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Emotions play an essential role in human relationships, and many real-time applications rely on interpreting the speaker’s
emotion from their words. Speech emotion recognition (SER) modules aid human-computer interface (HCI) applications, but
they are challenging to implement because of the lack of balanced data for training and clarity about which features are sufficient
for categorization. This research discusses the impact of the classification approach, identifying the most appropriate combination
of features and data augmentation on speech emotion detection accuracy. Selection of the correct combination of handcrafted
features with the classifier plays an integral part in reducing computation complexity. The suggested classification model, a 1D
convolutional neural network (1D CNN), outperforms traditional machine learning approaches in classification. Unlike most
earlier studies, which examined emotions primarily through a single language lens, our analysis looks at numerous language data
sets. With the most discriminating features and data augmentation, our technique achieves 97.09%, 96.44%, and 83.33% accuracy
for the BAVED, ANAD, and SAVEE data sets, respectively.

1. Introduction

Speech emotion recognition (SER) is a new study area in
human-computer interaction. Emotional understanding is
critical in human social relationships. Despite being
researched since the 1950s, the study of emotional signals
has made significant breakthroughs in recent years [1,2].
Because emotion identification via face recognition is
technically hard, real-time implementation is prohibitively

expensive. Because high-quality cameras are required for
obtaining facial photographs, the cost of implementation is
likewise considerable. Aside from human facial expressions,
language is a more appropriate channel for expression
identification. Vocal emotions are crucial in multimodal
human-computer contact [3,4]. Language emotion ac-
knowledgment, in general, is a critical subject because
speech is the primary medium of human communication.
SER has progressed from a minor concern to a serious one in
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human-computer contact and speech processing in the
recent decade. SER offers a broad range of possible uses.
Human-computer interfaces, for example, might be pro-
grammed to behave differently depending on the user’s
emotional state. This may be particularly critical when voice
is the major contact form with the machine [5]. Language
has two sorts of information: textual information and
emotional information. The machine can accomplish au-
tomated emotional identification of voice signals to create a
harmonious human-computer connection experience.
Voice may be used to assess a client’s emotions in a customer
service system. It may boost children’s social-emotional
abilities and academic skills in the educational assistance
system [6]. Problems may be dealt with by parents and
teachers promptly.

The study of feelings in human-computer contact is a
burgeoning field of study. Emotions and human behavior
are inextricably linked. Moreover, computer emotion
identification may provide humans with a satisfying human-
computer connection interface. Speech-based emotion
identification has been extensively employed in human-
computer contact due to new applications in human-ma-
chine connections, human-robot interfaces, and multimedia
indexing. Scientific improvements in capturing, storage, and
processing audio and visual material; the growth of non-
intrusive sensors; the introduction of wearable computers;
and the desire to enhance human-computer interaction
beyond point-and-click to sense-and-feel are all causes for
fresh concern.

Affective computing, a discipline that develops devices
for detecting and responding to user’s emotions [7], is a
growing research area [8] in human-computer interaction. It
is a science that creates systems for recognizing and reacting
to human emotions (HCI). The primary goal of affective
computing is to gather and analyze dynamic information to
improve and naturalize human-computer interactions. Af-
fective mediation, a subset of affective computing, employs a
computer-based system as a mediator in human-to-human
communication, expressing the emotions of the interlocu-
tors [7]. Emotive mediation attempts to reduce the filtering
of affective knowledge by communication systems, which
are often committed to the spread of verbal material and
ignore nonverbal material [9]. Other uses of this form of
mediated communication exist, such as textual telecom-
munication (effective electronic mail, affective chats).
Speech emotion recognition (SER) is another hotly debated
area of HCI research [10]. Concerning this issue, Ram-
akrishnan and El Emary [11] presented different applications
to demonstrate the relevance of SER approaches.

Feelings are physiological stages of varied sensations,
thoughts, and behaviors of connected individuals and
psychological and physiological responses to numerous
external stimuli. Feelings have a vital role in both everyday
life and work. In several disciplines, it is critical to detect
emotions accurately. Emotion recognition research has been
used in psychology, emotional calculation, artificial intelli-
gence, computer vision, and medical therapy, among other
fields [12-14]. Emotion identification, for example, may aid
in the identification of depression, schizophrenia, and
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different mental illnesses. It may help physicians grasp their
patients’ genuine feelings. Moreover, computer emotion
identification may provide humans with a satisfying human-
computer connection interface.

Different techniques have been developed to find the
emotions by researchers, such as computer vision, neural
networks, machine learning, and signal processing. The
proposed emotion recognition system was with a combi-
nation of multiple handcrafted features. In order to improve
the identification rate, we combined all the methods in one
input vector. Thus, we chose to use the coefficients MFCC,
Chroma, and ZCR in our study because these methods are
more used in speech recognition, and they receive good
recognition rates. The classification task was performed on
multiple traditional machine learning classifiers along with
the designed 1D CNN.

1.1. List of Contributions

A study of the emotion classification on Arabic lan-
guage speech, which is a less studied area.

A customised CNN model for identifying and classi-
fying the emotion from the speech signals. The model
was primarily developed Basic Arabic Vocal Emotions
Dataset (BAVED) data set [15], which consists of
emotions classified into three classes: low, normal, and
high.

Through the input speech emotion signals, features
were extracted with the help of the feature extraction
technique. Various kinds of feature extraction tech-
niques were included in the proposed methodology. A
study of different combinations of features on classi-
fication performance is also presented.

Data augmentation to address challenges of class im-
balance, data scarcity, and hence performance
improvement.

Study of other language databases with complex
emotions. Experiment results show the validity of our
proposed method on other SER tasks with more
complex emotions.

The remainder of this article is organised as follows.
Section 2 summarises earlier research in the same field of
study. Section 3 explains the experimental procedure and the
details of parameter setting. The outcomes of the experiment
are analysed and described in Section 4. Conclusions are
provided in section 5, followed by the references.

1.2. Literature Review. Numerous articles have been pub-
lished that demonstrate how to detect emotions in speech
using machine learning and deep learning techniques. For
researchers, selecting strong traits for SER is a challenging
task. Several researchers have benefited from the unique
properties of SER. The mainstream of low-level prosodic and
spectral auditory properties, including fundamental fre-
quency, formant frequency, jitter, shimmer, speech spectral
energy, and speech rate, have been linked to emotional
intensity and emotional processes [16-18]. Complex
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parameters, like Mel-frequency cepstral coefficients (MFCCs),
spectral roll-off, Teager Energy Operator (TEO) charac-
teristics [19-21], spectrograms [22], and glottal waveform
characteristics, all produced favorable SER results [23-25].
For instance, Dave [26] evaluated a variety of features for
speech emotions. They demonstrated the superiority of
preferable Mel frequency cepstral coefficient (MFCC) [27]
features for SER over other low-level features, such as
loudness, linear productivity code (LPC) [28], and so on.
According to Liu [29], compared with MFCCs that include
additional speech features such as jitter and shimmer,
gamma-frequency cepstral coefficient (GFCC) charac-
teristics for SER may enhance unweighted accuracy by up
to 3.6%. Liu et al. [30] proposed an approach for SER that
makes use of a Chinese speech data set [31] (CASIA) to
choose hidden emotional features based on correlation and a
decision tree based on an extreme learning machine (ELM)
for classification. Fahad et al. [32] devised an approach for
choosing glottal and MFCC characteristics for training
DNN-based models for SER.

Noroozi et al. [33] proposed a method for identifying
adaptable emotions based on visual and acoustic data pro-
cessing. In his research, they retrieved 88 features (Mel fre-
quency cepstral coefficients (MFCC), filter bank energies
(FBEs)) using Principal Component Analysis (PCA) to de-
crease the measurement of earlier extracted features. Bandela
and Kumar [34] detected five emotions using the Berlin
Emotional Speech database by combining an acoustic char-
acteristic known as the MFCC with a prosodic property known
as the Teager Energy Operator (TEO) (2017). Zamil et al. [35]
classified the seven emotions using the Logistic Model Tree
(LMT) technique with a 70% accuracy rate, utilizing the 13
MFCC gathered from auditory figures in their recommended
method. All of this work emphasizes some aspects while
neglecting others. Additionally, when such approaches are
used, accuracy cannot exceed 70%, which may affect the ca-
pacity to perceive emotion in speech. According to several
authors, the most critical audio aspects for emotion detection
are the spectral energy distribution, the Teager Energy Oper-
ator (TEO) [36], the MFCC, the MFCC, the Zero Crossing Rate
(ZCR), and the filter bank energies (FBE) energy parameters
[37]. On the other hand, Kacur et al. [38] attempted to explain
how, in addition to speech signal features, common processing
procedures, such as segmentation, windowing, and pre-
emphasis, have an impact on the model’s performance.

Numerous research articles examined the use of con-
volutional neural networks (CNNs) to detect whole language
spectrogram arrays or isolated bands of spectrograms to de-
termine speech emotions [39,40]. Fayek et al. [41] used a DNN
to extract SER from small settings of communication spec-
trograms. The average accuracy was 60.53% (when using the
eNTERFACE database) and 59.7% (when using the SAVEE
database). A similar but superior method produced an average
accuracy of 64.78% (IEMOCAP data with five classifications)
[42]. Several chain structures comprising CNNs and recurrent
neural networks (RNNs) were trained on EMO-DB data using
communication spectrograms [43]. The most acceptable ar-
rangement produced a usual accuracy of 88.01% and a recall of
86.86% for seven emotions. Han et al. [44] employed a CNN to

extract affect-salient properties, which then were used by a
bidirectional recurrent neural network to detect four emotions
using IEMOCAP data. Trigeorgis et al. [45] created a CNN and
LSTM-based method for spontaneous SER that uses the RE-
mote COLlaborative and Affective RECOLA natural emotion
database. Zhao et al. [46] also used a recurrent neural network
(RNN) to extract relationships from 3D spectrograms across
timesteps and frequencies. Lee et al. [47] developed a parallel
fusion model Fusion-ConvBERT”, consisting of bidirectional
encoder representations from transformers and convolutional
neural networks. A deep convolution neural network (DCNN)
and Bidirectional Long Short-Term Memory with Attention
(BLSTMwA) model (DCNN-BLSTMwA) is developed by [48],
which can be used as a pretrained for further emotion rec-
ognition tasks.

2. Materials and Methods

2.1. Data Set. The Basic Arabic Vocal Emotions Dataset
(BAVED) data set [15] was used in the study. It is a col-
lection of recorded Arabic words (.wav) in diverse emo-
tional expressions. The seven words were indicated in
integer format (0-like, 1-unlike, 2-this, 3-file, 4-good, 5-
neutral, and 6-bad). The data set contains each word
pronounced at three levels, each of which corresponds to a
person’s feelings: 0 for low emotion (tired or exhausted), 1
for neutral emotion, and 2 for high emotion positive or
negative emotions (happiness, joy, sadness, anger). Each
file name in the data set has six sections, which include the
following information.

(1) Speaker_id (int).

(2) Gender of the speaker (m or f).
(3) Speaker age(int).

(4) Word spoken (int from 0 to 6).
(5) Emotion spoken (int from 0 to 2).
(6) Record id(int).

There are 1935 recordings in the data set, recorded by 61
speakers (45 men and 16 women). Table 1 shows the dis-
tribution of voice samples among different categories
present in the data set.

2.2. Exploratory Data Analysis (EDA). Figure 1 depicts the
distribution of emotions in the data set. The data set is
slightly skewed because the number of samples in the
“low” class of the database is lower than that in other
classes. This could have an impact on Deep CNN’s
training performance. Figures 2 and 3 also showed the
waveform and spectrogram for the sample voices in the
data set. There is enough information in the waveform and
spectrogram to distinguish the classes. Also, experi-
mentally we aim to the conclusion that in the data set first
0.3s contains no information about emotion, and most of
them are less than 2.5s.

Before developing the model, the audio signals are
subjected to preprocessing and feature extraction opera-
tions, as depicted in Figure 4. Resize to fixed length and
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TaBLE 1: Data set distribution.
Emotion category Low Neutral High
Gender Male 342 379 388
Female 243 293 290
Total number of 585 672 678
samples
Total: 1935
Count of emotion:
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Figure 1: Distribution of target classes in the data set.

augmentation are the processes that make up the pre-
processing phase of the process flow diagram. Then, after
reading the audio files in.wav format, we resize all the audio
samples to be the same length by either extending their
duration by padding them with silence (zeroes) or trun-
cating their duration.

2.3. Data Augmentation. To address the data imbalance
between emotion classes, we used a variety of strategies to
increase the amount of samples in the data set.

2.3.1. Noise Injection. The audio data had random noise
added to it. The rate of noise to be added to the audio was set
to 0.035.

2.3.2. Time Shifting. It just changes the audio to the left or
right for a random second. If you fast forward audio by x
seconds, the first x seconds will be marked as 0. If we move
the audio to the right (backward) for x seconds, the last x
seconds will remain 0. We gave a random value for shifting
in the range (-5 to 5) so that it will produce left and right
shifts randomly on the data set.

2.3.3. Time Stretching. This approach extends the time series
at a constant rate. The specified rate was 0.8.

2.3.4. Pitching. The audio wave’s pitch is adjusted according
to the provided pitch factor. The pitch factor was set to 0.7.
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2.4. Feature Extraction. Modern deep learning on audio
class recognition includes feature extraction as a key com-
ponent. There are numerous ways to accomplish this. We are
focusing mainly on three types of features of audio signals
(Figure 4).

(1) Time-domain features

(2) Spectral features

(3) Perceptual features

2.5. Time-Domain Features

2.5.1. Zero-Crossing Rate. The number of zero crossings in a
specific region of the signal divided by the number of
samples in that region is the zero crossing rate (ZCR) [49],
that is, the rate at which the signal crosses the zeroth line;
more precisely, the rate at which the signal changes from
positive to negative or vice versa. Mathematically, it can be
measured as follows:

1 N
ZCR = —— i -1), 1

CR N1 n; sign(s(n)s(n—1)) (1)

where s=signal, N=length of a signal, and the

sign (s(n)s(n — 1)) is calculated as
Lifs(n)s(n—-1)>0

sign (s (n)s(n - 1)) :{0 if s(m)s(n-1)<0’

2.5.2. Energy. The overall magnitude of a signal, i.e., how
loud it is, is the signal’s energy. It is defined as in

E(x) = Zn: |x (). 3)

2.5.3. Root-Mean-Square Energy (RMSE). It is based on the
total number of samples in a frame. It serves as a loudness
indication because the more energy, the louder the sound. It
is less susceptible to outliers. The square root of the mean
squared amplitude over a time interval is the RMS Energy
(RMSE). It is characterized by

] (K-
RMS,; = \|=

s(k)>. (4)

2.6. Spectral Features

2.6.1. Spectral Centroid. A spectral centroid is a measure-
ment of a sound’s “brightness,” signifying the location of the
center of mass of the spectrum. The spectral centroid is
equivalent to a weighted median. The Fourier transform of
the signals with weights can be used to determine it
mathematically as in
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Ficure 2: Waveforms for the three classes of emotions.

Ym0 x (1)
where X(n) is the weight frequency value. N is the bin
number. F(n) is the center frequency of the bin.

) (5)

Centroid =

2.6.2. Spectral Flux. Spectral flux is calculated as the squared
difference between the normalized magnitudes of the spectra
of two consecutive short-term windows and measures the
spectral change between two frames ((6)

W,
Flgp =Y (EN;(k) - EN, (k) (6)
k=1
where EN; (k) is the k™ normalized DFT at the i ! frame as in
X, ()
i X
Spectral Rolloff: It is the fraction of bins in the power

spectrum below which 85% of the spectral distribution is
concentrated.

i.e, EN; (k) = 7
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FIGURE 3: Spectrograms for the three classes of emotions.
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Chroma: Chroma is a measure of each chromatic pitch
class (C, Cf, D, Dt, E, F, Ft, G, Gf, A, A, B) in the audio
signal. It is one of the most important aspects of audio
processing.

2.7. Perceptual Features

2.7.1. Melspectrogram. Melspectrogram is a representation
of frequencies in the Mel scale. The Mel scale comprises
pitches that are equally spaced for the listener. The Mel scale
is based on how the human ear works, which better detects
differences at lower frequencies than higher frequencies. The
Fourier transform can be used to convert frequencies to the
Mel scale. The major three steps for creating Melspectro-
gram are.

(1) Compute the fast Fourier transform (FFT)
(2) Generate Mel scale
(3) Generate spectrogram

2.8. Mel-Frequency Cepstral Coefficients (MFCCs). The en-
velope of the voice signal’s time power spectrum depicts the
vocal tract, and MFCC accurately represents this envelope.
The Mel frequency cepstral (MFC) represents the short-term
power spectrum of any sound, and the MFC is made up of
MECC. The inverse Fourier transform (cepstral) represen-
tation can be used to derive it. MFC allows for a better
depiction of sound because the frequency bands on the Mel
scale are evenly distributed in MFC, which closely ap-
proximates the human auditory system’s reaction.

The total amount of extracted parameters were

(i) 40 Mel-frequency cepstral coefficients (MFCC)
(ii) 128 Mel spectrogram
(iil) 12 chromagram
(iv) Other 6 features (RMS energy, energy, zero crossing

rate (ZCR), spectral centroid, spectral flux, and
spectral rolloff)

2.9. Model Architecture. We constructed an emotion rec-
ognition model after augmenting and preprocessing the
data. To construct an emotion categorization model, various
classifiers from the machine learning family have been
presented. K-Nearest Neighbors, Decision Trees, Random
Forest, SVC RBF, SVC, Ada Boost, Quadratic Discriminant
Analysis, and Gaussian NB were among the techniques used.
Hyperparameters: KNN (K= 3), SVC (C=0.025), Decision
Tree (max depth=5), and Random forest (max depth =5,
n_estimators = 10, max features=1).

This article aimed to create a 1D convolution neural
network (CNN) (inspired from Aytar et al. [50] that could
learn from extracted features and categorize audio signals
based on emotions). However, the goal was to create an
architecture with fewer parameters, which would lessen
the requirement for a large data set and the computational
bottleneck during training. As a result, the planned ar-
chitecture (Figure 5) only had five convolutional layers

interconnected by max-pooling layers. The fifth pooling
layer’s output is flattened and connected to fully con-
nected (FC) layers. Overfitting was reduced by Batch
normalization [51]. Three neurons at the final fully
connected layer categorize objects into three classes. The
baseline model takes an array of 17,715 dimensions as
input, which represents the extracted features from the
data set (Figure 6). To adapt the model for different ap-
plications and variable data sets, necessary changes should
be made to the model architecture based on the charac-
teristics of the input audio data to study. Depending on
audio lengths and sampling rate, the number of input
features may vary. The number of neurons present at the
last FC layer can also be modified based on the number of
target classes in the data set.

2.10. Training Pipeline. Test data set accounts for 20% of
the data, whereas validation accounts for 10% of the
remaining data. The Keras framework is used to build the
full 1D CNN architecture, which is supported by Ten-
sorFlow and coded in Python. All other processing and
analysis were done with NumPy, OpenCV, Scikit-learn,
and other open-source tools. A 32 GB NVIDIA Quadro
P1000 GPU was used for the training. The training began
with alearning rate of 0.001 and was subsequently reduced
by a factor of 0.5 after observing the validation loss. As an
optimizer, we used the Adam algorithm [52]. With a batch
size of 64, the training could last up to 50 epochs.
However, early stopping will occur if the validation loss
does not decrease continuously for a long period. The
trained model is applied to the test data set to validate the
model’s performance.

2.11. Performance Evaluation Matrices

2.11.1. Accuracy. Accuracy refers to the percentage of
correct predictions made by our model. In classification
problems, accuracy refers to the number of correct pre-
dictions made by the model across all types of predictions.
The following equations show the formal definition of
accuracy:

number of correct predictions

accuracy = , 8
7= “total number of predictions ®
or
TP + TN )
accuracy = .
Y T TP TN+ FP + BN

TP=true positives, TN=true negatives, FP = false
positives, and FN = false negatives.

True positives (TP): true positives are the cases when
the actual class and predicted class of a datapoint is
same (both are positive)

True negatives (TN): true negatives are the cases when
the actual class and predicted class is same (both are
negative)
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Ficure 5: 1D CNN architecture.

False positives (FP): false positives are the cases when a
data point was mispredicted to belong to a class

False negatives (FN): false negatives are the cases when
a data point was mispredicted to not belong to a class

2.12. Recall. Recall is the proportion of actual positives
predicted correctly as

TP

_— (10)
TP + FN

recall =

2.13. Precision. Precision is the proportion of positive
predictions that are actually correct as shown in

TP

_—, 11
TP + FP (1)

precision =

2.14. FI Score. To completely assess a model’s effectiveness,
you must look at both precision and recall. Regrettably,
precision and recollection are sometimes at odds. Con-
versely, increasing precision usually decreases recall and vice
versa. The F1 score was created to solve this issue. The
harmonic mean of precision and recall is the F1 score is
calculated as

2 * precision x* recall

F1 score = (12)

precision + recall

3. Results and Discussion

It is required to recognize the speaker’s emotions for
multiple fields, including medicine, business, and criminal
detection. In contrast, it is the most challenging problem as
age, gender, cultural differences, and other factors influence
the clarity of emotions in a person’s voice. Even humans
struggle to recognize the intense emotions of speech re-
gardless of the semantic content; therefore, the capacity to
do so automatically utilizing programmable devices is still a
research problem.

Even though Arabic is one of the top ten most widely
spoken languages, it lacks emotion and sentiment corpora
[53]. This could lead to the research focusing mostly on the
Arabic language. The BAVED data set’s developers have
stated that it should perform well in voice emotion recog-
nition for research purposes. We also considered that de-
veloping an emotion recognition model on this data set would
be beneficial because the data set comprises seven words
pronounced with three different levels of emotion. On the
other hand, the recognition findings cannot be taken as proof
that the acted speech is similar to natural speech [54]. De-
signing algorithms that perform well on acted speech may be
beneficial for providing a practical basis for a theory,
according to Hammami [55], yet there are grounds to suspect
that acted speech is different from natural speech. As a result,
we attempted to create a model for another Arabic Emotion
database, ANAD [56], which is entirely natural speech.

This section reports on and discusses the experimental
results assessing the performance of our 1D CNN systems for
speech emotion recognition on the three open-source data sets.
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Model: "sequential™

Layer (type) OQutput Shape Param #
covid (CoviD)  (None, 17715, 512)  3e72
batch_normalization (BatchMo (Mone, 17715, 512) 2848
max_poolingld (MaxPoolinglD) (Mone, 8858, 512) e
convld 1 (ConvilD) (None, 8858, 512) 1311232
batch _normalization_1 (Batch (MNone, 8858, 512) 2848
max_poolingld 1 (MaxPoolingl (MNone, 4429, 512) e
convld 2 (ConvilD) (None, 4429, 258) 655616
batch_normalization 2 (Batch (MNone, 4429, 256) 1824
max_poolingld 2 (MaxPoolingl (MNone, 2215, 258) 5]
convld 3 (ConviD) (None, 2215, 258) 196864
batch_normalization 3 (Batch (MNone, 2215, 256) 1624
max_poolingld 3 (MaxPoolingl (MNone, 1188, 256) @
convild 4 (ConviD) (None, 1188, 128) 93432
batch _normalization 4 (Batch (None, 1188, 128) 512
max_poolingld 4 (MaxPoolingl (Mone, 554, 128) e
flatten (Flatten) (None, 78912) e

dense (Dense) {(None, 512) 36387456
batch_normalization 5 (Batch (None, 512) 2048
dense_1 (Dense) (None, 3) 15349

Total params: 38,582,915
Trainable params: 38,578,563
Mon-trainable params: 4,352

FIGURE 6: A detailed description of the 1D CNN.

Experiment 1. Performance of different classification
models with different combinations of features without any
prior audio augmentation

The experiment aimed to clarify the significance of chosen
groups of features and the classification ability of selected
classification methods for speech emotion recognition systems.
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3.1. Input Samples. BAVED data set with 3 classes of
emotions, low, medium, and high.

Feature Extraction: computing of input vectors (speech
parameters):

(1) Chroma, Melspectrogram, and MFCC

(2) Chroma, Melspectrogram, MFCC, Contrast, Ton-
netz, ZCR, RSME, Energy, Flux, Centroid, Rolloff

3.2. Emotion Classification

(1) 1D CNN-(Ours)

(2) Other machine learning models: KNN, Random forest,
SVC RBF Kernel, SVC, Decision Tree, AdaBoost,
Quadratic Discriminant Analysis, and Gaussian NB

Table 2 summarises the recognition rate found for the
different classification models as a function of different
combinations of features. The results show that the 1D
convolution gives the best performance compared with the
linear and polynomial kernels.

This research discusses the impact of classification
method, identifying the best combination of features, and
data augmentation on speech emotion recognition accuracy.
There is an increase in the system performance in terms of
accuracy and system complexity by selecting the appropriate
parameters in conjunction with the classifier compared with
the raw waveform efforts. This phase is required, particularly
for systems that are used in real-time applications. Some raw
waveform efforts [57,58] that forgo hand-designed features
should take advantage of the deep learning model’s superior
modeling power, learning representations optimized for a
task [59]. This, however, raises computational costs and data
requirements, and the benefits may be difficult to realize in
practice. Mel frequency cepstral coefficients (MFCCs) have
been the primary acoustic feature representation for audio
analysis tasks for decades [60]. The first experiment in this
work was to create an acceptable feature representation for
this task, and we discovered that a combination of time,
spectral, and perceptual features generated the best accuracy
in all models we developed (Table 2).

Experiment 2. Effect of the data augmentation on a different
combination of features and models

The goal of the experiment was to demonstrate the impact
of data augmentation on model classification performance.
On the enhanced audio data set, Experiment 1 is repeated.

Four audio augmentations were used with the audio
emotion data set: noise injection, time-shifting, time-
stretching, and pitching. Table 3 also shows how different
models perform when using a combination of feature ex-
tractors. It is also evident that 1D CNN designed by us
outperforms the traditional machine learning classifiers.

Experiment 2 aims to determine the impact of data
augmentation on the model’s performance by solving the
limited training data problem. Table 3 shows how a con-
trolled, steady increase in the complexity of the generated
data makes machine learning algorithms easier to under-
stand, debug, and improve [61,62].

Computational Intelligence and Neuroscience

Experiment 3. Performance of the designed 1D CNN model
on BAVED data set

In the segment, the presentation of the proposed tech-
nique is analysed for emotion recognition using the CNN
network. The investigation considered three different types
of emotions: low, normal, and high. The Arabic Emotion
data set BAVED was used as the basis for the research. The
suggested speech recognition model is tested on features
such as Chroma, Melspectrogram, MFCC, Contrast, Ton-
netz, ZCR, RSME, Energy, Flux Centroid, and Rolloff from
an augmented data set. Figure 7 depicts the 1D CNN’s
accuracy and loss graphs. The plots show that nearer to the
20th epoch, there are evident converges. The confusion
matrix (Figure 8) of the data is used in this study to examine
the recognition accuracy of the distinct emotional classes.
When using the BAVED data set, the 1D CNN classifier
recognizes “low“ and “high“ emotions with more accuracy
than the “neutral class (Table 4).

Experiment 4. Performance on other data sets

3.3. ANAD Data Set. The Arabic Natural Audio Dataset
(ANAD) [56] is available online in Kaggle for emotion
recognition. The audio recordings of three emotions are
included in the data set: happy, angry, and surprised. The
CNN classifier developed on the data set achieved an ac-
curacy of 96.44%, with “surprised” and “angry” emotions
were detected with better accuracies, as demonstrated in
Table 5 and Figure 9.

3.4. SAVEE Data Set. The SAVEE data set contains emo-
tional utterances in British English captured from four male
actors. Anger, fear, happiness, disgust, neutral, surprise, and
sadness are the seven emotional states. With the SAVEE
database, the 1D CNN obtained an accuracy of 83.33%.
Figure 10 depicts the confusion matrix. The emotion
‘neutral’ is recognized with the greatest accuracy (Table 6).

The results in Table 7 describe classification accuracy for
a particular type of classifier (1D CNN) that has been trained
by best-scored MFCC features of the augmented emotion
data set. The classifier was trained by pair of emotions and
values in the tables show tested ability to recognize emo-
tional state.

The ability of the entire network model to distinguish
emotions from audio data improves dramatically when the
1D CNN model is used instead of typical ML models in this
study. Based on extracted features, the suggested method
may achieve a high level of recognition accuracy. Our
suggested method is highly comparable with state-of-the-art
methods on the BAVED, ANAD, and SAVEE databases,
according to the results in Tables 8-10. This shows how our
proposed method outperforms earlier known methods.

The number of samples we collected limits the model we
suggested in this study; hence, this method can only classify a
restricted number of emotions with greater accuracy. The
data sets we used to develop the model contained more
“acted” speech than “natural” speech; it has not been
employed in real-life scenarios. Furthermore, the data set is
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TaBLE 2: Performance of different combinations of features and models without augmentation.

11

Data set Features Augmentation Model Accuracy (%)
1D convolution 81.395
KNeighborsClassifier 79.07
RandomPForestClassifier 78.04
SVC RBF kernel 76.74
Chroma, melspectrogram, MFCC No SVC 72.61
DecisionTreeClassifier 68.22
AdaBoostClassifier 66.15
QuadraticDiscriminantAnalysis 55.30
GaussianNB 51.68
BAVED 1D convolution 82.07
KNeighborsClassifier 79.59
RandomForestClassifier 79.07
Chroma, Melspectrogram, MFCC, Contrast, Tonnetz, ZCR, SVC RBF kernel 7571
RSME, energy, flux, centroid, rolloff No sve 73.64
> ’ ’ i DecisionTreeClassifier 63.31
AdaBoostClassifier 67.96
QuadraticDiscriminantAnalysis 59.69
GaussianNB 51.16
TaBLE 3: Performance of different combinations of features and models with augmentation.
Data set Features Augmentation Model Accuracy (%)
1D convolution (CNN) 96.38
RandomForestClassifier 89.02
KNeighborsClassifier 79.78
DecisionTreeClassifier 75.78
Chroma + Melspectrogram + MFCC Yes SVC RBF kernel 74.87
SvVC 72.74
AdaBoostClassifier 65.76
QuadraticDiscriminantAnalysis 56.52
GaussianNB 50.19
BAVED 1D convolution (CNN) 97.09
RandomForestClassifier 92.25
KNeighborsClassifier 82.88
Chroma + Melspectrogram + MFCC + contrast + tonnetz SVC RBF kerne.l 79.46
©7CR. RSME Yes DecisionTreeClassifier 77.97
’ SVC 73.64
AdaBoostClassifier 68.60
QuadraticDiscriminantAnalysis 58.91
GaussianNB 52.00
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FIGURE 7: Accuracy and loss graphs of the 1D CNN.
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F1Gure 8: Confusion matrix for 1D model for BAVED database.
TABLE 4: Recognition accuracy on individual emotion classes of BAVED.
Model Low (%) Medium (%) High (%)
BAVED 97.45 95.87 97.76
TaBLE 5: Recognition accuracy on individual emotion classes of ANAD.
Model Angry (%) Happy (%) Surprised (%)

ANAD 98 91 96
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FIGUure 9: Confusion matrix of ANAD using 1D CNN.
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F1Gure 10: Confusion matrix of SAVEE using 1D CNN.
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TABLE 6: Recognition accuracy on individual emotion classes of SAVEE.

Model Angry (%) Disgust (%) Fear (%) Happy (%) Neutral (%) Sad (%) Surprise (%)

SAVEE 78 75 79 83 99 71 87

TaBLE 7: Recognition accuracy of 1D CNN on ANAD and SAVEE.

Model Accuracy (%) F1 score (%) Recall (%) Precision (%)
ANAD 96.44 95.46 95.17 95.82
SAVEE 83.33 83.579 83.579 83.579

TaBLE 8: Summary of accuracies (%) obtained by various authors
using BAVED database.

Method Model Accuracy (%)
[63] wav2vec2.0 89
Ours 1D CNN 97.09

TaBLE 9: Summary of accuracies (%) obtained by various authors
using ANAD database.

Method Model Accuracy (%)
[64] Linear SVM 96.02
Ours 1D CNN 96.44

TaBLE 10: Summary of accuracies (%) obtained by various authors
using SAVEE database.

Method Model Accuracy (%)
[65] VACNN + BOVW 75

[66] DCNN + CES + SVM 82.10
Ours 1D CNN 83.33

not age or gender agnostic. We can improve the algorithms
with more accurate and varied data sets [67] in the future to
be used in everyday life by the broader public.

4. Conclusions

With the advancement of ER technology, SER research is
becoming more prevalent. This study looked at how to
reliably discern emotion status in speech. We also discovered
how data augmentation improves the model’s performance.
Emotions are primarily classified using SER technology by
learning low-level or spectral information. The proposed
approach uses CNN to classify emotions based on feature
space for low-level data such as pitch and energy, and
spectral features such as a log-Mel spectrogram, STFT, to
learn high-level spectral properties to identify emotions. The
research proposed an improved model for recognizing
emotions in Arabic speech, BAVED, as pronounced by
people of various ages and languages. To recognize emo-
tions, the study also looked at the cross-corpus SER problem
in two separate speech data sets, ANAD and SAVEE.
According to current research, we yielded ER accuracy
results of 97.09% (BAVED), 96.44% (ANAD), and 83.33%
(SAVEE), respectively. This contribution is independent of
language and could be used by other researchers to improve
their results. Adding more speech units to the corpus would

substantially aid in developing an effective classification
model for recognizing distinct emotions from speech.
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