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Abstract
There is currently limited clinical ability to identify COVID-19 patients at risk for severe outcomes. To unbiasedly identify 
metrics associated with severe outcomes in COVID-19 patients, we conducted a retrospective study of 835 COVID-19 posi-
tive patients at a single academic medical center between March 10, 2020 and October 13, 2020. As of December 1, 2020, 
656 (79%) patients required hospitalization and 149 (18%) died. Unbiased comparisons of all clinical characteristics and 
mortality revealed that abnormal pH (OR 8.54, 95% CI 5.34–13.6), abnormal creatinine (OR 6.94, 95% CI 4.22–11.4), and 
abnormal PTT (OR 4.78, 95% CI 3.11–7.33) were most significantly associated with mortality. Correlation with ordinal 
severity scores confirmed these associations, in addition to associations between respiratory rate (Spearman’s rho  = −0.56), 
absolute neutrophil count (Spearman’s rho  = −0.5), and C-reactive protein (Spearman’s rho  =  0.59) with disease severity. 
Unsupervised principal component analysis and machine learning model classification of patient demographics, labora-
tory results, medications, comorbidities, signs and symptoms, and vitals are capable of separating patients on the basis of 
COVID-19 mortality (AUC 0.82). This retrospective analysis identifies laboratory and clinical metrics most relevant to 
predict COVID-19 severity.
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Introduction

As the number of COVID-19 deaths approaches 3.5 million 
worldwide as of May 11, 2021, there is increasing need to 
better understand what disease mechanisms and clinical cor-
relates lead to poor outcomes. SARS-CoV-2 infection may 
result in a spectrum of severity ranging from asymptomatic 
disease to hospitalization requiring mechanical ventilation 
[1–7], making identification of patients at risk for severe 
COVID-19 at initial presentation imperative yet complex. 
Case series of hospitalized COVID-19 patients during the 
early pandemic identified key risk groups of severe COVID-
19 [8–17], including patients with diabetes, obesity, chronic 
kidney disease, liver disease, and patients above 65 years 
old. Cytokine profiling [18] and multi-dimensional flow 

cytometry [19–22] have identified hematologic profiles 
associated with severe COVID-19. Over the course of the 
pandemic, these advances along with improvements in sup-
portive care such as prone positioning [23–25] have led to 
reductions in disease mortality [26, 27].

Despite these advances, clinical prediction of COVID-19 
prognosis at the time of initial presentation remains imper-
fect [28]. A better understanding of the clinical correlates 
of COVID-19 severity would improve prognostic and thera-
peutic approaches to disease assessment. With an accumulat-
ing number of SARS-CoV-2 positive patients with a range 
of clinical outcomes, we are increasingly able to perform 
unbiased analyses across more diverse multi-dimensional 
clinical metrics, in order to identify novel associations with 
COVID-19 severity. We sought to leverage these data to 
determine which clinical characteristics are most useful 
to predict COVID-19 severity. Here, we perform analyses 
of over 1,700 clinical metrics including laboratory results, 
vitals, demographics, medications, and disease outcomes in 
835 COVID-19 positive patients to identify correlates of 
disease severity.
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Methods

Study design

This study was conducted at the Beth Israel Deaconess Medi-
cal Center (BIDMC) in Boston. The BIDMC Institutional 
Review Board approved this retrospective cohort study 
(2020P000699) as minimal risk using data collected during 
routine clinical care and waived the requirement for informed 
consent. BIDMC patients who presented for care and with 
confirmed SARS-CoV-2 infection by positive result of naso-
pharyngeal sample polymerase chain reaction between March 
10, 2020 and October 13, 2020, and who had available past 
medical history, were included.

Data were obtained from the BIDMC COVID-19 Observa-
tional Research Effort (CORE) Data Registry REDCap data-
base and BIDMC InSIGHT CORE service. Laboratory values 
were obtained from inpatient data acquired over the course of 
an individual patient’s admission. When multiple laboratory 
draws were present over the course of a patient’s admission, 
mean, maximum, and minimum laboratory values for each test 
collected were calculated for each patient. Time to follow-up 
was determined by the number of days between the earliest 
COVID-19 test date and date of death or December 1, 2020, 
the final date of follow-up, if still alive. COVID-19 severity 
was graded by the NIH Ordinal Severity Scale. Patients were 
stratified into eight groups with lower scores corresponding to 
greater severity: (1) death, (2) invasive mechanical ventilation, 
(3) noninvasive ventilation, (4) supplemental oxygen, (5) no 
supplemental oxygen but requiring medical care, (6) no sup-
plemental oxygen and not requiring medical care, (7) limita-
tion in activities, or (8) no limitation in activities.

Principal component analysis (PCA)

Outcome metrics including mortality, hospitalization length 
and status, ICU length and status, ventilation and renal 
replacement therapy requirement, NIH Ordinal Severity Score, 
pathology results, and medications prescribed after COVID-
19 diagnosis were excluded to allow for unsupervised PCA. 
Patients and metrics with missing data were excluded from 
analysis, and categorical factor variables were converted to 
dummy numerical variables. Data were scaled to unit vari-
ance and principal component analysis was performed using 
factoextra (version 1.0.7). The top two principal components 
were used for two-dimensional mapping of patient data and 
variable eigenvectors.

Machine learning classification

Mortality status was added to the data set used for PCA 
to allow for construction of a supervised machine learning 

classifier. All machine learning analyses were performed 
in R (version 3.6.1). Training and test data sets were cre-
ated using the createDataPartition function in caret (version 
6.0), with 75% of patients allocated to the training data set. 
Training data were preprocessed by centering and scal-
ing and training was performed using ten separate tenfold 
repeated cross-validations for resampling. A gradient boost-
ing machine model [29, 30] was built using 100 trees, a 
tree complexity of 2, and a learning rate of 0.1 using the 
train function in caret. Training performance was measured 
using area under the ROC curve, and variable importance 
was calculated using the varImp function in caret. Model 
performance was tested on the test data set and evaluated 
using MLeval (version 0.3).

Statistical analysis

All statistical analyses were performed in R (version 3.6.1). 
Bar graphs and violin plots were created using ggpubr (ver-
sion 0.4.0), correlation plots were created using corrplot 
(version 0.84), Kaplan–Meier plots were created using sur-
vminer (version 0.4.8) and survival (version 3.2–7), and scat-
ter plots and forest plots were created using ggplot2 (version 
3.3.0). Heatmaps and hierarchical clustering were performed 
using pheatmap (version 1.0.12). Volcano plots were gener-
ated using EnhancedVolcano (version 1.4.0), and signifi-
cant differences (absolute logFC > 0.2 and P-val < 0.05) were 
highlighted in red. When data were missing, these patients 
were not included in a given univariate analysis, eliminat-
ing potential confounding due to the presence or absence of 
a given clinical metric. When multiple comparisons were 
made, p values were corrected by the Benjamini–Hochberg 
procedure and a false discovery rate < 0.05 was considered 
significant.

Results

Demographics, comorbidities, and outcomes 
of COVID‑19 patients

A total of 835 patients with PCR confirmed SARS-CoV-2 
infection were included (Table 1). The median age was 
64 years (IQR, 50–76 years; range, 17–102 years) and 
438 (52%) were female. Of these patients, 363 (43%) 
were white and 253 (30%) were black. Past medical 
history was available for 549 patients and among these 
patients, common comorbidities included hypertension 
(347; 63%), diabetes (224; 41%), obesity (157; 30%), 
chronic kidney disease (144; 26%), and cancer (131; 
24%). Active prescriptions at time of COVID-19 diagno-
sis were available for 697 patients, and among these the 
most common categories of prescribed drugs included 
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Table 1   Demographics, comorbidities, and outcomes of COVID-19 patients

Overall Alive Dead P value
(N = 835) (N = 686) (N = 149)

Gender 0.117
 Female 438 (52%) 369 (54%) 69 (46%)
 Male 397 (48%) 317 (46%) 80 (54%)

Age 64 (50–76) 61 (47–73) 73 (63–84)  < 0.001
Race 0.0919
 Native American 1 (0%) 1 (0%) 0 (0%)
 Asian 31 (4%) 23 (3%) 8 (5%)
 Black 253 (30%) 206 (30%) 47 (32%)
 Declined 1 (0%) 1 (0%) 0 (0%)
 Native Hawaiian 2 (0%) 1 (0%) 1 (1%)
 Other 90 (11%) 84 (12%) 6 (4%)
 Unknown 94 (11%) 73 (11%) 21 (14%)
 White 363 (43%) 297 (43%) 66 (44%)

ABO Type 0.487
 A 71 (9%) 43 (6%) 28 (19%)
 AB 11 (1%) 8 (1%) 3 (2%)
 B 40 (5%) 29 (4%) 11 (7%)
 O 104 (12%) 63 (9%) 41 (28%)
 Missing 609 (72.9%) 543 (79.2%) 66 (44.3%)

BMI 29 (25–34) 29 (25–34) 30 (24–36) 0.905
Comorbidities available 549 (66%) 459 (67%) 90 (60%)
 Hypertension 347 (63%) 278 (61%) 69 (77%) 0.00549
 Chronic kidney disease 144 (26%) 107 (23%) 37 (41%)  < 0.001
 Diabetes 224 (41%) 172 (37%) 52 (58%)  < 0.001
 Obesity 167 (30%) 136 (30%) 31 (34%) 0.434
 Rheumatologic disease 127 (23%) 100 (22%) 27 (30%) 0.12
 Autoimmune disease 49 (9%) 43 (9%) 6 (7%) 0.535
 Cancer 131 (24%) 98 (21%) 33 (37%) 0.00287
 Immunosuppressive Disease 128 (23%) 103 (22%) 25 (28%) 0.338
 COPD 72 (13%) 54 (12%) 18 (20%) 0.0517
 Asthma 81 (15%) 66 (14%) 15 (17%) 0.691
 Coronary artery disease 130 (24%) 97 (21%) 33 (37%) 0.00241
 Cerebrovascular disease 67 (12%) 46 (10%) 21 (23%)  < 0.001

Medications available 697 (83%) 568 (83%) 129 (87%)
 Corticosteroid 179 (26%) 140 (25%) 39 (30%) 0.231
 Calcineurin inhibitors 16 (2%) 12 (2%) 4 (3%) 0.726
 Antirheumatic therapy 9 (1%) 7 (1%) 2 (2%) 1
 Immunosuppressive therapy 46 (7%) 32 (6%) 14 (11%) 0.0361
 Chemotherapy 26 (4%) 19 (3%) 7 (5%) 0.385
 Antiglycemic therapy 241 (35%) 192 (34%) 49 (38%) 0.424
 Asthma therapy 227 (33%) 178 (31%) 49 (38%) 0.177
 Biologics 1 (0%) 1 (0%) 0 (0%) 1
 Osteoporosis therapy 13 (2%) 9 (2%) 4 (3%) 0.43
 Antihypertensive therapy 500 (72%) 392 (69%) 108 (84%) 0.00119

Labs
 Absolute lymphocyte count (106/mL) 1.2 (0.83–1.6) 1.2 (0.89–1.6) 0.97 (0.67–1.3)  < 0.001
 C-Reactive protein (mg/L) 94 (52–150) 82 (42–130) 140 (100–180)  < 0.001
 Creatinine (mg/dL) 1.0 (0.73–1.7) 0.91 (0.70–1.3) 1.8 (1.1–2.8)  < 0.001
 Ferritin (ng/mL) 680 (300–1500) 570 (260–1200) 1400 (570–2900)  < 0.001



140	 Clinical and Experimental Medicine (2022) 22:137–149

1 3

antihypertensive drugs (500; 72%), antihistamines (324; 
46%), and antiglycemic drugs (241; 35%). Most patients 
had an elevated temperature (median Tmax 100; IQR 
99–100) and were tachypneic (median 19; IQR 18–21) 
but had normal heart rates (median 85; IQR 76–94). As 
of December 1, 2020, 656 (79%) patients required hospi-
talization, 336 (40%) required supplemental oxygen, 310 
(37%) required intensive care unit (ICU) stays, and 196 
(23%) required mechanical ventilation. Among patients 
who were hospitalized the median total length of stay 
was 9 days (IQR, 2–5 days) and among patients treated in 
the ICU the median length of stay in the ICU was 8 days 
(IQR, 3–17 days). NIH Ordinal Scoring was available for 
322 patients, and mean ordinal score was 3.7 (SD 1.7). 
Overall, 149 (18%) patients died at the time of censoring.

Clinical predictors of COVID‑19 outcomes

To validate our ability to identify risk factors for COVID-
19 severity, we compared mortality rates among currently 
recognized comorbidities for COVID-19 (Fig. 1A). In our 
cohort, hypertension (OR 2.14, 95% CI 1.27–3.60), chronic 
kidney disease (OR 2.30, 95% CI 1.44–3.68), cardiovascular 
disease (OR 2.73, 95% CI 1.54–4.84), diabetes (OR 2.28, 
95% CI 1.44–3.60), coronary artery disease (OR 2.16, 95% 
CI 1.33–3.50), and cancer (OR 2.13, 95% CI 1.32–3.45) were 
associated with COVID-19 mortality. Risks for hospitaliza-
tion included hypertension (OR 2.42, 95% CI 1.64–3.57), 
male gender (OR 1.69, 95% CI 1.21–2.38), diabetes (OR 
2.17, 95% CI 1.43–3.29), chronic kidney disease (OR 2.42, 
95% CI 1.44–3.68), coronary artery disease (OR 2.59, 95% 

Continuous data presented as mean (95% CI). P values computed by Chi-squared test for categorical data and Wilcoxon signed-rank test for con-
tinuous data

Table 1   (continued)

Overall Alive Dead P value
(N = 835) (N = 686) (N = 149)

 D-Dimer (ng/mL FEU) 1300 (720–2700) 1100 (650–2200) 2400 (1200–4800)  < 0.001
 Creatine kinase (IU/L) 150 (69–380) 140 (65–360) 170 (82–530) 0.0455

INR 1.2 (1.1–1.4) 1.2 (1.1–1.3) 1.3 (1.2–1.5)  < 0.001
 Lactate dehydrogenase (IU/L) 330 (260–430) 320 (240–400) 420 (310–560)  < 0.001

pH 7.1 (6.7–7.3) 7.0 (6.5–7.3) 7.2 (7.0–7.3) 0.00105
 Platelet count (106/mL) 230 (180–310) 250 (190–320) 190 (140–260)  < 0.001
 PT (s) 13 (12–15) 13 (12–15) 14 (13–17)  < 0.001
 PTT (s) 35 (30–55) 33 (29–47) 53 (35–70)  < 0.001
 Absolute neutrophil count (106/mL) 5.5 (3.8–8.2) 5.0 (3.6–7.3) 7.8 (5.1–12)  < 0.001
 A1c (%) 7.7 (6.4–9.3) 7.6 (6.3–9.3) 7.8 (7.2–8.8) 0.629

Vitals
 Respiratory rate 19 (18–21) 19 (18–20) 23 (20–25)  < 0.001
 Heart rate 85 (76–94) 84 (74–93) 89 (82–98)  < 0.001
 Tmax 100 (99–100) 100 (99–100) 100 (100–100)  < 0.001
 SBP (minimum) 99 (91–110) 99 (92–110) 95 (84–110) 0.0275
 DBP (minimum) 57 (49–65) 57 (50–65) 54 (44–63) 0.00543

Status  < 0.001
 Inpatient 656 (79%) 510 (74%) 146 (98%)
 Outpatient 179 (21%) 176 (26%) 3 (2%)

Outcomes
 Supplemental O2 336 (40%) 263 (38%) 73 (49%) 0.0208
 Mechanical ventilation 196 (23%) 106 (15%) 90 (60%)  < 0.001
 Total encounters 1.0 (1.0–1.0) 1.0 (1.0–1.0) 1.0 (1.0–1.0) 0.261
 Length admission 9.0 (5.0–18) 8.0 (4.0–19) 12 (7.0–17)  < 0.001
 Ordinal score 4.0 (2.0–5.0) 4.0 (4.0–5.0) 1.0 (1.0–1.0)  < 0.001

ICU admission 133 (16%) 87 (13%) 46 (31%)  < 0.001
 ICU days 8.0 (3.0–17) 8.0 (2.0–19) 9.0 (4.0–14)  < 0.001
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CI 1.51–4.42), and COPD (OR 3.63, 95% CI 1.65–7.96), 
whereas risks for ICU admission only included male gender 
(OR 2.17, 95% CI 1.42–3.31) and diabetes (OR 2.27, 95% 
CI 1.35–3.81). Notably, male gender was not significantly 
associated with mortality among COVID-19 patients in our 
cohort (OR 1.35, 95% CI 0.95–1.93).

In order to unbiasedly compare the relative association 
of clinical characteristics with COVID-19 outcomes, we 
calculated the odds ratios among binary categorical clinical 
metrics measured, including laboratory results, demograph-
ics, medications, comorbidities, and signs and symptoms 
(Fig. 1B). Mortality was most significantly associated with 
abnormal pH (OR 8.54, 95% CI 5.34–13.6), abnormal creati-
nine (OR 6.94, 95% CI 4.22–11.4), and abnormal PTT (OR 
4.78, 95% CI 3.11–7.33). Hospitalization was most signifi-
cantly associated with abnormal D-dimer (OR 8.87, 95% CI 
4.18–18.8), NSAID use (OR 0.24, 95% CI 0.15–0.38), and 
abnormal C-reactive protein (OR 6.43, 95% CI 3.30–12.5), 
and ICU admission was associated with requiring supple-
mental oxygen at admission (OR 8.34, 95% CI 4.91–14.1), 
abnormal pH (OR 13.1, 95% CI 7.71–22.5), and abnormal 
PTT (OR 7.36, 95% CI 4.42–12.2).

We next sought to compare the relative association 
between continuous variables and COVID-19 outcomes. 
Mann–Whitney U tests between mortality and laboratory 
values and demographic information revealed that elevated 
creatinine was most significantly associated with mortality 
(average maximum creatinine 3.97 in dead vs 1.97 in alive, 
adjusted P-val < 2 × 10–16) (Fig. 1C). Other significant asso-
ciations with mortality included decreased albumin (average 
minimum albumin 2.50 in dead vs 3.22 in alive, adjusted 
P-val < 2 × 10–16), decreased lymphocyte count (average 
minimum lymphocytes 7.53 in dead vs 13.56 in alive, 
adjusted P-val < 2 × 10–16), elevated phosphate (average 
maximum phosphate 6.50 in dead vs 4.61 in alive, adjusted 
P-val < 2 × 10–16), and older age (average age 71.9 years in 
dead vs 59.5 in dead, adjusted P-val = 8.6 × 10–16) (Fig. 1D). 
Comparisons in hospitalization, ventilation, oxygen require-
ment, and ICU admission patient groups revealed simi-
lar associations between abnormal creatinine, albumin, 
lymphocytes, and phosphate and COVID-19 outcomes 
(Fig. 1C). These results suggest that laboratory abnormali-
ties might be more informative in predicting outcomes from 
COVID-19 than patient demographic information including 
comorbidities.

To quantify and rank the effects of clinical metrics on 
time to death following COVID-19 diagnosis, we per-
formed Kaplan–Meier analysis of patient survival using 
positive COVID-19 test date and date of death. Among the 
149 (18%) of patients that died, the median survival time 
after COVID-19 diagnosis was 13 days (IQR, 7–28 days) 
(Fig. 2A). Regression analysis of demographics, labora-
tory results, medications, comorbidities, and vitals against 

survival probability revealed that abnormal pH (HR 6.5, 95% 
CI 4.2–10), stratified age groups (HR = 1.5, 95% CI 1.3–1.7), 
abnormal albumin (HR 3.6, 95% CI 2.4–5.5), and abnormal 
phosphate (HR 4.7, 95% CI 2.7–8.1) were most significantly 
associated with increased risk of COVID-19 death (Fig. 2B). 
These risks are greater than those associated with currently 
accepted comorbidities for severe COVID-19 in our cohort, 
such as hypertension (HR 2.0, 95% CI 1.2–3.3), diabetes 
(HR 2.1, 95% CI 1.4–3.3), and chronic kidney disease (HR 
2.2, 95% CI 1.4–3.3) (Fig. 2C). Both race (HR 0.99, 95% CI 
0.92–1.1) and gender (HR 1.3, 95% CI 0.91–1.7) were not 
significantly associated with decreased survival following 
COVID-19 diagnosis in our cohort.

Clinical correlates of COVID‑19 severity

To examine associations between clinical metrics and 
COVID-19 severity beyond binary categorical outcomes, we 
measured the correlation of each metric with NIH ordinal 
severity scores and total length of stay per patient (Fig. 3A). 
Ordinal score was most significantly correlated with maxi-
mum respiratory rate (Spearman’s rho = −0.56), maximum 
absolute neutrophil count (Spearman’s rho = −0.5), maxi-
mum C-reactive protein (Spearman’s rho = −0.52), and mini-
mum albumin (Spearman’s rho = 0.5) (Fig. 3B). The total 
length of admission was most significantly correlated with 
maximum temperature (Spearman’s rho = 0.62), maximum 
phosphate (Spearman’s rho = 0.60), minimum hemoglobin 
(Spearman’s rho = −0.58), and minimum systolic blood 
pressure (Spearman’s rho = −0.53) (Fig. 3C). These results 
confirm our previous findings, suggesting that hematologic 
laboratory results are not only indicative of mortality in 
COVID-19 patients, but are also correlated with disease 
severity. These results also quantify the relative associa-
tion of vitals such as respiratory rate and temperature with 
COVID-19 severity.

To determine relationships between multiple categori-
cal and numerical outcomes and metrics, we performed 
correlation analysis across patient demographics, selected 
laboratory results, medications, comorbidities, vitals, and 
outcomes including continuous metrics of COVID-19 
severity (Fig. 4). In addition to the associations noted previ-
ously, this analysis revealed significant correlations between 
COVID-19 outcomes and clinical interventions such as ICU 
admission and mechanical ventilation. As expected, comor-
bidities were highly correlated with prescriptions for appro-
priate medications (e.g., diabetes and antiglycemic drugs) 
as well as corresponding laboratory results (e.g., chronic 
kidney disease and mean creatinine). Notably, comorbidities 
were more closely associated with corresponding medica-
tions than COVID-19 outcomes, whereas laboratory values 
and vitals were more closely associated with COVID-19 
outcomes than corresponding comorbidities. Overall, this 
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correlation analysis revealed the heterogeneity of COVID-19 
patient presentation, and the relative utility of a spectrum of 
patient information in predicting COVID-19 severity.

Principal component analysis and machine learning 
classification segregates COVID‑19 patients 
by mortality

To determine whether COVID-19 patients can be strati-
fied by severity based on clinical metrics typically present 
at admission to the emergency department, we performed 
unsupervised principal component analysis (PCA). We 
excluded metrics of COVID-19 outcomes and severity 
and metrics that would not be known at admission, such as 
pathology results and medications placed after COVID-19 
diagnosis. Only patients for whom full demographic, labora-
tory, medication history, comorbidities, past medical history, 
and vitals were available were included, leaving 237 metrics 
across 209 patients. PCA distilled these 237 metrics into two 
dimensions, which were most defined by immunosuppres-
sion and anemia in Dimension 1, and by AST, LDH, ALT, 
and ferritin in Dimension 2 (Fig. 5A). The eigenvectors for 
mean AST and maximum ferritin were orthogonal to the 
eigenvector for immunosuppression (Fig. 5B), suggesting 
that these metrics capture independent meta-characteristics 
of COVID-19 patients.

We next plotted the 209 patients present in our PCA 
in two-dimensional space. There was no clear distribu-
tion of COVID-19 patients in PCA space on the basis of 
demographic information such as gender, race, and age 
(Fig. 5C). However, when we visualized mortality, which 
was not a variable included in our PCA, there was a sepa-
ration among COVID-19 patients in PCA space. Similar 
trajectories could be appreciated for COVID-19 severity 
and outcomes metrics, such as length of stay, mechanical 
ventilation requirement, and ordinal score (Fig. 5C). Trajec-
tories of COVID-19 severity in PCA space were orthogo-
nal to the eigenvector for immunosuppression, suggesting 

that although immunosuppression contributes to variability 
among COVID-19 patients, it likely does not contribute to 
disease severity.

Given our ability to segregate patients by COVID-19 
severity using unsupervised PCA, we next sought to design 
a machine learning classifier to predict patient mortality. 
Using mortality in addition to the 237 variables used for 
PCA above, we partitioned our COVID-19 patient cohort 
into a training set of 157 patients and a test set of 52 patients. 
The training set of patients was used to build a supervised 
gradient boosting machine model to classify patient mor-
tality. Our model achieved a sensitivity of 0.53 (95% CI 
0.39–0.67), specificity of 0.88 (95% CI 0.81–0.93), and 
area under curve (AUC) for the ROC curve of 0.87 (95% 
CI 0.80–0.94) based on the training data (Fig. 5D). When 
applied to the test set, our model correctly identified 6 of 15 
patients who died following COVID-19 diagnosis, achiev-
ing an accuracy of 0.77 (95% CI 0.63–0.87), a sensitivity 
of 0.92, specificity of 0.40, and AUC ROC of 0.82. Vari-
able importance scores extracted from the gradient boost-
ing machine model revealed that absolute neutrophil count, 
PTT, and patient age were the most contributory to model 
prediction (Fig. 5E). Together our PCA and machine learn-
ing classifier suggest that COVID-19 severity and outcomes 
can be correlated with clinical characteristics known at the 
time of admission and confirm the importance of labora-
tory data over demographic information in predicting dis-
ease outcome.

Discussion

Here, we unbiasedly profile over 1700 unique clinical met-
rics in 835 COVID-19 patients to identify correlates of dis-
ease outcomes and severity. We observed similar odds ratios 
for COVID-19 mortality risk from comorbidities previously 
reported, such as increased age [11, 17, 31–33], hypertension 
[12], diabetes [8, 11–13], and chronic kidney disease [16]. 
Univariate, correlation, and multivariate analyses revealed 
strong associations between key laboratory parameters and 
COVID-19 severity. Several of these associations have 
been previously reported, such as elevated creatinine [34], 
decreased lymphocyte count [19, 20], elevated CRP [34], 
decreased hemoglobin [20], abnormal pH [35], decreased 
albumin [36], and elevated PTT [20]. Notably, through unbi-
ased comparisons across all clinical metrics, we observed 
that these laboratory abnormalities are more strongly associ-
ated with mortality in COVID-19 patients than patient age, 
gender, comorbidities, or prescribed medications.

As this was a retrospective cohort study of associations 
with COVID-19 outcomes, it remains unclear whether the 
metrics identified here predispose patients to worse out-
comes or are a consequence of severe COVID-19 itself. 

Fig. 1   Univariate analyses identify key laboratory parameters associ-
ated with mortality in COVID-19 patients. a Forest plot comparing 
odds ratios of selected comorbidities with mortality, hospitalization, 
and ICU admission in COVID-19 patients. Horizontal lines indicate 
95% CI. b Volcano plots of odds ratios of laboratory results, demo-
graphics, medications, comorbidities, and signs and symptoms with 
mortality, hospitalization, and ICU admission in COVID-19 patients. 
P values corrected for multiple comparisons by Benjamini–Hoch-
berg procedure and significant metrics (P-adj < 0.05) indicated in 
red. c Heatmap of adjusted p values from Mann–Whitney U tests for 
continuous laboratory values and demographic information between 
patients requiring or not requiring ICU admission, supplement oxy-
gen, mechanical ventilation, hospitalization, and death. Metrics sig-
nificantly altered between alive and dead patient cohorts are shown 
and arranged by increasing adjusted p value. d Violin plots of the 
most significantly altered clinical metrics alive and dead patient 
cohorts. Mann–Whitney U test p value shown

◂
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Abnormal pH and increased respiratory rate in patients with 
severe COVID-19 is likely reflective of the eventual acute 
respiratory distress syndrome and tissue malperfusion expe-
rienced by these patients [5], whereas the elevated inflamma-
tory markers we observed are characteristic of the systemic 
inflammation observed in some case of severe COVID-19 

[3, 37, 38]. Some laboratory perturbations such as prolonged 
PTT might reflect interventions employed preferentially in 
COVID-19 patients such as anticoagulants. Other labora-
tory parameters such as decreased lymphocytes and albumin 
might represent a unique inflammatory phenotype that pre-
disposes patients to severe COVID-19 [19]. Regardless of 

Fig. 2   Unbiased identification of metrics most associated with 
increased risk of dying following COVID-19 diagnosis. A Kaplan–
Meier plot of patient survival following COVID-19 diagnosis. B 
Volcano plot of hazard ratios (HR) calculated from unbiased Cox 
regression analysis between all measured patient metrics and patient 
survival following COVID-19 diagnosis. P values were calculated 

using the Wald test statistic and corrected for multiple comparisons 
by Benjamini–Hochberg procedure. Significant metrics (P-adj < 0.05) 
indicated in red. C Kaplan–Meier plots of patient survival following 
COVID-19 diagnosis stratified by indicated patient demographic or 
laboratory result. Log rank test p value indicated on plots and 95% CI 
indicated by shading
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the root cause of the clinical associations we describe, we 
have identified key clinical metrics that may be obtained at 
emergency department admission to identify overall risk for 
COVID-19 mortality.

We observed a mortality rate of 18% and hospitalization 
rate of 79%, in contrast to currently estimated case fatality 
rates of 0.9–7.2% [17, 33, 39, 40] for SARS-CoV-2. This is 
likely due to sampling bias as only patients who sought care 
at an academic medical center, obtained a laboratory con-
firmed COVID-19 diagnosis, and had available medication 
or past medical history were included. Alternatively, this 

might reflect the evolving mortality rate of the course of this 
pandemic, as our ability to diagnose and treat COVID-19 has 
improved the past year [41]. Nevertheless, a range of clinical 
presentations and disease severity scores are represented in 
our patient cohort, including outpatients and patients with 
asymptomatic disease.

COVID-19 remains a great threat to society relative 
to other respiratory viral diseases due to its case fatal-
ity rate and its striking range of clinical presentations 
and severity [17, 42, 43]. This study offers an unbiased 
retrospective approach to identify potential associations 

Fig. 3   Correlation between continuous clinical metrics and COVID-
19 severity. A Ranked order plots of Spearman correlation coef-
ficients between all clinical metrics and NIH ordinal score and total 
length of admission. Selected significant associations indicated on 

plot. B–C Scatter plots of correlation of selected clinical metrics and 
NIH ordinal score (B) or length of admission (C). Spearman correla-
tion coefficient and p value indicated on plot, and regression line and 
95% confidence interval indicated in blue
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with this fatality rate and spectrum of disease sever-
ity. Our data suggest that increased absolute neutrophil 
count, decreased albumin, and decreased lymphocytes 
are key correlates of severe COVID-19 and are clinical 
characteristics available at initial admission that might be 
informative of disease prognosis. By identifying which 

COVID-19 patients are most at risk for severe disease, 
we may be better able to provide early and targeted ther-
apeutic interventions, thereby combatting the current 
pandemic in an orthogonal but complementary approach 
to the preventative approaches currently being pursued 
across the world.

Fig. 4   Correlation analysis reveals heterogeneity and associations 
among COVID-19 patient characteristics and outcomes. Correla-
tion plot of Spearman correlation coefficients between indicated 

clinical metrics and measures of disease outcomes among COVID-
19 patients. Matrix display order was determined by angular order of 
eigenvectors. *P < 0.05, **P < 0.01, ***P < 0.001
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Fig. 5   Multivariate analyses segregate COVID-19 patients by disease 
severity. A Bar plot indicating contributions of the top ten metrics to 
the top two principal components identified by unsupervised princi-
pal component analysis (PCA) of COVID-19 patients. B Biplot of 
principle component scores of COVID-19 patients (dots) and variable 
loadings (vectors). The top four metrics with the greatest contribution 
to variability are shown. C PCA plots of COVID-19 patients accord-
ing to the top two principal components and colored according to the 

indicated metric. D Receiver operator curve (left) and calibration plot 
(right) to assess ability of a supervised gradient boosting machine 
model to classify COVID-19 patient mortality using demographic, 
laboratory, medication history, comorbidities, past medical history, 
and vitals. Classification performance assessed by area under the 
curve (AUC). E Ranked plot of the importance scores of top 20 clini-
cal metrics in the machine learning classifier constructed in (D)
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