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Simple Summary: Breast cancer remains the most common cancer in females, warranting the
development of new approaches to prevention. One such approach is personalized prevention using
genetic risk models. Here, we developed a risk model using both genetic and environmental risk
factors. Results showed that a genetic risk score defined by the number of risk alleles for 14 breast
cancer risk SNPs clearly stratified breast cancer risk. Moreover, the combination of this genetic
risk score model with an environmental risk model which included established environmental
risk factors showed significantly better C-statistics than the environmental risk model alone. This
genetic risk score model in combination with the environmental model may be suitable for stratifying
individual breast cancer risk, and may form the basis for a new personalized approach to breast
cancer prevention.

Abstract: Personalized approaches to prevention based on genetic risk models have been anticipated,
and many models for the prediction of individual breast cancer risk have been developed. However,
few studies have evaluated personalized risk using both genetic and environmental factors. We
developed a risk model using genetic and environmental risk factors using 1319 breast cancer
cases and 2094 controls from three case–control studies in Japan. Risk groups were defined based
on the number of risk alleles for 14 breast cancer susceptibility loci, namely low (0–10 alleles),
moderate (11–16) and high (17+). Environmental risk factors were collected using a self-administered
questionnaire and implemented with harmonization. Odds ratio (OR) and C-statistics, calculated
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using a logistic regression model, were used to evaluate breast cancer susceptibility and model
performance. Respective breast cancer ORs in the moderate- and high-risk groups were 1.69 (95%
confidence interval, 1.39–2.04) and 3.27 (2.46–4.34) compared with the low-risk group. The C-statistic
for the environmental model of 0.616 (0.596–0.636) was significantly improved by combination with
the genetic model, to 0.659 (0.640–0.678). This combined genetic and environmental risk model may
be suitable for the stratification of individuals by breast cancer risk. New approaches to breast cancer
prevention using the model are warranted.

Keywords: breast cancer; genetic risk model; polygenic risk model; environmental risk model;
personalized prevention

1. Introduction

Breast cancer is the most common cancer in females, with an estimated global inci-
dence in 2018 of 2,088,849 [1]. Breast cancer is also a leading cause of death worldwide,
causing 15.1 million disability-adjusted life years (DALY) in 2016 [2]. Furthermore, inci-
dence is estimated to increase to 3,059,829 cases in 2040 [1]. In Japan also, breast cancer
incidence has increased rapidly for the last 30 years and is now the most common cancer in
women [3]. This increase is associated with changes in the prevalence of established risk
factors in Japanese women, which might be broadly categorized as behavioral and social
westernization.

Conventional strategies for breast cancer prevention include control of risk factors
and early detection through mammography screening, targeting women in the general
population. Given the increased burden of breast cancer, however, the development of new
prevention strategies is essential. As a revolutionary approach, personalized prevention or
precision prevention has recently been proposed [4–6]. A detailed elucidation of individual
breast cancer risk might allow personalized intervention in women stratified by risk factors.
Several breast cancer risk prediction models have been developed to evaluate individual
risk based on lifestyle factors, reproductive factors, family history and clinical factors [7–11].
These are now in clinical use as tools for individual cancer prevention. For example, the
American Cancer Society has developed a guideline which recommends MRI as an adjunct
to mammography screening for women at high risk, as identified by a risk prediction
model [12].

Since the late 2000s, genome-wide association studies (GWAS) have identified hun-
dreds of polymorphic loci associated with sporadic breast cancer risk [13–29]. Based on
these results, various genetic risk models to assess personalized breast cancer risk have
been developed [30]. Although genetic risk modelling by aggregation of the effects of mul-
tiple risk loci is a promising approach to stratifying individual risk, genetic risk assessment
has yet to be used in modifying breast cancer prevention approaches [31].

We and others have speculated that feedback on genetic and environmental risk to
individuals at high risk might be meaningful for breast cancer prevention [32,33]. In
particular, genetic risk assessment in combination with environmental risk assessment
might predict breast cancer risk better than either assessment alone. To date, however,
only a few studies have attempted to predict individual breast cancer risk using both
environmental factors and genetic factors [34–36].

Here, we aimed to develop a genetic risk score and integrate it with established risk
factors for personalized risk assessment for breast cancer in Japanese.

2. Materials and Methods
2.1. Subjects

Breast cancer cases and corresponding controls from three hospital-based case–control
studies were included in the study. The Nagano study was a multicenter, hospital-based
case–control study of breast cancer conducted from May 2001 to September 2005 at four



Cancers 2021, 13, 3796 3 of 16

hospitals in Nagano Prefecture. Details of the study have been described previously [37].
Briefly, the case subjects were a consecutive series of women aged 20–74 years with newly
diagnosed, histologically confirmed invasive breast cancer who were admitted to one of
the four hospitals during the survey period. Of 412 eligible patients, 405 (98%) agreed to
participate. Healthy controls were selected from medical checkup examinees in two of the
hospitals and confirmed not to have any cancer. One control was matched with each case by
age (within three years) and residential area (city or regional area) during the study period.
Among potential control subjects, one declined to participate. Consequently, written
informed consent was obtained from 405 matched pairs. Thereafter, two subjects refused
to provide blood samples, and two declined use of their data outside the Nagano study.
Due to a shortage of DNA samples, 12 pairs were excluded from the study. The Kagoshima
study was a hospital-based case–control study conducted in two hospitals in Kagoshima
City from May 2010 to March 2012. Cases were female patients with newly diagnosed
and histologically confirmed breast cancer while controls were outpatients undergoing
breast cancer screening who were confirmed without malignant disease. Consecutive
cases admitted to either hospital during the study period were asked to participate in
this study, and the participation rate was 91%. In total, 233 BC cases and 331 controls
were analyzed, with written informed consent obtained from all. The Aichi study was
conducted between 2001 and 2005 at Aichi Cancer Center Hospital [38,39]. This study was
conducted within the framework of the Hospital-based Epidemiological Research Program
in Aichi Cancer Center (HERPACC2). Cases were first-visit outpatients with histologically
confirmed breast cancer during the study period. Controls were first-visit outpatients
during the same period who were confirmed to have no malignancy and no history of
neoplasia. Controls were selected randomly and matched by age at a case–control ratio
of 1:2. All study subjects provided blood samples. Lifestyle factors were collected by
self-administered questionnaire.

In total, the present study included 1319 breast cancer cases and 2094 non-cancer
controls.

2.2. Evaluation of Environmental Risk Factors

Information on known environmental risk factors for breast cancer was collected by
self-administered questionnaire in each study. Data from three studies were harmonized
according to common items and a categorization of variables was defined. The following
variables were considered as environmental risk factors: age at enrollment, body mass index
(BMI, <18.5, 18.5–24.9, ≥25), ethanol drinking (never, <23 g/day, ≥23 g/day), cigarette
smoking (never, ever), physical activity (yes, no), family history of breast cancer (yes, no),
age at menarche (≤12 years old, 13 or 14 years old, ≥15 years old), parity (yes, no), number
of children (0, 1–2, 3 or more), age at first birth (<30 years old, ≥30 years old, nonparous),
breastfeeding (yes, no), hormone therapy (yes, no) and menopausal status (menstruation,
menopause). BMI was calculated as the reported weight in kilograms divided by the
reported height in meters squared. Ethanol consumption was estimated using the average
number of alcohol beverages per day. Subjects reporting regular leisure time exercise
at least once per month were classified as having physical activity. Family history was
considered positive if a mother or a sister had ever had breast cancer.

2.3. Statistical Analysis

We previously identified 23 breast cancer-associated SNPs reported in previous GWAS
or candidate-gene association studies [17–29,40]. Additionally, 91 SNPs associated with
breast cancer were identified in five GWAS studies [13,14,16,41]. The 114 identified loci are
listed in Supplemental Table S1.

Genomic DNA was extracted from the peripheral blood using a Qiagen FlexiGene
DNA Kit (Qiagen, Hilden, Germany) in the Nagano study, a QIAamp DNA Blood Maxi
Kit (Qiagen) in the Kagoshima study and a DNA Blood mini kit (Qiagen, Tokyo, Japan)
in the Aichi study. The 114 loci were genotyped in the study subjects using SNPtype
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assays (Fluidigm, San Francisco, CA, USA). Among 114 loci, 11 monomorphic SNPs were
excluded. Sixteen SNPs that were not accordant with the Hardy Weinberg Equilibrium
(HWE) in at least one of the three populations were excluded. In total, 87 SNPs were
included in further analysis. The impact of each SNP on breast cancer risk was evaluated
by per allele odds ratio (OR) and 95% confidence interval (CI) using a logistic regression
model adjusted for age at enrollment. The results of the three studies were combined using
random effects meta-analysis. SNPs with summary p-values less than 0.05 were selected
for risk prediction modeling. Linkage disequilibriums (LD) of SNPs located within same
genes were calculated. LD of the candidate loci clustered in the same region were assessed
by Haploview 4.2 [42]. Strong LD was defined as a one-sided upper 95% confidence bound
on D’ of more than 0.98 and a lower 95% confidence bound above 0.7. SNPs within the
same LD block were excluded, except one SNP with the lowest p-value for breast cancer
risk. Similarly, SNPs with summary p-values less than 0.10 and 0.30 were also used in
sensitivity analysis for genetic risk modeling.

The genetic risk group for breast cancer was defined according to the number of risk
alleles in each control subject. Three risk groups (Low, Moderate, High) were defined
by the distribution of risk allele numbers. Approximately 20%, 70% and 10% of controls
were defined as the low-, moderate- and high-risk group, respectively. Breast cancer
susceptibility in each risk group was evaluated by OR and its 95% CI using both crude
and adjusted logistic regression models. Age at enrollment was adjusted in the crude
model. In addition to the crude model, environmental risk factors were included in the
adjusted model. ORs in total populations were calculated by crude and adjusted models
with the addition of study site as a covariate. To assess the discriminatory ability of the risk
prediction model, the area under the curve (AUC) in the Receiver Operating Characteristic
(ROC) curve—also known as the concordance statistic (C-statistic)—was used. The C-
statistic in the genetic model for each study population and the total population was
calculated using logistic regression models which included the genetic risk score in the
risk model. Similarly, C-statistic in the environmental model was calculated using logistic
regression models which included the environmental risk factors. All variables in the
genetic and environmental models were included in the inclusive model. In the ROC, the y
axis shows sensitivity and the x axis shows the false positive rate, with AUC values ranging
from 0.5 to 1. The straight line in the ROC shows a random classification of case and control
subjects with an AUC of 0.5, while an AUC value of 1 corresponds to a perfect classification.
An AUC value between 0.7 and 0.8 is acceptable while a value greater than 0.8 represents
excellent model discrimination [43]. In addition to the genetic risk score model, we also
assessed the genetic risk score model in three levels and the allelic risk model as sensitivity
analyses. The C-statistic of the genetic risk score model in three levels was calculated using
a logistic regression model which included the low, moderate and high genetic risk groups.
The C-statistic of the allelic risk model was calculated using logistic regression models
which included the summation of logarithmic allelic risk ORs of SNPs in the genetic risk
models. The C-statistic values were compared using the method of DeLong et al. [44].
A calibration of the risk model was assessed by the Hosmer–Lemeshow goodness-of-fit
statistic and calibration plots [45]. Subjects were grouped by decile of predicted probability.
A significant p-value in the Hosmer–Lemeshow test indicates disagreement between the
predicted and observed outcomes. The mean predicted probability was plotted against
the mean observed probability for each decile in a calibration plot. A p-value < 0.05 was
defined as the threshold of significance. Statistical analyses were conducted using Stata
version 15.2 (StataCorp LP, College Station, TX, USA).

3. Results

The three case–control studies are characterized in Table 1. In total, 1319 cases and
2114 controls were included in the present study, broken down as 389 and 389 from the
Nagano study, 233 and 331 from the Kagoshima study and 697 and 1394 from the Aichi
study, respectively. Due to matching, age distributions among cases and controls in the
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Nagano and Aichi studies were not different, whereas cases in the Kagoshima study were
older than controls. The proportion of obesity (BMI 25 or more) was similar in the Nagano
and Aichi studies, but obesity was more prevalent in cases in the Kagoshima study. Finally,
hormone therapy use was more prevalent in controls in the Kagoshima and Aichi studies.

Among 114 genotyped breast cancer susceptibility loci identified by GWAS studies
(Table S1), 19 SNPs had statistically significant summary p-values of less than 0.05. Five
loci located in 10q26 (rs2981579, rs2981578, rs1219648, rs2420946 and rs2981582) and two
in 16q12 (rs3803662 and rs4784227) were in strong LD. Four loci in 10q26 (rs2981578,
rs1219648, rs2420946 and rs2981582) and one in 16q12 (rs3803662) were excluded from
further analysis. The list of breast cancer susceptibility loci and their allelic ORs is shown
in Table 2. Similarly, 22 SNPs with summary p-values of less than 0.10 and 42 SNPs with
summary p-values of less than 0.30 were selected for additional genetic risk assessment.

Genetic risk groups were defined according to the risk allele distribution of the 14 SNPs
in controls (Figure 1), with those with 0 to 10, 11 to 16 and 17 to 28 risk alleles defined as
low-, moderate- and high-risk groups, respectively. Subjects with undetermined alleles
were classified as undetermined. Subject proportions in the low-, moderate- and high-risk
groups were 23.84%, 69.30% and 6.86%, respectively. Proportions in risk groups in each
study’s controls were similar to those in the total control subjects. In the crude model,
summary ORs of breast cancer in the moderate- and high-risk groups were 1.70 (95% CI,
1.41–2.05) and 3.29 (CI, 2.49–4.34) compared with low-risk group, respectively. The ORs in
each study were similar to those in the total population. ORs were similar after adjustment
for known breast cancer risk factors.
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Figure 1. Odds ratio of breast cancer risk in each risk group; OR; odds ratio, CI; confidence interval. (A) Age was included
in the crude model. (B) Age, BMI, ethanol intake, smoking, physical activity, family history of breast cancer, age at menarche,
parity, number of births, age at first birth, breastfeeding and hormone therapy were included in the adjusted model. Genetic
risk group was defined by the number of risk alleles, with 0–10, 11–16 and 17–28 risk alleles defined as the low-, moderate-
and high-risk groups, respectively.
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Table 1. Characteristics of study participants.

Cases Controls

Nagano (%) Kaghoshima (%) Aichi (%) Total (%) Nagano (%) Kaghoshima (%) Aichi (%) Total (%)

Age

−39 33 (8.48) 13 (5.58) 105 (15.06) 151 (11.45) 26 (6.68) 79 (23.87) 204 (14.63) 309 (14.62)

40–49 112 (28.79) 43 (18.45) 197 (28.26) 352 (26.69) 107 (27.51) 96 (29.00) 416 (29.84) 619 (29.28)

50–59 122 (31.36) 56 (24.03) 222 (31.85) 400 (30.33) 135 (34.70) 86 (25.98) 429 (30.77) 650 (30.75)

60–69 88 (22.62) 55 (23.61) 132 (18.94) 275 (20.85) 96 (24.68) 41 (12.39) 271 (19.44) 408 (19.30)

70+ 34 (8.74) 62 (26.61) 41 (5.88) 137 (10.39) 25 (6.43) 29 (8.76) 74 (5.31) 128 (6.05)

UK 0 (0.00) 4 (1.72) 0 (0.00) 4 (0.30) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

BMI

<18.5 30 (7.71) 11 (4.72) 56 (8.03) 97 (7.35) 13 (3.34) 32 (9.67) 116 (8.32) 161 (7.62)

18.5–24.9 275 (70.69) 145 (62.23) 498 (71.45) 918 (69.60) 284 (73.01) 249 (75.23) 1021 (73.24) 1554 (73.51)

≥25 84 (21.59) 66 (28.33) 143 (20.52) 293 (22.21) 92 (23.65) 50 (15.11) 245 (17.58) 387 (18.31)

UK 0 (0.00) 11 (4.72) 0 (0.00) 11 (0.83) 0 (0.00) 0 (0.00) 12 (0.86) 12 (0.57)

Ethanol intake

Never 288 (74.04) 182 (78.11) 509 (73.03) 979 (74.22) 272 (69.92) 248 (74.92) 1027 (73.67) 1547 (73.18)

<23 g/day 72 (18.51) 37 (15.88) 148 (21.23) 257 (19.48) 88 (22.62) 68 (20.54) 299 (21.45) 455 (21.52)

≥23 g/day 27 (6.94) 9 (3.86) 33 (4.73) 69 (5.23) 29 (7.46) 14 (4.23) 51 (3.66) 94 (4.45)

UK 2 (0.51) 5 (2.15) 7 (1.00) 14 (1.06) 0 (0.00) 1 (0.30) 17 (1.22) 18 (0.85)

Smoking

Never 307 (78.92) 183 (78.54) 585 (83.93) 1075 (81.50) 358 (92.03) 283 (85.50) 1113 (79.84) 1754 (82.97)

Ever 78 (20.05) 46 (19.74) 110 (15.78) 234 (17.74) 30 (7.71) 48 (14.50) 278 (19.94) 356 (16.84)

UK 4 (1.03) 4 (1.72) 2 (0.29) 10 (0.76) 1 (0.26) 0 (0.00) 3 (0.22) 4 (0.19)

Physical activity

No 337 (86.63) 128 (54.94) 416 (59.68) 881 (66.79) 324 (83.29) 176 (53.17) 862 (61.84) 1362 (64.43)

Yes 47 (12.08) 95 (40.77) 281 (40.32) 423 (32.07) 64 (16.45) 153 (46.22) 532 (38.16) 749 (35.43)

UK 5 (1.29) 10 (4.29) 0 (0.00) 5 (0.38) 1 (0.26) 2 (0.60) 0 (0.00) 3 (0.14)
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Table 1. Cont.

Cases Controls

Nagano (%) Kaghoshima (%) Aichi (%) Total (%) Nagano (%) Kaghoshima (%) Aichi (%) Total (%)

Family history of breast cancer

No 323 (83.03) 195 (83.69) 632 (90.67) 1150 (87.19) 350 (89.97) 296 (89.43) 1305 (93.62) 1951 (92.29)

Yes 40 (10.28) 30 (12.88) 65 (9.33) 135 (10.24) 25 (6.43) 30 (9.06) 89 (6.38) 144 (6.81)

UK 26 (6.68) 8 (3.43) 0 (0.00) 34 (2.58) 14 (3.60) 5 (1.51) 0 (0.00) 19 (0.90)

Age at menarche

≤12 y.o. 139 (35.73) 63 (27.04) 216 (30.99) 418 (31.69) 145 (37.28) 115 (34.74) 439 (31.49) 699 (33.07)

13–14 y.o. 164 (42.16) 106 (45.49) 340 (48.78) 610 (46.25) 175 (44.99) 155 (46.83) 648 (46.48) 978 (46.26)

≥15 y.o. 85 (21.85) 57 (24.46) 133 (19.08) 275 (20.85) 69 (17.74) 59 (17.82) 277 (19.87) 405 (19.16)

UK 1 (0.26) 7 (3.00) 8 (1.15) 16 (1.21) 0 (0.00) 2 (0.60) 30 (2.15) 32 (1.51)

Parity

No 15 (3.86) 32 (13.73) 107 (15.35) 154 (11.68) 4 (1.03) 69 (20.85) 203 (14.56) 276 (13.06)

Yes 334 (85.86) 175 (75.11) 589 (84.51) 1098 (83.24) 336 (86.38) 249 (75.23) 1188 (85.22) 1773 (83.87)

UK 40 (10.28) 26 (11.16) 1 (0.14) 67 (5.08) 49 (12.60) 13 (3.93) 3 (0.22) 65 (3.07)

Number of births

nonparous 15 (3.86) 32 (13.73) 107 (15.35) 154 (11.68) 4 (1.03) 69 (20.85) 203 (14.56) 276 (13.06)

1 or 2 237 (60.93) 115 (49.36) 452 (64.85) 804 (60.96) 213 (54.76) 155 (46.83) 867 (62.20) 1235 (58.42)

≥3 97 (24.94) 60 (25.75) 137 (19.66) 294 (22.29) 123 (31.62) 94 (28.40) 315 (22.60) 532 (25.17)

UK 40 (10.28) 26 (11.16) 1 (0.14) 67 (5.08) 49 (12.60) 13 (3.93) 9 (0.65) 71 (3.36)

Age at first birth

<30 y.o. 137 (35.22) 78 (33.48) 270 (38.74) 485 (36.77) 148 (38.05) 89 (26.89) 653 (46.84) 890 (42.10)

≥30 y.o. 197 (50.64) 95 (40.77) 316 (45.34) 608 (46.10) 188 (48.33) 160 (48.34) 522 (37.45) 870 (41.15)

nonparous 15 (3.86) 32 (13.73) 108 (15.49) 155 (11.75) 4 (1.03) 69 (20.85) 207 (14.85) 280 (13.25)

UK 40 (10.28) 28 (12.02) 3 (0.43) 71 (5.38) 49 (12.60) 13 (3.93) 12 (0.86) 74 (3.50)
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Table 1. Cont.

Cases Controls

Nagano (%) Kaghoshima (%) Aichi (%) Total (%) Nagano (%) Kaghoshima (%) Aichi (%) Total (%)

Breastfeeding

No 72 (18.51) 17 (7.30) 131 (18.79) 220 (16.68) 67 (17.22) 21 (6.34) 260 (18.65) 348 (16.46)

Yes 306 (78.66) 158 (67.81) 558 (80.06) 1022 (77.48) 322 (82.78) 229 (69.18) 1117 (80.13) 1668 (78.90)

UK 11 (2.83) 58 (24.89) 8 (1.15) 77 (5.84) 0 (0.00) 81 (24.47) 17 (1.22) 98 (4.64)

Hormone therapy

No 327 (84.06) 203 (87.12) 603 (86.51) 1133 (85.90) 331 (85.09) 265 (80.06) 1141 (81.85) 1737 (82.17)

Yes 55 (14.14) 22 (9.44) 88 (12.63) 165 (12.51) 55 (14.14) 63 (19.03) 229 (16.43) 347 (16.41)

UK 7 (1.80) 8 (3.43) 6 (0.86) 21 (1.59) 3 (0.77) 3 (0.91) 24 (1.72) 30 (1.42)

BMI; body mass index, UK; unknown, y.o.; years old.
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Table 2. SNPs with a significant association with breast cancer.

Total Nagano Study Kagoshima Study Aichi Study

SNP Chromosome Risk/Reference
Allele OR 95% CI p OR 95% CI p OR 95% CI p OR 95% CI p

rs4849887 2q14.2 C/T 1.16 (1.00–1.34) 0.046 0.97 (0.73–1.28) 0.820 1.38 (0.93–2.06) 0.111 1.21 (1.00–1.46) 0.047

rs10931936 2q33.1 T/C 1.11 (1.00–1.23) 0.047 1.15 (0.93–1.40) 0.192 1.20 (0.91–1.58) 0.200 1.08 (0.94–1.23) 0.278

rs16857609 2q35 T/C 1.14 (1.03–1.26) 0.012 0.97 (0.80–1.19) 0.803 1.29 (1.00–1.67) 0.052 1.18 (1.03–1.35) 0.015

rs4973768 3p24.1 T/C 1.15 (1.02–1.30) 0.028 0.93 (0.73–1.18) 0.552 1.40 (1.03–1.90) 0.034 1.20 (1.02–1.42) 0.028

rs7697216 4q34.1 C/T 1.26 (1.10–1.44) 0.001 1.30 (0.99–1.71) 0.056 1.26 (0.91–1.74) 0.171 1.24 (1.04–1.48) 0.015

rs1432679 5q33.3 C/T 1.13 (1.01–1.25) 0.028 1.15 (0.93–1.43) 0.197 1.14 (0.87–1.50) 0.338 1.11 (0.97–1.28) 0.127

rs2046210 6q25.1 T/C 1.23 (1.11–1.37) 1.53 × 10−4 1.09 (0.88–1.35) 0.441 1.20 (0.90–1.60) 0.203 1.30 (1.13–1.49) 1.84 × 10−4

rs13365225 8p11.23 A/G 1.11 (1.00–1.23) 0.043 1.15 (0.93–1.41) 0.188 1.23 (0.95–1.59) 0.124 1.07 (0.94–1.22) 0.324

rs13281615 8q24.21 G/A 1.13 (1.02–1.25) 0.022 1.00 (0.81–1.22) 0.984 1.15 (0.88–1.49) 0.307 1.18 (1.04–1.35) 0.014

rs2981579 10q26.13 G/A 1.22 (1.10–1.34) 1.42 × 10−4 1.37 (1.13–1.67) 0.002 1.21 (0.93–1.56) 0.152 1.15 (1.01–1.32) 0.031

rs17271951 16q12.1 C/T 1.41 (1.24–1.59) 4.89 × 10−8 1.34 (1.06–1.70) 0.016 1.58 (1.14–2.19) 0.006 1.40 (1.19–1.64) 3.40 × 10−5

rs4784227 16q12.1 T/C 1.46 (1.30–1.64) 2.47 × 10−10 1.52 (1.20–1.92) 4.48 × 10−4 1.63 (1.19–2.23) 0.002 1.40 (1.20–1.62) 1.07 × 10−5

rs8051542 16q12.1 T/C 1.21 (1.07–1.36) 0.002 1.08 (0.85–1.37) 0.533 1.39 (1.01–1.92) 0.043 1.23 (1.05–1.43) 0.010

rs11075995 16q12.2 A/T 1.18 (1.06–1.31) 0.003 1.25 (1.01–1.56) 0.041 1.11 (0.85–1.44) 0.461 1.16 (1.02–1.33) 0.028

SNP; single nucleotide polymorphism, OR; odds ratio, CI; confidence interval.
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Figure 2 shows the ROC curves of the genetic, environmental and inclusive risk
models in the three study populations and total population. The C-statistics of genetic
model, environmental model and inclusive models in the three populations and total
population are shown in Table 3. The C-statistics of the genetic models were 0.605, 0.609,
0.604 and 0.633 in the Nagano, Kagoshima, Aichi and overall populations, respectively.
The C-statistics of the inclusive model (combination of genetic and environmental models)
in the Nagano, Kagoshima, Aichi and total populations were better than those of the
environmental models. The ROC curves in total population resembled those in the Aichi
study, because of the relatively large sample size of the Aichi study. A calibration plot of
the inclusive model in the overall population remained close to the ideal calibration line
(calibration slope of 1.02 and p for Hosmer–Lemeshow test = 0.506) (Figure S1).
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Figure 2. ROC curves of genetic, environmental and inclusive risk models in (A) Nagano study, (B) Kagoshima study,
(C) Aichi study, and (D) total population. Orange, yellow and navy lines are ROC curves of the Inclusive, Environmental
and Genetic models, respectively. Age, body mass index, ethanol drinking, cigarette smoking, physical activity, family
history of breast cancer, age at menarche, parity, number of children, age at first delivery, breastfeeding, hormone therapy
and menopausal status were adjusted in the Environmental model.
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Table 3. C-statistics of genetic, environmental and inclusive risk models.

Genetic Environment Inclusive
C-Statistics 95% CI C-Statistics 95% CI C-Statistics 95% CI p-Value

Nagano 0.605 (0.566–0.645) 0.691 (0.654–0.728) 0.721 (0.685–0.757) 0.005
Kagoshima 0.609 (0.560–0.657) 0.767 (0.726–0.808) 0.789 (0.750–0.828) 0.018

Aichi 0.604 (0.579–0.630) 0.581 (0.555–0.607) 0.635 (0.610–0.660) 7.05 × 10−6

Total 0.633 (0.614–0.652) 0.616 (0.596–0.636) 0.659 (0.640–0.678) 1.67 × 10−9

Genetic risk group was included in the Genetic model. Age, BMI, ethanol intake, smoking, physical activity, family history of breast cancer,
age at menarche, parity, number of births, age at first birth, breastfeeding and hormone therapy were included in the Environmental model.
All variables in the Genetic model and the Environmental model were included in the Inclusive model. p-values were calculated by testing
differences between the Environmental model and the Inclusive model.

The impact of risk groups stratified by menopausal status is shown in Table S2. The
ORs among premenopausal females in the moderate- and high-risk groups were 2.03 (CI,
1.52–2.72) and 4.27 (CI, 2.78–6.56), respectively. For postmenopausal females, the ORs
in the moderate- and high-risk groups were 1.46 (CI, 1.13–1.90) and 2.69 (CI, 1.83–3.95),
respectively. The C-statistics of the genetic model in premenopausal and postmenopausal
females were 0.652 (CI, 0625–0.680) and 0.621 (CI, 0.594–0.647), respectively (Table S3). The
C-statistics were significantly improved with the combination of genetic and environmental
models in both premenopausal and postmenopausal females.

To check the validity of the SNP selection in the genetic risk model, genetic risk models
with additional SNPs were assessed (Table S4). The C-statistics of genetic risk models
that included 14, 22 and 42 SNPs in the total population were 0.633 (95% CI 0.614–0.652),
0.636 (95% CI 0.617–0.655) and 0.636 (95% CI 0.617–0.655), respectively. Accordingly, the
C-statistic of the genetic risk model with 14 SNPs was not statistically poorer than that
of those with 22 or 42 SNPs, and the inclusion of more SNPs did not improve model
performance.

To assess the validity of genetic risk categorization, C-statistics of the three levels of
the genetic risk model, genetic risk score model (number of risk alleles) and allelic risk
model (summation of logarithmic allelic ORs) were assessed (Table S5). The C-statistics
of the genetic risk score models did not significantly differ from those of the allelic risk
models.

4. Discussion

We established a genetic risk model for breast cancer in subjects from three case–
control studies in Japan using 14 risk loci identified in GWASs. The high-risk group, which
accounted for 6.86% of total population, had a 3.27 times higher breast cancer risk than
the low-risk group. While the discriminatory ability of the genetic risk model alone was
not satisfactory, its combination with an environmental risk model produced significantly
improved performance. Further, performance of the combined risk model was consistent
between premenopausal and postmenopausal females.

Many GWASs aimed at breast cancer risk seek to elucidate carcinogenic mechanisms.
However, these studies have no direct impact on clinical practice [46]. One reason is the
small impact of each loci. In our study also, the magnitude of each SNP on the risk of
breast cancer was small. When aggregated, however, these risk alleles together would
likely indicate substantial risk elevation in those in the high-risk group. In previous studies
in Japanese females, the impact of genetic risk in the high-risk groups was larger than that
of cigarette smoking, alcohol drinking and obesity [47–50]. Unlike smoking, drinking and
obesity, however, genetic risk cannot be modified. Nevertheless, preventive approaches for
women with high genetic risk should be considered.

The use of genetic risk stratification for breast cancer prevention should be investigated.
Several studies have assessed preventive approaches to genetic risk [51,52]. One possible
strategy is personalized breast cancer screening: currently, biannual mammography is
recommended for Japanese women aged 40 years or older [53], but screening intensity
might be strengthened in high-risk individuals. Appropriate frequency, examination
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modalities, and age of screening initiation by predicted individual breast cancer risk should
be investigated. A second potential strategy is lifestyle modification via individual risk
feedback. Feedback on genetic risk in combination with education about a healthy lifestyle
might induce individuals to modify behaviors associated with breast cancer risk such as
obesity, physical activity, alcohol drinking, and cigarette smoking. Appropriate lifestyle
modification directly decreases breast cancer risk [54], while a healthy lifestyle attenuates
genetic breast cancer risk [55]. Lifestyle modification is difficult to achieve and sustain, and
few studies have reported success in using risk feedback to change lifestyle. In addition, the
impact of risk feedback and that of intervention for each modifiable risk factor must almost
certainly differ. Thus, weight management, physical activity, abstinence from drinking, and
smoking cessation should be recommended with appropriate intervention strategies. Novel
and personalized risk communications and interventions suitable for lifestyle modification
should be investigated.

Compared to the allelic risk model, the risk score model appears to have had an
attenuated discriminatory ability. The risk score model was based on the assumption
that all risk alleles confer the same magnitude of breast cancer risk. While the allelic ORs
of risk loci ranged from 1.11 to 1.46 in the total population, the C-statistics of risk score
models were not poorer than those of allelic risk models, indicating that the risk score
models could be used in place of the allelic risk models. The number of risk alleles and
the three corresponding risk grouping levels are simple to implement and comprehensive
for females in general populations, the characteristics which would facilitate preventive
interventions for breast cancer. The risk model would be available in other populations,
although useful sets of alleles must be assessed in the populations. Randomized controlled
studies to determine whether genetic risk feedback modifies individual behavior for breast
cancer prevention are warranted.

Hundreds of loci associated with breast cancer risk have been identified in GWAS
studies. A previous polygenic risk model based on a large GWAS dataset reported AUCs
of 0.603, 0.630 and 0.636 using 77, 313 and 3820 SNPs, respectively [56]. These findings
suggested that using more SNPs associated with breast cancer risk might improve model
performance; in our present study, however, the inclusion of SNPs with low significance
did not improve performance: genetic models with 22 and 44 SNPs offered no significant
improvement over that with 14 SNPs. Indeed, three GWAS studies in Japanese populations
identified only 31 loci in 19 regions [57–59]. Attempts to further improve the performance
of genetic models by adding more SNPs would, therefore, require a larger sample size.

The major strength of this study was its study population. Because we established the
risk model using three case–control studies conducted in geographically distant regions,
the results are generalizable to the Japanese population. Nevertheless, the study was based
on hospital-based case–control studies, meaning that several methodological limitations
exist. First, the values for self-reported lifestyle factors considered as potential confounding
factors might have some misclassification and recall bias. Second, selection bias in study
subjects is inevitable in hospital-based case–control studies, and external validity should be
interpreted carefully. Distributions of alcohol drinking and cigarette smoking in controls
were highly consistent with those in a national survey [60], suggesting that our study
population did not vary from the Japanese general population in these regards. Third, we
were unable to establish a risk prediction model by tumor subtype as not all cases had
information on hormonal status. Against this, however, establishment of a risk model
according to tumor subtype would have little meaning in personalized risk assessment for
breast cancer. Fourth, categorization of high genetic risk had no consensus. Further studies
were required to evaluate reasonable and useful thresholds of genetically high-risk groups.

5. Conclusions

This genetic risk score model using 14 GWAS-identified loci in combination with
environmental factors is able to stratify breast cancer risk. New breast cancer prevention
strategies for genetically high-risk populations should be developed.
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