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The UWHAM and SWHAM Software 
Package
Bin W. Zhang   , Shima Arasteh & Ronald M. Levy

We introduce the UWHAM (binless weighted histogram analysis method) and SWHAM (stochastic 
UWHAM) software package that can be used to estimate the density of states and free energy 
differences based on the data generated by multi-state simulations. The programs used to solve the 
UWHAM equations are written in the C++ language and operated via the command line interface. In 
this paper, first we review the theoretical bases of UWHAM, its stochastic solver RE-SWHAM (replica 
exchange-like SWHAM)and ST-SWHAM (serial tempering-like SWHAM). Then we provide a tutorial 
with examples that explains how to apply the UWHAM program package to analyze the data generated 
by different types of multi-state simulations: umbrella sampling, replica exchange, free energy 
perturbation simulations, etc. The tutorial examples also show that the UWHAM equations can be 
solved stochastically by applying the RE-SWHAM and ST-SWHAM programs when the data ensemble 
is large. If the simulations at some states are far from equilibrium, the Stratified RE-SWHAM program 
can be applied to obtain the equilibrium distribution of the state of interest. All the source codes and 
the tutorial examples are available from our group’s web page: https://ronlevygroup.cst.temple.edu/
software/UWHAM_and_SWHAM_webpage/index.html.

The weighted histogram analysis method (WHAM) algorithm1,2 is widely applied to estimate the density of states 
and free energy differences based on the data generated by multi-state simulations. Multi-state simulations are 
popular advanced sampling algorithms that are applied in computational biophysics and computational chemis-
try. For example, the temperature replica exchange method is extensively applied to explore the configurational 
space of biomolecules; the umbrella sampling method is applied to construct free energy landscape of a system on 
chosen reaction coordinates; the free energy perturbation and Hamiltonian replica exchange method are power-
ful tools used to estimate the binding affinities of ligands and proteins for small-molecule drug discovery3–5. The 
WHAM algorithm is the standard tool to analyze the data generated by these multi-state simulations. Consider 
the simulation at each state as a measurement of density of states, the WHAM algorithm answers the question 
what the best estimate of density of states is if measurements have been taken at multiple states.

Since its introduction in 1992, the WHAM algorithm has been examined and studied by several research 
groups6–11. The most important improvement of WHAM is that an unbinned WHAM version named the 
multi-state Bennett acceptance ratio (MBAR) or the binless WHAM (UWHAM) was introduced12–14. Compared 
with the original WHAM, which coarse-grains observations into bins of a histogram, the binless WHAM pro-
vides the estimate of density of states for each data point therefore increasing the statistical precision and impor-
tantly, estimating the density of states provides a connection with the potential distribution theorem15,16.

Complementary to the study of WHAM itself, how to solve WHAM equations efficiently in practice is another 
topic that has been an object of research17–20. In fact, this topic became more challenging and more urgent 
after the introduction of binless WHAM because of the dramatic increase of the number of variables without 
coarse-graining. In ref.14, Tan et al. proposed to solve the UWHAM equations by minimizing a convex function. 
To further remove the computational bottleneck in scaling up UWHAM, we developed methods called stochastic 
UWHAM (SWHAM) which solve the UWHAM equations stochastically by using generalized ensemble algo-
rithms to resample the data collected at multiple states21,22. One important assumption of applying WHAM is 
that the data obtained from each state has already reached global equilibrium. However, sometimes this assump-
tion does not hold if the barriers between free energy basins are high at some of the states and the simulation 
times are not long enough. We developed a method called Stratified-UWHAM23 to analyze the data generated by 
multi-state simulations when the simulations at some states are far from equilibrium.
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The purpose of this paper is to introduce the UWHAM and SWHAM software package developed by our 
group. The programs used to solve the UWHAM equations are written in the C++ language and operated via the 
command-line interface. The basic solver solves the UWHAM equations by either a direct iteration method or 
minimization of a convex function. When the data ensemble is large, we show that the multi-state free energies 
can be obtained directly by running serial tempering-like SWHAM (ST-SWHAM), which resamples the raw data 
by applying the serial tempering (ST) protocol; the multi-state distributions can be obtained directly by running 
replica exchange-like SWHAM (RE-SWHAM), which resamples the raw data by applying the replica exchange 
(RE) protocol. If the simulations at some states are far from convergence, the multi-state distributions can be 
estimated by Stratified RE-SWHAM. Local WHAM22, which is a variant of ST-SWHAM that couples the adjacent 
states by a stochastic resampling procedure, is also included in this software package. The remaining part of the 
paper proceeds as follows: First, we briefly review the theoretical basis of UWHAM and SWHAM. Then we intro-
duce the tutorial examples on the web page of the UWHAM and SWHAM software package.

Methods and Discussion
UWHAM.  Suppose M parallel (independent or coupled) simulations in the canonical ensemble are run at M 
states. Each state is characterized by a specific combination of thermodynamic parameters and potential energy 
functions. They are referred to as λ-states in the remaining part of this paper to avoid the confusion with the 
terms such as conformational states and microstates. Suppose Xαi is the ith microstate observed at the αth λ-state, 
the probability of observing Xαi at the γth λ-state is
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where qγ({x}αi) = exp {−βγEγ({x}αi)} is the Boltzmann’s factor of Xαi at the γth λ-state; {x}αi is the coordinates of 
the microstate Xαi; βγ is the inverse temperature of the γth λ-state; Eγ({x}αi) is the potential energy of the micro-
state Xαi at the γth λ-state; and Zγ is the partition function of the γth λ-state. The likelihood of the observed data 
is proportional to14
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where uαi is the energy coordinate of the microstate Xαi that in general may be written as the sum of a reference 
energy plus perturbations (see ref.14). Nα is the total number of observations observed at the αth λ-state; and 
Ω(uαi) is the density of states. Let αẐ  and Ω γ

ˆ u( )i  denote estimates of the partition function of the αth λ-states and 
the density of states of uγi, respectively. These two estimates satisfy the equation
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Maximizing the log likelihood function yields

Ω =
∑

.γ

κ κ κ κ γ=
−

ˆ
ˆ

u
N Z q u

( ) 1

( ) (4)
i

M
i1

1

Eqs (3) and (4) are the UWHAM (or MBAR) equations13,14. Note that the UWHAM estimates do not depend on 
the original λ-state at which each observation was observed. Therefore the UWHAM equations can be simplified as

∑= Ω

Ω =
∑

α α

κ κ κ κ

=

=
−

ˆ ˆ

ˆ
ˆ

Z q u u

u
N Z q u

( ) ( )

( ) 1

( )
,

(5)

i

N

i i

i
M

i

1

1
1

where = ∑α α=N NM
1  is the total number of observations.

The UWHAM estimate of the probability of observing the observation ui at the αth λ-state is
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where = Ωα αˆ ˆw u u q u( ) ( ) ( )i i i  is the unnormalized probability. We can define one of the λ-states as the reference 
state, and the normalized probability of observing the observation ui at the reference state is

=
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and = Δα αˆ ˆw w u q u( ) ( )i i0 , where Δqα(ui) = qα(ui)/q0(ui) = exp{−[βαEα(ui) − β0E0(ui)]} is the biasing factor. Then 
the equation array Eq. (5) can be rewritten as
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In practice, the UWHAM program solves the equation array Eq. (8) instead of Eq. (5). Suppose A is a property 
of interest of the system. According to Eq. (6), the expectation value of the property A at the αth λ-state is calcu-
lated by the weighted average
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where A(ui) is the the property A measured by using the ith observation.
Currently, a self-consistent iteration solver and a solver that optimizes a convex function by using the 

Newton-Raphson algorithm14 have been implemented in the UWHAM program to solve the UWHAM equations.

SWHAM.  Suppose the raw data were generated from simulations at M λ-states, and the total number of obser-
vations is N. During the procedure of UWHAM analysis, the program needs to evaluate M biasing factors (or 
Boltzmann’s factors) for each observation at the beginning. Namely, the UWHAM program evaluates a bias-
ing matrix which contains n × M2 elements, where n = N/M is the average number of observations observed 
at each λ-state. Then the UWHAM equations are solved by minimization of a convex function, which involves 
multiplication of matrices that contain M × N elements (as large as the biasing matrix) and diagonalization of 
matrices that contain M × M elements. The costs of memory and computational time of running UWHAM are 
proportional to the second order of the number of λ-states M. To remove this computational bottleneck in scaling 
up UWHAM, we developed methods which solve UWHAM equations stochastically by using the generalized 
ensemble algorithms.

RE-SWHAM.  RE-SWHAM is an algorithm that we developed to solve the UWHAM equations stochastically 
by applying the replica exchange (RE) protocol to resample the raw data generated by multi-state simulations21. 
As shown in Fig. 1, the observations observed at each λ-state are collected as the database for that λ-state before-
hand. Then RE-SWHAM analyses are run by performing cycles of RE simulations. Each cycle consists of a “move” 
procedure and an “exchange” procedure. During the move procedure of RE-SWHAM, an observation in the data-
base of a λ-state is randomly chosen with equal probability to associate with the replica at that λ-state. During the 
exchange procedure of RE-SWHAM, we attempt to swap two random replicas based on the Metropolis criterion. 
If the swap is accepted, in addition to swapping the replicas, the observation associated with the replica is also 
swapped to the database of the other λ-state21. The exchange step should be repeated multiple times to approach 
the infinite swapping limit for the best sampling efficiency24. At the end of the exchange procedure, the observa-
tion associated with the replica at each λ-state is recorded as the output of that λ-state. Note the direct outputs of 
RE-SWHAM are the estimates of the equilibrium distribution at each λ-state.

In ref.21, we proved that the distribution of the outputs of RE-SWHAM at each λ-state are asymptotic to the 
UWHAM estimate when the number of observations observed at each λ-state is large by treating RE-SWHAM as 
a random walk in the space of the weight arrays of observations. Here we provide an alternative proof. Consider 
a trial exchange in RE-SWHAM which swaps one observation um at the αth λ-state and the other observation un 
at the γth λ-state. The probability that this trial exchange is accepted is
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where p u( )X Y  is the normalized time-average probability of choosing the observation uY to associate with the 
replica at the X th λ-state, and Ψ is the Metropolis function25

Ψ = −x x( ) min (1, exp[ ]), (11)

which has the property Ψ(x)/Ψ(−x) = exp{−x}. Consider the reverse trial exchange that swaps the observation 
un at the αth λ-state and the observation um at the γ λ-state. The probability that this trial exchange is accepted is
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If the RE-SWHAM resampling procedure converges, Pex and P′ex will agree with each other for each pair of 
observations (um, un) and each pair of λ-states (α, γ), which leads to the detailed balance relation of RE-SWHAM:
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Eq. (13) can be rewritten as
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where subscript 0 denotes the reference state. Then the probability α
p u( )m  can be expressed as
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Note that the probability of finding the observation um in the database of the αth λ-state is α α
N p u( )m  and there 

is one copy of each observation in the databases of all λ-states, namely, ∑ =α α α= N p u( ) 1M
m1 . Multiplying both 

side of Eq. (15) by Nα and summing over all the λ-states yields
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Thus, the RE-SWHAM estimates αẐ  and Ω̂ u( )m  satisfy Eqs (16) and (17), which are equivalent to the UWHAM 
equations (Eq. (5)).

Figure 1.  An illustration of the RE-SWHAM algorithm. This drawing illustrates two replica exchange cycles 
of the RE-SWHAM method, and shows only two λ-states with “gray” or “cyan” color. In each cycle one data 
element is chosen from λ-state first, then a replica exchange is performed. In the first cycle since the swap is 
accepted, the data associated with the two replicas is swapped to the other λ-state’s data array. At the end of 
each cycle, the data associated with replicas are recorded as the output like explicit RE simulations. Reprinted 
(adapted) with permission from ref.21. Copyright (2015) American Chemical Society.
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ST-SWHAM.  ST-SWHAM is an algorithm that we developed to solve the UWHAM equations stochastically by 
applying the serial tempering (ST) protocol to resample the raw data generated by multi-state simulations22. The 
procedure is illustrated in Fig. 2. Like the RE-SWHAM analysis, the observations observed at each λ-state are col-
lected as the database for that λ-state beforehand. However, unlike resampling the data using replica exchanges, 
there is only one “simulation run” in the serial tempering resampling algorithm. For the sake of comparison and 
convenience, we still refer to this single simulation as a replica in this paper. Serial tempering simulations are also 
run by cycles, and each cycle consists of a “move” procedure and a “jump” procedure. During the move procedure 
of ST-SWHAM, an observation in the database of the λ-state sampled by the replica is randomly chosen with 
equal probability to associate with the replica. During the jump procedure, the replica jumps to the αth λ-state 
according to the probability22
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where ui is the ith observation associated with the replica; ζκ = −lnZκ is the unitless free energy of the κth λ-state; 
π =κ κN N/0  is the proportion of the κth λ-state of the raw data generated by the multi-state simulations; and qκ(ui) 
is the biasing factor of the ith observation at the κth λ-state. Suppose πκ is the observed proportion of the κth 
λ-state sampled by the replica during the ST-SWHAM analysis. The values of {ζκ} are adjusted during the analysis 
of ST-SWHAM until the observed proportion of the replica being at the κth λ-state πκ agrees with πκ

022. Note the 
direct outputs of ST-SWHAM are the estimates of the free energies of different λ-states — {ζκ}.

It can be shown that ζκ is the UWHAM estimate of the free energy of the κth λ-state when πκ and πκ
0 agree 

with each other for all λ-states. The details of the proof that ST-SWHAM solves the UWHAM equations stochas-
tically can be found in ref.22. One brief rationale is as follows. First, if πκ equals πκ

0, the probability of each obser-
vation being chosen to associate with the replica during the ST-SWHAM analysis is 1/N, where N is the total 
number of observations. Therefore, the observed proportion of the αth λ-state sampled by the replica during the 
ST-SWHAM analysis is
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Figure 2.  An illustration of the ST-SWHAM algorithm. This drawing illustrates two serial tempering cycles of 
the ST-SWHAM method, and shows only two λ-states with “gray” or “cyan” color. In each cycle one data element 
is chosen from the λ-state sampled by the replica with equal probability to associate with the replica. Then the 
replica jumps to one of the λ-states according to the probability calculated by Eq. [18]. At the end of each cycle, 
the free energy estimates {ζk} are adjusted to match the observed proportion of the replica being at the κth λ-
state πκ with the proportion of the κth λ-state of the raw data generated by the multi-state simulations πκ

0.
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On the other hand, note that
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Then πα
0 can be rewritten as
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Comparison between Eqs (19) and (21) leads to the conclusion that πα and πα
0 agree with each other if ζ ζ=α α̂ 

for each λ-state.
The jump of the replica following Eq. (18) was referred to as the global jump proposal in ref.22 because the 

replica can reach any λ-state of the system by one jump. According to Eq. (18), every jump of the replica requires 
calculations of M exponential functions, where M is the total number of λ-states. When the total number of states 
is large, ST-SWHAM analyses using the global jump proposal take a long time to converge. In our software pack-
age, we implemented a much faster approximate solver of UWHAM–ST-SWHAM using a local jump proposal. 
This algorithm was referred to as local WHAM in ref.22 because the replica can only be at the λ-states that are the 
local neighbors of the initial λ-state at the end of the jump procedure if the number of jumps per cycle is finite. 
Suppose the replica that associates with the observation ui is at the γth λ-state initially. The procedure of perform-
ing one jump in local WHAM is as follows22:

•	 select a trial λ-state with uniform probabilities from the nearest neighbors of the γth λ-state, suppose the 
chosen λ-state is the αth λ-state.

•	 accept the αth λ-state as the new λ-state to jump to according to the Metropolis probability
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where p(α|ui; ζ, π0) and p(γ|ui; ζ, π0) are defined by Eq. (18); and Γ(γ, α) is the probability of choosing the αth 
λ-state as the trial λ-state when the replica is at the γth λ-state originally. Namely, Γ(γ, α) = 1/nγ, where nγ is the 
total number of the nearest neighbors of the γth λ-state if the αth λ-state is one of the nearest neighbors of the 
γth λ-state; Γ(γ, α) = 0 otherwise.

As can be seen, the replica can only be at the original λ-state or one of its nearest neighbors after one jump. 
However, the replica can diffuse further away from the original λ-state by repeating this one jump procedure 
multiple times. As the number of jumps per cycle increases, the results of local WHAM converges asymptotically 
to the results of ST-SWHAM that uses the global jump proposal22. Therefore, the jump of the replica following 
Eq. (18) in the infinite jump limit in serial tempering simulations is analogous to the infinite swapping limit in 
replica exchange simulations24.

In ST-SWHAM, the free energy estimates are adjusted during the analysis until the observed proportion of the 
replica being at the κth λ-state πκ agrees with the proportion of the κth λ-state of the raw data generated by the 
multi-state simulations πκ

0. So far a variant of the updating algorithm discussed in ref.22 is implemented in the 
ST-SWHAM program.

Stratified RE-SWHAM.  When applying UWHAM and its stochastic solvers, the basic assumption is that 
the simulation at each λ-state is “approximately” equilibrated. However, this assumption might not always hold. 
To handle such situations, we developed an analysis tool called Stratified-UWHAM and its stochastic solver 
Stratified RE-SWHAM to compute free energy and expectations from a multi-state ensemble when the simula-
tions at a subset of λ-states are far from global equilibrium23. In ref.23, we showed that the Stratified UWHAM 
equations can be solved in the form of the original UWHAM equations (Eq. (5)) with an expanded set of λ-states. 
The stochastic solver, Stratified RE-SWHAM, has been included in the UWHAM and SWHAM software pack-
age. See the Supporting Information for a brief review and discussion about Stratified UWHAM and Stratified 
RE-SWHAM.

Illustrative applications.  So far the tutorial examples include how to analyze the data generated by 
“one dimensional umbrella sampling”, “two dimensional umbrella sampling”, “temperature replica exchange”, 
“Hamiltonian replica exchange”, “two dimensional replica exchange” and “ free energy perturbation” simulations. 
The tutorials provide the raw data generated by different types of multi-state simulations and explain the corre-
sponding analysis procedures and outputs in details.

One Dimensional Umbrella Sampling.  We explain how to apply UWHAM or ST-SWHAM to analyze 
the raw data generated by one dimensional umbrella sampling simulations. The potential function of the system 
studied in this example is a one dimensional double well potential26
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= −U x H
W

x W( ) ( ) ,
(23)4

2 2 2

where H = 20 kBT is the height of the barrier between the two wells; kB is Boltzmann’s constant; T is the temper-
ature; and W = 1 is the half width between the two minima of the potential. This one dimensional potential can 
be explored by a Brownian particle simulated with the over-damped Langevin dynamics26. Here we applied 31 
parabolic potentials in the region between x = −3 to x = 3 to perform the umbrella sampling simulations. Then 
UWHAM and ST-SWHAM are used to analyze the data and construct the potential energy profile.

Umbrella sampling simulations are usually applied to construct free energy profiles for systems with multiple 
degrees of freedom. Although the example that we used here is a Brownian particle governed by a one dimen-
sional potential function, the analysis procedure is the same for applying UWHAM or ST-SWHAM to construct 
one dimensional free energy profiles of complex systems. In such cases, the position of the complex system pro-
jected on the chosen reaction coordinate is analogous to the position of the Brownian particle in this tutorial.

Two Dimensional Umbrella Sampling.  This example explains how to apply UWHAM or ST-SWHAM to 
raw data generated by two dimensional umbrella sampling simulations (of ~100 degrees of freedom) to construct 
the free energy profile. The system studied in this example is an alanine dipeptide (AlaD) molecule in implicit 
solvent at 300 K. The simulations were performed by using the GROMACS 5.1.2 simulation package with the 
Amber99SB force field and the OBC GB model27,28. To explore the two dimensional free energy surface (the 
Ramachandran plot of AlaD), we applied 24 × 24 parabolic potentials by using the PLUMED plugin29 to perform 
the umbrella sampling simulations. The Ramachandran plots of AlaD are constructed by using the UWHAM and 
ST-SWHAM estimates.

Temperature Replica Exchange.  We explain how to apply UWHAM or RE-SWHAM to raw data gener-
ated by temperature replica exchange simulations to obtain the estimates of the equilibrium distribution at the 
λ-state of interest. The system studied in this example is the same as the previous example–an alanine dipeptide 
(AlaD) molecule in implicit solvent. The RE simulations were performed by using the GROMACS 5.1.2 simu-
lation package with the Amber99SB force field and the OBC GB model27,28. The coupled simulations were run 
at 10 temperatures (300 K, 317.52 K, 336.063 K, 355.689, 376.462 K, 398.447 K, 421.716 K, 446.345 K, 472.411, 
500 K). The Ramachandran plots of AlaD in implicit solvent at 300 K are constructed by using the UWHAM and 
RE-SWHAM estimates.

Free Energy Perturbation.  This example shows how to analyze the data generated by free energy perturba-
tion (FEP) simulations. Here we calculate the solvation free energy of a water molecule in pure solvent (TIP3P) at 
300 K by using the slow-growth method. The simulations were performed by using the GROMACS 5.1.227 and the 
TIP3P water model. In this example, we ran 11 independent parallel simulations for a box of pure solvent with a 
fixed tagged water molecule inside. The interaction between the tagged water molecule and the environment were 
gradually turned off through 11 λ-states30. The chosen λ values are 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. 
The UWHAM estimate of the solvation free energy of a water molecule in pure solvent is −6.18 kcal/mol. One can 
obtain the same result by using ST-SWHAM. More details and discussion about measuring the excess chemical 
potential of water molecules in solution using UWHAM can be found in ref.30.

BEDAM: Hamiltonian Replica Exchange.  We explain how to use UWHAM or RE-SWHAM to analyze 
the data generated by Hamiltonian replica exchange simulations. In this example, we study the binding affinity of 
a guest molecule (heptanoate) to a host molecule (β-cyclodextrin) in implicit solvent (OPLA-AA/AGBNP2)31,32. 
Here we apply the binding energy distribution analysis method (BEDAM)33 to obtain the binding free energy and 
binding energy distributions of this complex. BEDAM is a free energy method based on the Hamiltonian replica 
exchange algorithm. Suppose there are M parallel simulations in BEDAM, the Hamiltonian (potential) function 
of the ith λ-state is

λ= +H V u, (24)i i0

where V0 is the effective potential energy of the complex without the direct and solvent-mediated ligand-receptor 
interactions, and u is the binding energy33. Namely, the λ factor in BEDAM simulations linearly scales the inter-
action between the ligand and acceptor. We ran BEDAM simulations at 300 K by using 16 λ-states. The chosen λ 
values are 0.0, 0.001, 0.002, 0.004, 0.01, 0.04, 0.07, 0.1, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 0.95, 1.021. We applied UWHAM 
to estimate the binding free energy of the β-cyclodextrin Heptanoate Complex— −0.603 kcal/mol + Gvsite, where 
Gvsite is a correction because of the restraint applied to the ligand during the BEDAM simulation. One can obtain 
the same result by applying ST-SWHAM to the raw data. We also show how to apply UWHAM or RE-SWHAM 
to estimate the equilibrium distribution of the binding energy at the λ = 1 state (full interaction state).

Two Dimensional (Temperature and Hamiltonian) Replica Exchange.  This example shows how to 
use SWHAM to analyze the data generated by two dimensional (Hamiltonian and temperature) replica exchange 
simulations. We study the binding affinity of a guest molecule (heptanoate) to a host molecule (β-cyclodextrin) in 
implicit solvent (OPLA-AA/AGBNP2)32 at different temperatures. The raw data used in this example were gener-
ated by 15 separated BEDAM33 simulations at temperatures 200 K, 206 K, 212 K, 218 K, 225 K, 231, 238 K, 245 K, 
252 K, 260 K, 267 K, 275, 283 K, 291 K, 300 K. The chosen λ values are the same as the previous example–0.0, 0.001, 
0.002, 0.004, 0.01, 0.04, 0.07, 0.1, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 0.95, 1.0. There are totally 16 × 15 = 240 states, and each 
state has 144,000 data points21,22. Although there are no exchanges between replicas at different temperatures, the 
procedure described in this tutorial can be applied to two dimensional (Hamiltonian and temperature) replica 
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exchange simulations without any alteration. The goal of this practice is to obtain the best estimates of the binding 
affinity at 200 K, which is the most difficult for BEDAM simulation to converge. Because the raw data ensemble 
is large, UWHAM is not suitable to analyze them directly. Here, we applied RE-SWHAM to estimate the equilib-
rium distribution of binding energies of each λ-state at 200 K. And the RE-SWHAM results are compared with 
the corresponding distributions calculated from the raw data. See ref.21 and 22 for more discussion about this 
tutorial example. The equilibrium distributions constructed by the RE-SWHAM output can be used as the input 
for UWHAM to estimate the binding free energy at the temperature of interest. The binding free energy of the 
β-cyclodextrin Heptanoate Complex is about −6.3 kcal/mol + Gvsite at 200 K, which is much stronger compared 
with its binding free energy at 300 K. This result can also be obtained by applying ST-SWHAM with the local jump 
algorithm to the raw data directly.

Two Binding Modes of the β-cyclodextrin Heptanoate Complex.  The β-cyclodextrin heptanoate 
complex has two binding states depending on the orientation of the heptanoate molecule23. The two binding 
modes are referred to as the UP and DOWN macrostates. We ran two sets of independent MD simulations at 
300 K of the β-cyclodextrin heptanoate complex in implicit solvent (AGBNP GB model32) at 16 λ-states. The 
initial structures of the complex in the first and the second sets of simulations were chosen from the UP and 
Down macrostates, respectively. The interaction between the ligand and the receptor was scaled by a λ factor like 
BEDAM33, However, all the simulations are independent. The chosen λ values are (0.0, 0.001, 0.002, 0.004, 0.01, 
0.04, 0.07, 0.1, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 0.95, 1.0). In this example, the λ-states with the largest seven λ values 
(λ = 1.0, 0.95, 0.9, 0.8, 0.7, 0.6, 0.4) are considered as the partially connected states because it is difficult for the 
binding complex to switch its binding mode and the simulations have not converged at these λ-states; the other 
nine λ-states are the fully connected states23. This tutorial shows how to apply Stratified RE-SWHAM to estimate 
the equilibrium distribution at the λ = 1 state (full interaction state) when some simulations are far from conver-
gence. See ref.23 for more discussion about this tutorial example.

Data Availability
The UWHAM and SWHAM software package and its tutorials are available from the web page: https://ronlevy-
group.cst.temple.edu/software/UWHAM_and_SWHAM_webpage/index.html. The UWHAM and SWHAM 
software package is distributed using the MIT license. In the future, we will keep adding more examples of the ap-
plication of UWHAM and SWHAM to the web page. For instance, free energy perturbation (FEP) is one popular 
method that is applied to measure the relative ligand binding potency34,35. Currently we are applying UWHAM 
to analyze the FEP data and extract a density of states that can be used to estimate the relative binding free energy 
differences for multiple ligands simultaneously to solve the cycle closure challenge34. We will continue optimizing 
the code and plan to introduce parallelism to the software package.
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