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Synopsis
Oesophageal squamous cell carcinoma (ESCC) occurs at a very high rates in certain regions of China. There are
increasing evidences demonstrating that selenium could act as a potential anti-oesophageal cancer agent, but
the precise mechanisms involved are still not completely understood. Methylseleninic acid (MSA), as a potent
second-generation selenium compound, is a promising chemopreventive agent. Previous studies demonstrated that
the kelch-like ECH-associated protein 1 (Keap1)/nuclear factor E2-related factor 2 (Nrf2) system plays a critical
role in cancer prevention, but little is known about its association with MSA in ESCC cells. In the present study, we
observed that MSA treatment significantly down-regulated Keap1, induced nuclear accumulation of Nrf2 and enhance
the antioxidant response element (ARE) promoter activity in ESCC cells. MSA could also significantly induce miR-200a
expression and inhibit Keap1 directly. Antagomir-200a could attenuate MSA treatment-induced Keap1 down-regulation
in ESCC cells. Moreover, MSA-induced miR-200a expression was dependent on the mediation of Krüpple-like factor 4
(KLF4). These results reaffirm the potential role of MSA as a chemopreventive agent via the regulation of KLF4/miR-
200a/Keap1/Nrf2 axis in ESCC cells.
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INTRODUCTION

Selenium is an essential trace element with a lot of physiological
functions in humans and animals. Many studies in animals and
humans clinical trials have indicated that selenium is a promising
chemopreventive agent for several major types of cancer, includ-
ing oesophageal squamous cell carcinoma (ESCC) [1–4]. For
instance, supplementation with selenium-containing compounds
was associated with a significantly lower cancer mortality rate
[4]. Selenomethionine had a protective effect against mild oeso-
phageal squamous dysplasia at baseline [5]. However, the exact
mechanism of selenium in the prevention of oesophageal carci-
nogenesis is still unclear.



Abbreviations: ARE, antioxidant response element; ESCC, oesophageal squamous cell carcinoma; HDAC, histone deacetylase; Keap1, kelch-like ECH-associated protein 1; KLF4,
Krüpple-like factor 4; MSA, methylseleninic acid; mut, mutation; Nrf2, nuclear factor E2-related factor 2; RNS, reactive nitrogen species; ROS, reactive oxygen species; SAHA,
suberanilohydroxamic acid; Sp1, specificity protein 1; wt, wild type.
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2 Correspondence may be addressed to either of these authors (email xuningzhi@cicams.ac.cn or drhxzhu@cicams.ac.cn).

Recent studies have shown that certain chemopreventive
agents could active nuclear factor E2-related factor 2 (Nrf2)
either by oxidative or covalent modification of its inhibitor kelch-
like ECH-associated protein 1 (Keap1) or by phosphorylation
of Nrf2 [6–8]. Nrf2, a redox sensitive transcription factor, is a
master regulator of intracellular antioxidants and phase II de-
toxification enzymes by the transcriptional activation of many
antioxidant response element (ARE)-containing genes [9,10].
Under homoeostatic conditions, Nrf2 is generally localized in
the cytoplasm, where it is bound to Keap1. Once under oxidative
stress or chemopreventive compounds, Keap1 acts as a molecu-
lar sensor and undergoes chemical modifications in a series of
reactive cysteine residues, allowing the release of Nrf2, which
escapes from degradation and translocates to the nucleus [11].
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Previous study indicated that the Keap1/Nrf2 system regulates
an important defensive mechanism against upper aerodigestive
tract carcinogenesis, including cancers of the tongue and the oe-
sophagus [12]. And, some selenium compounds have been shown
to increase Nrf2 in prostate cancer [13]. The latest study repor-
ted that methylseleninic acid (MSA) treatment could up-regulate
Nrf2 mRNA level in prostate tumour tissues [14]. However, the
relationship between MSA and Nrf2 activation in ESCC has not
been elucidated.

miRNAs as a type of endogenous non-coding RNA, mediate
post-transcriptional gene regulation and participate in nearly all
biological processes [15]. So far, a regulatory role for miRNAs in
controlling Keap1 gene expression has been characterized in sev-
eral studies [16–18]. Eades et al. [16] showed that miR-200a could
target Keap1 directly and histone deacetylase (HDAC) inhibitor
SAHA (suberanilohydroxamic acid, vorinostat) could induce re-
expression of miR-200a in breast cancer cell lines. Furthermore,
our previous study demonstrated that MSA could inhibit HDAC
activity in ESCC cells [19]. All of these prompted us to hypothes-
ize that MSA might regulate miR-200a to modulate Keap1/Nrf2
pathway in ESCC cells. To test this issue, we detected the ex-
pression level of miR-200a in ESCC cells with or without MSA
treatment, respectively. We found that MSA treatment resulted in
an increase in miR-200a expression and activation of Keap1/Nrf2
pathway. We also found that MSA treatment significantly in-
creased Krüpple-like factor 4 (KLF4) binding to the miR-200a
promoter region in ESCC cells.

MATERIAL AND METHODS

Cell culture, RNA isolation and quantitative
real-time PCR
KYSE150, KYSE180, KYSE410 and KYSE510 were cultured
in RPMI-1640 medium supplemented by 10 % FBS at 5 % CO2.
Total RNA was isolated from cultured cells using TRIzol Reagent
(Invitrogen) and reverse-transcribed to cDNA with M-MLV Re-
verse Transcriptase (Promega). Real-time PCR was performed on
the StepOne Plus Real-Time PCR System (Applied Biosystems)
with Power SYBR Green PCR Master Mix (Applied Biosys-
tems), according to the manufacturer’s protocol. The sequences
of the PCR primers that were used to detect KLF4 and β-actin
were reported previously [19].

Plasmids, transfection and reagents
pGL3-ARE and pcDNA3-HA-Nrf2 were generous
gifts from Professor Xiaoming Yang. The 3′-UTR of
Keap1 was amplified using the following primers: 5′-
TCATACTAGTGGCACTTTTGTTTCTTGGGC-3′ and 5′-
GCATTAAGCTTCAGGGTGAAAGACACTAG-3′ and cloned
into pMiR-Report vector (Ambion) digested with HindIII and
Spe I. We also generated three bases mutation in the predicated
target site for miR-200a by using a QuickChange site-specific
mutagenesis kit (Stratagene). All constructs were sequenced in

Sangon Company. Transfection of plasmids was performed in
70 %–80 % confluent cells using Lipofectamine 2000 Reagent
(Invitrogen) according to manufacturer’s protocol.

MSA was purchased from Sigma–Aldrich (Sigma–Aldrich
Inc.). Pre-miR miR-200a precursor and Pre-miR negative control
were purchased from Ambion. Antagomir-200a was synthesized
from Ribobio. KLF4 siRNA and scramble control were purchased
from OriGene (OriGene Technologies). Transfections of Pre-miR
miR-200a precursor, Pre-miR negative control, KLF4 siRNA and
scramble control were performed by using siPORT NeoFX Trans-
fection Agent (Life Technologies) according to manufacturer’s
protocol.

miRNA-specific quantitative real-time RT-PCR
For miRNA analysis from cultured cells, miRNA was isolated us-
ing a mirVana RNA isolation kit (Ambion). Reverse transcription
and real-time PCR were performed as described [20] by using
miRNA-specific quantitative real-time PCR (Applied Biosys-
tems). The small RNA U6 was used as an internal control for
normalization. Real-time PCR was performed using a StepOne
Plus Detection System and fold changes in gene expression were
calculated using the 2− ��Ct method [21]. The mean miRNA
level from three real-time quantitative PCR experiments was cal-
culated for each case.

Western blot analysis
Cells were harvested at indicated time points and lysed in RIPA
buffer (Sigma). Western blot analysis was performed with the
use of conventional protocols as described previously [22]. Nuc-
lear and cytoplasmic proteins were extracted in accordance with
the manufacturer’s instructions (Pierce Biotechnology). The anti-
bodies and dilutions used included anti-β-actin (AC-15; 1:2000;
Sigma), anti-Keap1 (D1G10; 1:1000; Cell Signaling Techno-
logy), anti-Nrf2 (D1Z9C; 1:1000; Cell Signaling Technology),
anti-LaminB (M-20; 1:1000; Santa Cruz), anti-GFP (A00185.01;
1:1000; Santa Cruz). After extensively washed, the membranes
were incubated with anti-mouse or anti-rabbit IgG-horseradish
peroxidase conjugate antibody (Zhongshan Company) for 1 h at
room temperature and developed with a Luminol chemilumin-
escence detection kit (Santa Cruz). Membranes were reprobed
for β-actin antibodies for normalization and accurate quantific-
ation. Protein expression level was quantified by using a Gel
EDAS 293 analysis system (Cold Spring USA Corporation) and
Gel-Pro Analyzer 3.1 software (Media Cybernetics).

Reporter assay
To measure the transcriptional activity of Nrf2, reporter assays
were performed using the ARE promoter reporter construct.
Cells were transfected in 24-well plates with pGL3-ARE and/or
pcDNA3-HA-Nrf2. The total amount of transfected DNA was
kept constant by adding pCL3-basic and pcDNA3-HA plasmids.
Transfection efficiencies were estimated using co-transfected
pEGFP-C1 (20 ng). The protein level of GFP was detected by
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western blotting. After transfection, cells were treated with or
without MSA for 48 h. Then, Firefly luciferase activity was de-
termined using the Dual-luciferase reporter assay system (Pro-
mega). All results were expressed as means +− S.D. for independ-
ent triplicate cultures.

To demonstrate the miR-200a directly regulates Keap1 expres-
sion by binding to its 3′-UTR, reporter assays were performed
using Keap1 3′-UTR-wt and Keap1 3′-UTR-mut. Cells in 24-
well plates were transfected with the indicated plasmids (300 ng)
and the internal control plasmid pRL-SV40 (2 ng). After trans-
fection, cells were treated with or without MSA for 24 h. Then,
luciferase activity was determined as mentioned above. All res-
ults were expressed as means +− S.D. for independent triplicate
cultures.

ChIP
Using Chromatin immunoprecipitation Kit & Shearing Kit
(Active Motif), ten millions of KYSE150 cells were cross-
linked and lysed and chromatin was sheared to 200–700 bp
fragments. Sheared chromatin–DNA mixture was incubated
with 4 μg of KLF4 (H-180, Santa Cruz), negative control
IgG antibody per reaction overnight at 4 ◦C. Cross-links were
reversed and protein was removed by digestion with pro-
teinase K. Purified DNA was used for RT-PCR. Using the
following primers: miR-200a promoter (244-bp, –1048 – -804)
forward: 5′-GCTCACCCTTGCAGGTCTCC-3′ and reverse:
5′CCCGAAACCCAGCCGCATC-3′.

Statistical analysis
SPSS for Windows (SPSS Inc.) was used for statistical analysis.
A Student’s two-tailed non-paired ttest was used to determine
significant differences between treatment and control values in all
the experiments. Values of P < 0.05 were considered statistically
significant.

RESULTS

MSA could activate Keap1/Nrf2 pathway in ESCC
cells
We firstly examined the impact of MSA on endogenous Keap1
expression in ESCC cell lines. In both KYSE180 and KYSE150,
MSA treatment significantly down-regulated Keap1 and up-
regulated Nrf2 at protein level compared with the control cells
without MSA treatment respectively (Figure 1A). We further
examined Nrf2 and Keap1 expression in cytoplasm and nuc-
lear extracts with western blotting. Upon MSA treatment, we
found an elevated expression level of Nrf2 located in the nucleus
and a decrease expression level of Keap1 both in the cyto-
plasm and in the nucleus, in comparison with the nuclear pro-
tein loading control (lamin B) and the cytoplasm loading con-
trol (β-actin; Figure 1B). Meanwhile, the luciferase reporter

ARE had been used to characterize Nrf2 transcriptional activity
in KYSE150 cells with or without MSA treatment. As shown
in Figure 1(C), co-transfection with Nrf2 could enhance the
ARE promoter activity much higher with MSA treatment than
without.

In all, these findings demonstrated that up-regulation of Nrf2 in
the nucleus caused by MSA plays its transcriptional role in ESCC
cells.

MSA activates Keap1/Nrf2 pathway via
up-regulating miR-200a
Previous study has showed that Keap1 is a direct target of
miR-200a [16,18]. In order to test if MSA inhibited Keap1
through miR-200a at the post-transcriptional level, KYSE 150,
KYSE 410, KYSE 180 and KYSE 510 cells were treated
with MSA (5 μM) for 24 h, the level of miR-200a was detec-
ted by real-time PCR afterwards. As shown in Figure 2(A),
MSA could significantly induce miR-200a expression in ESCC
cells.

In order to test whether miR-200a could directly regulate
Keap1 by binding to its 3′-UTR in ESCC cells, the Keap1 3′-
UTR was cloned into the pMiR-Report vector, downstream the
luciferase gene (pMiR-Report/Keap1 3′-UTR-wt, abbreviated to
Keap1 3′-UTR-wt). For control group, a mutated Keap1 3′-UTR
with three bases mutations from the site of perfect complement-
arity was cloned (pMiR-Report/Keap1 3′-UTR-mut, abbreviated
to Keap1 3′-UTR-mut). As shown in Figure 2(B), transfection
of Keap1 3′-UTR-wt following with MSA treatment led to a
decrease in the luciferase activity in KYSE 150 cells. In con-
trast, MSA treatment did not influence the luciferase activity
of Keap1 3′-UTR-mut, demonstrating that mutation of the miR-
200a-binding site in the Keap1 3′-UTR abolished the inhibitory
effect of miR-200a to regulate its expression. In addition, trans-
fection of Pre-miR miR-200a precursor could effectively express
miR-200a (Figure 2C) and increased expression of miR-200a led
to a reduced production of Keap1 at protein level (Figure 2D).
Furthermore, we also treated KYSE150 cells with antagomir-
200a and re-examined the impact of MSA treatment. The results
showed that antagomir-200a could attenuate MSA treatment-
induced Keap1 down-regulation and Nrf2 up-regulation (Fig-
ures 2E and 2F).

In summary, these results showed that Keap1 was a direct
target of miR-200a in ESCC cells. Also, MSA could up-regulate
the expression of miR-200a.

MSA-induced miR-200a expression depended on
the mediation of KLF4
Our previous study reported that KLF4 could be up-regulated by
MSA in ESCC cells [19]. We examined the genomic sequences
in the 5′-direction of the mir-200a gene. Intriguingly, a putat-
ive binding site at the ∼1 kb upstream of the mir-200a was ob-
served for KLF4 transcription factor. To determine whether KLF4
could up-regulate miR-200a in human ESCC cells, quantitative
real-time PCR was performed. As shown in Figures 3(A) and
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Figure 1 MSA activated Keap1/Nrf2 pathway in ESCC cells
(A) KYSE180 and KYSE150 were treated with MSA (5 μM) for 24 h. Then, total cell lysates were prepared. Western blotting
was performed to examine Keap1 and Nrf2. β -Actin was used as a loading control. (B) KYSE150 cells were treated with
MSA (5 μM) for 24 h. Then, protein lysates were prepared. Keap1 and Nrf2 were detected in the cytoplasmic and nuclear
extracts by western blot. β -Actin was used as a loading control of cytoplasmic protein and lamin B was shown as a loading
control of nuclear protein. (C) KYSE150 cells were transfected with 100 ng of pGL3-ARE or pGL3-basic and 500 ng of
pcDNA3-HA or pcDNA3-HA/Nrf2 plasmids with or without MSA treatment respectively. The pEGFP-C1 (20 ng) plasmid was
co-transfected to normalize transfection efficiency. The luciferase activities were measured 48 h after transfection. Means
+− S.D., n = 3, *P < 0.05.

3(B), MSA could up-regulate the mRNA level of KLF4. When
KLF4 expression was inhibited by using KLF4 siRNA, MSA
could not induce miR-200a expression anymore. The results of
western blotting showed that knockdown of KLF4 could abol-
ish MSA treatment-induced Keap1 down-regulation and Nrf2
up-regulation. Furthermore, ChIP assay showed that MSA could
significantly increase the binding of KLF4 to the miR-200a pro-
moter region in ESCC cells. All of these results indicated that
MSA-induced miR-200a expression was dependent on the medi-
ation of KLF4.

DISCUSSION

ESCC occurs at very high rates in certain regions of China
[23]. There are increasing evidences demonstrating that selen-
ium could act as a potential anti-oesophageal cancer agent, but the
precise mechanisms involved are still not completely understood.
Significant risk factors for ESCC include tobacco smoking and al-
cohol consumption [24]. It has been reported that carcinogenesis
induced by tobacco and alcohol is mediated, at least in part, by
oxidative stress [25]. Oxidative stress is a term used to denote the
imbalance between the concentrations of reactive oxygen species
(ROS), reactive nitrogen species (RNS) and the defence mechan-
isms of the body. There is ongoing oxidative stress in the human

body. Such an imbalance plays a pivotal role in many pathological
conditions, including cancer [25]. The Keap1/Nrf2 signal path-
way has been considered to protect cells against carcinogenesis
and attenuate cancer development via neutralization ROS or car-
cinogen [26,27]. MSA, as a potent second-generation selenium
compound, is a known antioxidant and chemopreventive agent.
Our previous study demonstrated that MSA could inhibit HDAC
activity in ESCC cells [19]. In the present study, for the first time,
our results indicated that MSA strongly inhibited Keap1 expres-
sion via miR-200a and induced Nrf2 protein expression and nuc-
leus accumulation in ESCC cells. In agreement, the regulation
of Keap1 expression by miR-200a has been previously studied
in breast cancer [16]. Besides, there are evidences that HDAC
inhibition could activate Nrf2 activation by inhibiting Keap1 ex-
pression and the decrease in Keap1 expression was an indirect
effect [28]. Thus the miRNA inhibition might be an underlying
mechanism to explain the phenotype. Furthermore, a recent study
showed that Nrf2-knockdown mice were more susceptible to 4-
nitroquinoline-1-oxide (4NQO)-induced tongue and oesophageal
carcinogenesis than wild-type mice, suggesting that Keap1/Nrf2
system is an important defence mechanism for upper aerodigest-
ive tract carcinogenesis [12]. These data support the idea that the
chemopreventive property of MSA in oesophageal carcinogen-
esis may depend on the activation of Keap1/Nrf2 pathway. In vivo
studies are needed to further assess the chemopreventive effect of
MSA.
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Figure 2 MSA activates Keap1/Nrf2 pathway via up-regulating miR-200a
(A). KYSE150, KYSE 410, KYSE 180 and KYSE510 were treated with or without MSA (5 μM) for 24 h, then the expression
level of miR-200a was detected by real-time PCR. U6 was used as an internal control. The level of miR-200a in each
cell lines without MSA treatment was designated as unit 1 respectively. Means +− S.D., n = 3, *P < 0.05, **P < 0.01.
(B) Predicted duplex formation between human Keap1 3′ -UTR and miR-200a. Luciferase activity of Keap1 3′ -UTR wild-type
(Keap1 3′ -UTR-wt) or mutant (Keap1 3′ -UTR-mut) reporter gene in KYSE150 cells with or without MSA treatment (5 μM,
24 h) were detected. Mean +− S.D. (n = 3), *P < 0.05. (C) KYSE180 and KYSE150 cells were transfected with either
30 nM Pre-miR miR-200a precursor or a Pre-miR negative control miRNA precursor. miRNA was extracted 24 h after
transfection. Real-time PCR was performed to examine miR-200a level. The level of miR-200a in the corresponding cells
that transfected with the negative control was designated as unit 1 respectively. Means +− S.D., n = 3. (D) KYSE510 and
KYSE150 cells were transfected with miR-200a precursor (30 nM) or pre-miR negative control (30 nM) respectively. Keap1
and Nrf2 protein levels were detected 24 h after transfection. β -Actin was used as a loading control. (E) miR-200a level
in KYSE150 cells after the administration of MSA (5 μM) and/or antagomir-200a (20 μM) was measured by real-time
PCR. U6 was used as the endogenous control. The level of miR-200a without MSA and antagomir-200a treatment was
designated as unit 1. Means +− S.D., n = 3. (F) The levels of Keap1 and Nrf2 in KYSE150 cells treated with MSA (5 μM)
following antagomir-200a (20 μM) transfection were detected by western blot. β -Actin was used as a loading control.
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Figure 3 KLF4 mediated miR-200a up-regulation induced by MSA in ESCC cells
KYSE180 cells were transfected with KLF4 siRNA or control siRNA for 48 h. Then, the cells were treated with or without
MSA (5 μM) for additional 24 h. Total RNA was extracted. KLF4 mRNA (A) and miR-200a level (B) were determined by
real-time PCR. The level of KLF4 or miR-200a in KYSE180 cells with control siRNA transfection and without MSA treatment
was designated as unit 1 respectively. Means +− S.D., n = 3. (C). The levels of Keap1 and Nrf2 in KYSE180 cells treated
as indicated were detected by western blot. β -Actin was used as a loading control. (D). ChIP assay result showed the
KLF4 that associated with miR-200a prompter. KYSE150 cells were treated with MSA (5 μM, 24 h). Then, the lysates were
immunoprecipitated by KLF4 antibody and –1048 – -804 region of miR-200a promoter was amplified with specific primers.

It was reported that KLF4 could be up-regulated by MSA
in human prostate cancer and ESCC cells [19,29]. In our study,
KLF4 regulation of miR-200a expression was examined in ESCC
cells. Previous study has validated that HDAC4 could inhibit the
expression of miR-200a and reduce the histone H3 acetylation
level at the mir-200a promoter through a Sp1-dependent path-
way in hepatocellular carcinoma [30]. Our earlier experimental
evidences support the idea that MSA could enhance the acetyla-
tion of histone H3 in ESCC cells [19]. An interesting possibility
is that MSA-induced histone H3 acetylation may directly bind
to the mir-200a promoter region and thus increased miR-200a
expression in ESCC cells. Therefore, the possible involvement

of histone H3 acetylation in the regulation of miR-200a deserves
further investigation.

In conclusion, our study not only demonstrated that MSA
could activate Keap1/Nrf2 pathway via up-regulating miR-200a
but also found a novel mechanism by which miR-200a expression
was regulated in ESCC cells.
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