random effect term. For example, the weight of the

first random effect (w1) is calculated as follows:

w1 ¼ r̂2
1=
XR

r
r̂2

r : (17)

The variance–covariance matrix for the integrated random

effects (K) was calculated as:

K ¼
XR

r
f ZGGZ

0

G

h i
8 ZrZ

0

r

h i
wrg: (18)

Next, the integrated random effects uK were derived as
follows:

uK � MVN 0; Kr2
K

� �
; (19)

where r2
K is the variance for uK. Thus, the LMMs used to

calculate the test statistics in this study can be expressed as
follows:

y ¼ Ttþ Ssþ fFixedðxÞ þ uK þ e: (20)

This method made GWAS computationally feasible for this
study. All calculations and parameter estimations for the LMMs
were performed using the R package “gaston” (Perdry and
Dandine-Roulland 2018).

Statistical tests for the fixed QTL effect terms:
The statistical significance of the fixed QTL effect terms in each
LMM (i.e., fFixedðxÞ) was evaluated using the log-likelihood (LL) ra-
tio test (LRT). The tests and formulae used to calculate the devi-
ance and degrees of freedom are described in Table 2. The LRT
used in this study can be divided into two categories (Table 2).
The first category is a test for all QTL-effect terms (Table 2); it
tests for the existence of a QTL in LD with the SNP. Thus, signals
detected by this test can represent QTLs with or without Q�E
effects. The second category is a test only for interaction terms
(Table 2), which will be significant only when the QTL has Q�E
effects (Malosetti et al. 2013). The LL of the maximum likelihood
estimates was calculated using the lmm.diago.profile.likelihood
function in the R package “gaston” (Perdry and Dandine-Roulland
2018). The P-value of each test was calculated using the chi-
square test based on the deviance and degrees of freedom (df)
(Table 2).

Although the LRT can be used to obtain more accurate sta-
tistics in small- and moderate-sized samples, its drawback is
the absence of test statistics for each coefficient included in
the fixed effect terms that account for Q�E effects. As a com-
plement to the LRT, we performed the Wald test for each coef-
ficient for the Q�E effects. The Wald test scores were
calculated as follows:

Wil ¼ ĥ
2
il=varðĥ ilÞ; (21)

where ĥ il and Wil indicate the estimated effect size of the i-th
SNP in the l-th environment and the Wald score, respectively.
Next, the P-value of Wil was calculated based on the chi-square
test (df ¼ 1).

We determined the genome-wide significant thresholds
based on the false discovery rate (FDR), which is commonly
applied in GWAS (Benjamini and Hochberg 1995; Storey and
Tibshirani 2003). The FDR was calculated as described by Storey
and Tibshirani (2003).

Simulation experiments
We designed simulation experiments to evaluate the QTL detec-
tion power of the LMMs, under conditions described in detail
in Table 3. The simulated major QTLs were randomly selected
from the 16,782 SNP markers in a real data set for tomatoes
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(Yamamoto et al. 2016). The simulated phenotypic values were
generated using the following equation:

y1

..

.

ytr

..

.

yTR

2
6666664

3
7777775
¼

Qa � � � 0 � � � 0
..
. . .

. ..
. . .

. ..
.

0 � � � Qa � � � 0
..
. . .

. ..
. . .

. ..
.

0 � � � 0 � � � Qa

2
6666664

3
7777775

q1

..

.

qtr

..

.

qTR

2
6666664

3
7777775

þ uG�wGð Þ þ uGE �wGEð Þ þ uGT �wGTð Þ
� 	

=xþ e=u;

(22)

where ytr is a m� 1 vector for the phenotypic values in the tr-th
simulated trial; Qa is an m� 3 matrix whose column elements
consist of SNP genotypes selected for simulated QTLs; qtr is a
3� 1 vector for the QTL effect in the tr-th trial. The elements of
the qtr vectors become the same for trials under the same envi-
ronmental conditions. uG�wGð Þ, uGE �wGEð Þ, and uGT �wGTð Þ are
random effects that follow Equations (4), (9), and (11), respec-
tively. x and u were scalars required to adjust the phenotypic
values to satisfy the given proportion of variance explained by
each major QTL (PVEQTL) and heritability. In this study, the
random effect values (i.e., uG, uGE, and uGT) were generated using
the mvrnorm function in R using a corresponding variance–covari-
ance matrix (R Core Team 2019). The relative contributions of the
three random effects were adjusted by multiplying the values
generated by mvrnorm and the specified weight parameters

(wG, wGE, and wGT in Table 3). The residual values (e) were generated
using the rnorm function in R. In this study, PVEQTL and heritability
for phenotypic values from all environments and trials were set to
0.1 and 0.5, respectively. To satisfy these settings, the optimal x and
u were determined using the optimize function in R.

We assumed four Q�E effects: persistence, divergence, conver-
gence, and crossover (Malosetti et al. 2013) (Table 3). Persistence
means that the QTL has a persistent effect across environments
and, therefore, has no Q�E effects. Divergence means that the
QTL has different degrees of effect size between environments.
Convergence means that the QTL shows an effect in a particular en-
vironment, but not in other environments. Crossover means that
the direction of the QTL effect differs among environments.

GWAS efficiency evaluation
We calculated recall, precision, and F-measure to evaluate GWAS
power as in the previous studies (Hamazaki and Iwata 2020;
Saber and Shapiro 2020; Shafquat et al. 2020). Recall is the propor-
tion of true positives that are correctly identified; precision is the
proportion of true positives among the retrieved positive signals;
and F-measure represents the harmonic mean of recall and
precision, calculated as follows:

F measure ¼ 2=ðRecall�1 þ Precision�1Þ: (23)

Thus, a high F-measure can only be achieved by balancing
high precision and high recall. Generally, recall, precision, and

Table 2 Hypotheses and terms of the chi-square tests performed in this study

Test Terms Deviance formulaa Degrees of freedomb

All QTL-effect terms Additive main –2 � (LLEq.3 � LLEq.16) 1
AMMI-type Q�E –2 � (LLEq.5 � LLEq.16) Lþ 1
GGE-type Q�E –2 � (LLEq.6 � LLEq.16) L

Interaction terms AMMI-type Q�E –2 � (LLEq.5 � LLEq.3) L
GGE-type Q�E –2 � (LLEq.6 � LLEq.3) L� 1

a LLEq.n indicates the log-likelihood of Eq. n in the main text.
b L indicates the number of environments included in the test.

Table 3 Parameters used for simulated phenotypes

Condition Major QTLsa Random effectsb

Trial 1 2 3 4 wG: wGE: wGT

Persistence Environment A A B B 1:1:1
Effect size 1 1 1 1

Realized PVEQTL
c

per trial
Min. 0.079 0.082 0.078 0.074

Median 0.106 0.106 0.104 0.104
Max. 0.165 0.147 0.153 0.160

Divergence Environment A A B B 1:1:1
Effect size 0.5 0.5 1 1

Realized PVEQTL

per trial
Min. 0.025 0.025 0.077 0.065

Median 0.043 0.047 0.127 0.130
Max. 0.076 0.078 0.228 0.207

Convergence Environment A A B B 1:1:1
Effect size 0 0 1 1

Realized PVEQTL

per trial
Min. 0.000 0.000 0.036 0.030

Median 0.000 0.000 0.123 0.127
Max. 0.000 0.000 0.280 0.255

Crossover Environment A A B B 1:1:1
Effect size –1 –1 1 1

Realized PVEQTL

per trial
Min. 0.010 0.011 0.011 0.010

Median 0.057 0.064 0.057 0.063
Max. 0.165 0.174 0.146 0.153

a Effect size and environment indicate effect size of the simulated QTLs for each trial and the environment identifier for the trial, respectively.
b Values in this column are relative weights of random effects (see Equation 22).
c PVEQTL: proportion of variance explained by each major QTL.
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F-measure are affected by the genome-wide significance thresh-
old (Gage et al. 2018). Therefore, we also calculated the receiver
operating characteristic (ROC) curve, and evaluated GWAS effi-
ciency based on the area under the ROC curve (AUC) (Gage et al.
2018). An AUC of 0.5 indicates that the GWAS has no power to
detect true signals, whereas an AUC of 1.0 indicates that all top
signals of the GWAS agree with the true signals. We used the roc
function in the “pROC” package (Robin et al. 2011) to calculate the
AUC from –log10(p) values.

Genomic inflation factor
Although the LMMs applied in GWAS are designed to avoid infla-
tion of –log10(p) values due to population structure (Yu et al.
2006), the inclusion of too many covariates in an LMM often
results in inflation or deflation of P-values from the expected
distribution (Moore et al. 2019). Therefore, the genomic inflation
factor (kGC; Devlin and Roeder 1999) is often used to evaluate the
degree of p inflation or deflation (Voorman et al. 2011; Moore et al.
2019). In this study, kGC was calculated as follows:

kGC ¼
log10 pobs 0:5½ �


 �
log10 0:5ð Þ ; (24)

where pobs 0:5½ � indicates the 0.5 quantile of the observed P-values.
kGC > 1 indicates inflation of –log10(p) values and an increase in
false positive signals, whereas kGC < 1 indicates deflation of –
log10(p) values and an increase in the rate of false negatives
(Devlin and Roeder 1999).

Tomato genotype and phenotype data
We applied the LMMs to real tomato genotype and phenotype
data (Yamamoto et al. 2016, 2017). We used 96 big-fruited tomato
F1 varieties intended for the fresh market. These varieties were
developed by various organizations such as seed companies and
the public sector (Yamamoto et al. 2016). The parental combina-
tions of the F1 varieties are unknown. Genotype data consisting
of 16,782 SNP markers were obtained using Axiom myDesign gen-
otyping arrays (Affymetrix Co., Ltd., Santa Clara, CA, USA). All
SNP markers had a minor allele frequency of >0.05, and a missing
value rate of 0. Phenotyping was performed in the winter and spring
cropping seasons in four and two trials, respectively. All plants were
grown hydroponically using a high-wire system in a greenhouse at
the National Agriculture and Food Research Organization at the
Institute of Vegetable and Tea Science in Tsu, Japan. One plant per
variety was grown in each trial. Among the phenotypes obtained
(Yamamoto et al. 2016, 2017), we focused on the average fruit weight
and fruit set ratio. The fruit set ratio indicates the ratio of flowers
that reached fruit set. The fruit set ratio values were transformed
using the empirical logit transformation.

Data availability
The phenotype and genotype data, R scripts, and R package
developed for this study are available at https://github.com/
yame-repos/gwasQxE. Supplementary Material is available at fig-
share: https://doi.org/10.25387/g3.14384912.

Results
Evaluation of power to detect Q 3 E effects
Common results among all simulation conditions:
In LMMs including only the additive main effect term, there was
little difference among the methods used to model random
effects (Figure 2). The tests including Q� E effect terms showed

different modes of action depending on the random effects. The
random effects “uG” and “uG þ

PTR
tr utr” (Table 1) showed higher

recall than other random effect models (Figure 2). Conversely,
the precision, F-measure, and AUC of tests using “uG” and
“uG þ

PTR
tr utr” were lower than those of the other random effect

models (Figure 2). These results indicate that signals detected in
the tests that used “uG” and “uG þ

PTR
tr utr” included more false

discoveries than those in the other random effect models.
Persistence: In this simulation, tests for interaction terms

showed no power (i.e., recall � 0 and AUC � 0.5) (Figure 2A). This
result is reasonable because no Q�E effects were included in
the simulated QTLs (Table 3). LMMs including only the additive
main effect were the fittest models for persistence QTLs. LMMs
that included only the additive main effect showed the highest
AUC, without obvious disadvantages in terms of recall, precision,
and F-measure (Figure 2A). These results indicate that LMMs that
include only the additive main effect are recommended for
detecting persistence QTLs.

Divergence: The difference between the simulation conditions
of “persistence” and “divergence” is that the latter QTLs
have smaller PVEQTL in environment A (Table 3). Because of the
difference in realized PVEQTL between environments, we expected
LMMs that included Q�E effect terms to have higher power than
those that included only the additive main effect. However, the
results for “divergence” resembled those for “persistence”
(Figure 2, A and B). These results indicate that it is difficult to
identify the “divergence” effect using the LMMs in this study.

Convergence: Under this simulation condition, a QTL has an ef-
fect in environment B, but no effect in environment A (Table 3).
Unlike persistence and divergence QTLs, LMMs that included
only the additive main effect showed the lowest recall and AUC
values (Figure 2C). This result indicates that Q�E terms are nec-
essary to detect convergence QTLs. Another difference between
“convergence” compared with “persistence” and “divergence” is
that the tests for interaction terms showed recognizable degrees
of recall, precision, and F-measure (Figure 2C). These results indi-
cate that the convergence Q�E effect can be detected using
LMMs including Q�E fixed effect terms.

Crossover: Under this simulation condition, the QTL effect
takes opposite directions in environments A and B (Table 3).
LMMs with only an additive main effect term showed near-zero
recall, precision, and F-measure (Figure 2D). These results indi-
cate that Q�E terms are necessary to detect crossover QTLs.
Recall, precision, F-measure, and AUC were equivalent between
all QTL-effect terms and interaction terms (Figure 2D). These
results indicate that crossover QTLs were detected as QTLs with
Q�E effects and were not misrecognized as QTLs with only an
additive main effect.

Genomic inflation factor
The genomic inflation factor (kGC) was calculated to assess the
deviation of test statistics from the expected null distribution
(Figure 3). Because we simulated only three major QTLs in the
experiments, kGC should be equal to 1. Thus, the condition kGC �
1 is necessary for precise calculation of FDR for a genome-wide
significant threshold. In the tests for LMMs with only an additive
main effect term (Table 2), –log10(p) values were close to the
theoretically expected distribution (i.e., kGC � 1) (Figure 3A).
The tests for LMMs including Q�E effect terms yielded different
distributions depending on the random effects. The kGC values
were inflated and fluctuated when the random effects were “uG”
or “uG þ

PTR
tr utr” (Figure 3A). The use of the random effects

“uG þ uGT” or “uG þ uGE þ uGT” restrained kGC fluctuation, but the
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Figure 2 Bar plots of power to detect (A) persistence, (B) divergence, (C) convergence, and (D) crossover QTLs in the simulated phenotypes, under the
assumption of multiple environments and multiple trials. Labels on the x-axes correspond to the tests described in Tables 1 and 2. Recall, precision, and
F-measure were calculated using a false discovery rate of 0.05 as the genome-wide significance threshold. Values represent means of 100 simulations.
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mean values differed depending on the fixed effect terms

(Figure 3A). Figure 3B compares quantile–quantile (Q–Q) plots of

mean –log10(p) values between LMMs with the random effects

“uG þ uGE þ uGT .” The –log10(p) values of the AMMI-type Q�E ef-

fect terms showed deflation compared with the theoretically

expected distribution (Figure 3B). These results indicate that

GGE-type Q�E effect terms are more appropriate than the

AMMI-type. Next, we focused on the relationship between GGE-

type Q�E effect terms and the method used to model random

effects. The random effects “uG,” “uG þ uGT ,” and “uG þ
PTR

tr utr”

showed inflation of kGC, whereas “uG þ uGE” and “uG þ uGE þ uGT”

showed kGC � 1 (Figure 3C). These results indicate that an LMM

that includes GGE-type Q�E effect terms and random effects

“uG þ uGE þ uGT” is recommended for calculating FDR as a

genome-wide significant threshold.

GWAS for tomato agronomic traits
In the evaluation of the power to detect Q�E effects, LMMs that

included only the additive main effect term were more efficient

for persistence and divergence QTLs (Figure 2, A and B).

Conversely, LMMs including Q� E effects were necessary to

detect convergence and crossover QTLs (Figure 2, C and D). In the

analysis using the genomic inflation factor, an LMM including

GGE-type Q�E effect terms and the random effect

“uG þ uGE þ uGT” was recommended (Figure 3). Therefore, we used

two LMMs for the tomato agronomic trait data. The first was an

LMM that included only the additive main effect term and the

random effect “uG þ uGE þ uGT” (Table 1), and the second was an

LMM that included GGE-type Q�E effect terms and the random

effect “uG þ uGE þ uGT” (Table 1). We focused on QTLs with FDR <

0.05, which are often used as genome-wide significant thresholds

in GWAS (Tibbs Cortes et al. 2021) .
For average fruit weight, a significant signal on chromosome 9

was detected for the additive main effect and all QTL effect

terms, including Q�E (Figure 4A and Table 4). The signal disap-

peared when the test was performed only for interaction terms

(Figure 4A). These results indicate that the QTL detected on

chromosome 9 is a persistence or divergence QTL. In the tests for

interaction terms, we detected a significant signal on chromo-

some 10. The estimated effect size and the Wald score suggest

Figure 3 Evaluation of LMMs based on deviation of the P-value distribution from the null hypothesis. (A) Box and whisker plots of genomic inflation
factors for P-values. Red horizontal line indicates the theoretically expected value (i.e., kGC ¼ 1). (B) Quantile–quantile (Q–Q) plots of P-values obtained
from LMMs that include random effect “uG 1 uGE 1 uGT.” (C) Q–Q plots of P-values obtained from LMMs with GGE-type Q�E fixed effect terms. In (B, C),
P-values shown in the panel represent means of 1000 quantiles from 400 experiments (100 simulations � 4 conditions in Table 3), and a black dashed
line indicates the P-value distribution under the null hypothesis.
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that the signal is a convergence QTL that shows the effect only in
the spring cropping season (Table 4).

For fruit set ratio, a significant signal was detected on chromo-
some 12 in tests for the additive main effect (Figure 4B; Table 4).
This signal disappeared in the other tests (Figure 4B). The effect
size and Wald score of the signal on chromosome 12 were similar
for the winter and spring cropping seasons (Table 4). These
results indicate that the QTL on chromosome 12 is a persistence
QTL. Alternatively, tests for all QTL effect terms, and tests for
only interaction terms, detected significant signals on chromo-
some 1 (Figure 4B). The effect size of the signal was opposite in

the winter and spring cropping seasons (Table 4). These results
suggest that the QTL on chromosome 1 is a crossover QTL.

Discussion
In this study, we explored efficient LMMs to detect QTLs with
Q�E effects. For this objective, we compared the efficacy of
LMMs with various combinations of fixed QTL effect terms and
random effect modeling methods (Tables 1 and 2). Efficacy was
evaluated using recall, precision, F-measure, and AUC (Figure 2).
None of the tested LMMs showed high values for all parameters

Figure 4 Genome-wide association study Manhattan plots for tomato agronomic traits. Red horizontal lines indicate the genome-wide significance
threshold (false discovery rate <0.05). (A) Average fruit weight. (B) Fruit set ratio.

Table 4 Statistics obtained in the genome-wide association study of tomato phenotypic data

Trait SNP Chr pos (cM) –log10(p) Environment

Adda Allb Intc Winter Spring

Fruit weight AX-95796523 9 53.0 5.03 5.24 1.45 hl
d 1.03 0.59

Walde 6.29 1.90
AX-95776890 4 29.7 3.90 3.18 0.00 hl –0.63 –0.62

Wald 3.67 3.18
AX-95774753 8 101.4 3.58 2.93 0.17 hl –0.50 –0.56

Wald 3.11 3.18
AX-107533066 1 106.4 2.85 3.55 1.88 hl –0.50 –1.02

Wald 1.58 4.25
AX-107537279 10 40.5 0.45 3.16 3.66 hl –0.18 1.45

Wald 0.16 2.28
Fruit set AX-95767902 12 19.9 3.61 2.93 0.09 hl –0.53 –0.60

Wald 2.41 2.92
AX-107525913 1 117.8 0.00 4.15 4.91 hl –0.23 0.41

Wald 1.10 2.15

a Additive main effect.
b All QTL-effect terms.
c Interaction terms.
d Estimated effect size.
e log10(p) value from chi-square test of the Wald score.
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(Figure 2). Notably, LMMs with higher recall showed lower preci-
sion and F-measure (Figure 2). This result is reasonable because
recall and false positives are highly correlated in GWAS (Bian and
Holland 2017). Generally, recall, precision, and F-measure change
depending on the level of the genome-wide significance threshold
(Gage et al. 2018). These problems make it difficult to select the
most efficient LMM. Recently, AUC has been used to evaluate
GWAS efficiency because it is independent of the genome-wide
significance threshold (Gage et al. 2018; Moore et al. 2019;
Hamazaki and Iwata 2020; Shafquat et al. 2020). In this study,
AUC values were affected by random effect modeling methods to
a smaller degree than recall, precision, and F-measure (Figure 2).
Therefore, the AUC was useful for selecting the most effective
LLM in this study.

Inflation or deflation of kGC causes various problems in GWAS
(Devlin and Roeder 1999). For example, although FDR is com-
monly applied to determine genome-wide significant thresholds
in GWAS (Benjamini and Hochberg 1995; Storey and Tibshirani
2003), its calculation requires a theoretically expected P-value
distribution (i.e., kGC � 1). Genomic control (GC) corrects inflated
or deflated P-values using the kGC value (Devlin and Roeder 1999).
However, the applicability of a given inflation factor (i.e., kGC) to
correct marker P-values differs according to allele frequency and
correlation with other covariates, and therefore use of a uniform
overall inflation factor (i.e., kGC) may results in a loss of power
(Price et al. 2006; Wang et al. 2012; Moore et al. 2019). Notably, kGC

� 1 is theoretically correct for this study because we simulated
only three major QTLs (Table 3) and, therefore, most P-values
should follow the expected distribution. In this study, the use of
AMMI-type Q�E effect terms resulted in deflated kGC (Figure 3),
although the AUC values were equivalent to those of the GGE-
type Q�E effect (Figure 2). This result is attributed to the df of
the LRT (Table 2). Because of the additive main effect term (xb in
Equation 5), the LRT that used AMMI-type Q� E effect terms had
one more df than that using GGE-type Q� E effect terms
(Table 2). Therefore, we concluded that using GGE-type Q�E ef-
fect terms is preferable to GWAS for Q�E effects. However, a de-
sirable feature of the AMMI-type Q�E effect terms is the
separation of a QTL effect into additive main and Q�E effects. To
perform exhaustive Q�E effect analysis with minimal oversight,
our findings suggest that (1) genome-wide analysis with LMMs
should be performed using GGE-type Q�E effect terms, and (2)
Q�E effects should be assessed using AMMI-type Q�E effect
terms only for significant signals detected in (1).

In this study, the random effect “uG þ
PTR

tr utr” showed low pre-
cision, F-measure, and AUC values (Figure 2) and was less effec-
tive in controlling kGC (Figure 3), although its efficacy has been
demonstrated in a previous study (Sousa et al. 2017). One possible
reason for this discrepancy is that of differences in methods used
to estimate the variance component in LMM fitting. In this study,
we performed direct estimation using the average information re-
stricted maximum likelihood method without fixed QTL effect
terms (Gilmour et al. 1995; Perdry and Dandine-Roulland 2018).
Conversely, the variance component estimation and fitting
method used in Sousa et al. (2017) were based on a Bayesian ap-
proach that updates the parameters using a Gibbs sampler (Pérez
and de Los Campos 2014). Because Sousa et al. (2017) performed
model fitting to construct prediction models for GS, one model
fitting process per trait was sufficient. Conversely, GWAS must
perform model fitting for every marker in the data, which can be
computationally unfeasible under the Bayesian approach.
Therefore, we did not use the Bayesian approach for model fitting

in this study, even though it has the potential to increase the
power of QTL detection.

The findings of this study can be summarized as follows. First,
LMMs including Q�E effect terms are necessary to detect QTLs
with Q�E effects (Figure 2). Second, the random effect
“uG þ uGE þ uGT” is necessary to control kGC and calculate FDR ap-
propriately (Figure 3). We applied these findings to real pheno-
typic data for tomatoes to detect QTLs associated with
agronomic traits. A fruit weight QTL on chromosome 9 was lo-
cated on the fw9.1 region (Figure 4 and Table 4), which was identi-
fied in a genetic mapping population derived from a cross
between cultivated and wild tomato (Tanksley et al. 1996). A fruit
set QTL on chromosome 1 was close to fset1.3, which was
detected in a genetic mapping population derived from eight to-
mato varieties (Diouf et al. 2020). Interestingly, Diouf et al. (2020)
suggested that fset1.3 has Q�E effects, which is consistent with
the results of this study (Figure 4 and Table 4). Thus, the findings
of this study have the potential to contribute to the identification
of more QTLs with Q�E effects.
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Pérez P, de Los Campos G. 2014. Genome-wide regression and

prediction with the BGLR statistical package. Genetics. 198:

483–495.

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, et al.

2006. Principal components analysis corrects for stratification in

genome-wide association studies. Nat Genet. 38:904–909.

R Core Team. 2019. R: A language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna,

Austria. Available at: https://www.R-project.org/

Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, et al. 2011. pROC:

an open-source package for R and Sþ to analyze and compare

ROC curves. BMC Bioinformatics. 12:77.

Saber MM, Shapiro BJ. 2020. Benchmarking bacterial genome-wide

association study methods using simulated genomes and pheno-

types. Microb Genom. 6:e000337.

Shafquat A, Crystal RG, Mezey JG. 2020. Identifying novel associa-

tions in GWAS by hierarchical Bayesian latent variable detection

of differentially misclassified phenotypes. BMC Bioinformatics.

21:25.

Sousa MB, Cuevas J, de Oliveira Couto EG, Pérez-Rodrı́guez P, Jarquı́n
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APPENDIX

Dominant effect QTLs
Because the materials used in this study were F1

varieties, we extended the analyses in the main
text to include dominant effect QTLs. In this ap-
pendix, we briefly summarize the methods and
results of this analysis.

LMMs: To include dominant effects, Equation (1)
was extended as follows:

y ¼ Ttþ Ssþ fFixed x; hð Þ þ fRandom G; Dð Þ þ e; (A1)

where fFixedðx; hÞ and fRandomðG; DÞ are the fixed
and the random effect terms that include domi-
nant effects, respectively. h is an n� 1 vector of
SNP genotype heterozygosity coded as f0, 1, 0g ¼
faa, Aa, AAg. D is the dominance covariance ma-
trix between individuals j and k (Djk), and was de-
fined as follows:

Djk ¼
XI

i¼1
hij � 2pi 1� pið Þ
� 	

fhik
� 2pi 1� pið Þg

=f2pið1� piÞ½1� 2pið1� piÞ�g;

(A2)

where hij is the coded SNP genotype heterozygosity
value for the i-th SNP of the j-th individual. The
derivation of D is explained in detail in Su et al.
(2012). Without consideration of differences
among environments, the random effects for D are
modeled as follows:

dD � MVN 0; ZDDZ
0

D

h i
r2

D

� �
: (A3)

We omitted the derivation of dominant random
effects for G�E (i.e., dD, dDE, dDT, and

PTR
tr dtr) be-

cause these are analogous to the equations used
for additive G�E random effects (i.e., uG, uGE, uGT,
and

PTR
tr utr). When the dominant effect terms

were included, Equation (3) was extended as fol-
lows:

y ¼ Ttþ Ssþ xaþ hsþ fRandomðG; DÞ þ e; (A4)

where s is the dominant effect for a QTL in LD with
the SNP. An LMM including the AMMI-type Q�E
effect terms (Equation 5) was extended as follows:

y ¼ Ttþ Ssþ xb

þ
XL

l
fðpl8xÞclg þ hdþ

XL

l
fðpl8hÞ#lg þ fRandom G; Dð Þ þ e;

(A5)

where d is the dominant QTL effect not specific to
the environment, and #l is the dominant QTL effect
specific to the l-th environment. An LMM including
the GGE-type Q�E effect terms (Equation 6) was
extended as follows:

y ¼ Ttþ Ssþ
XL

l
fðpl8xÞflg þ

XL

l
fðpl8hÞjlg þ fRandom G; Dð Þ þ e

(A6)

Where jl is the dominant QTL effect in the l-th
environment.

Simulation conditions: The equation used to sim-
ulate phenotypic values, including dominant
effects, was as follows:
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.
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..

.

yTR

2
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3
7777775
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. . .

. ..
. . .

. ..
.

0 � � � Qd � � � 0
..
. . .

. ..
. . .

. ..
.

0 � � � 0 � � � Qd

2
6666664

3
7777775

q1

..

.

qtr

..

.

qTR

2
6666664

3
7777775

þ
uG�wGð Þ þ uGE �wGEð Þ þ uGT �wGTð Þ

� 	
x

þ e

u
: (A7)

The difference between Equations (22) and (A7) is
that the coding of the SNP genotype values Qa in
Equation (22) is f0, 1, 2g ¼ faa, Aa, AAg, whereas
that of Qd in Equation (A7) is f0, 3, 2g ¼ faa, Aa,
AAg. This dominant effect design was based on a
real dominant-effect QTL in tomatoes (Krieger et al.
2010).

Results and Discussion: The results obtained us-
ing the genomic inflation factor (kGC) were similar
to those of LMMs without dominant effects, except
that the values were slightly deflated in all tests
(Supplementary Figure S1A), which was likely to be
because the additional fixed terms in the dominant
effect LMMs resulted in larger df in the subsequent
chi-square test. The inclusion of dominant effect
terms in the LMMs showed an advantage in terms
of both recall and AUC for detecting the dominant-
effect QTLs simulated in this study
(Supplementary Figure S1B). This result is reason-
able because models including dominant effect
terms generally provide a more effective fit to phe-
notypic values with a dominant effect (Lettre et al.
2007). Nevertheless, LMMs that included dominant
effect terms did not detect dominant-effect QTLs
for the real agronomic trait data used in this study
(Supplementary Figure S2). One possible reason for
this result is that the deflation of –log10(p) values,
as indicated in kGC (Supplementary Figure S1A),
resulted in false negative QTLs. Another possibility
is that, as suggested in some previous studies, the
contribution of dominant effects is less evident for
quantitative traits, and the use of an additive effect
model is sufficient for genome-wide analysis
(Varona et al. 2018). In addition, another problem
in the inclusion of dominant effect terms have
been discussed by Balding (2006). That is, the exis-
tence of few homozygotes for an allele results in
the neglect of the homozygote genotypes and lin-
ear regression fitting between homozygote for the
another allele and heterozygote genotypes (Balding
2006). Because the materials used in this study
were F1 varieties that include many genetic loci
where heterozygous genotypes are major and ho-
mozygous are minor, this scenario is possible.
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