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MicroRNA (miRNA) deregulation plays a critical role in the heterogeneous development of prostate
cancer (PCa) by tuning mRNA levels. Herein, we aimed to characterize the molecular features of
PCa by clustering the miRNA-regulated transcriptome with non-negative matrix factorization.
Using 478 PCa samples from The Cancer Genome Atlas, four molecular subtypes (S-I, S-II, S-III,
and S-IV) were identified and validated in two merged microarray and RNAseq datasets with 656
and 252 samples, respectively. Interestingly, the four subtypes showed distinct clinical and biological
features after comprehensive analyses of clinical features, multiomic profiles, immune infiltration,
and drug sensitivity. S-I is basal/stem/mesenchymal-like and immune-excluded with marked trans-
forming growth factor b, epithelial-mesenchymal transition and hypoxia signals, increased sensitivity
to olaparib, and intermediate prognosis. S-II is luminal/metabolism-active and responsive to andro-
gen deprivation therapy with frequent TMPRSS2-ERG fusion and a good prognosis. S-III is character-
ized by moderate proliferative and metabolic activity, sensitivity to taxane-based chemotherapy, and
intermediate prognosis. S-IV is highly proliferative with moderate EMT and stemness, frequent dele-
tions of TP53, PTEN and RB, and the poorest prognosis; it is also immune-inflamed and sensitive to
anti-PD-L1 therapy. Overall, based on miRNA-regulated gene profiles, this study identified four dis-
tinct PCa subtypes that could improve risk stratification at diagnosis and provide therapeutic
guidance.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Prostate cancer (PCa) is the second-most (14.1%) commonly
diagnosed cancer and fifth (6.8%) leading cause of cancer death
among men [1]. Despite the high incidence rate, a proportion of
localized PCa is relatively indolent with good prognosis and there-
fore, these patients should be spared from invasive treatments and
concomitant complications [2,3]. On the other hand, a subset of
PCa is clinically significant and aggressive, and tends to progress
into metastatic castration-resistant prostate cancer (mCRPC) with
limited therapeutic options [4,5]. Early identification of this subset
of patients will allow for more active interventions and close
follow-up, which could theoretically reduce relapse and prolong
survival. Attributed to the inherent genetic heterogeneity of PCa
[6], widely used risk stratification tools including serum prostate-
specific antigen level, TNM and Gleason score often fail to pinpoint
PCa patients with either aggressive or indolent forms of the disease
[7–9]. As a result, these patients are at risk of undertreatment or
overtreatment [2]. To address this challenge, genomic profiling
has been exploited to characterize the molecular heterogeneity of
PCa and has been proven to increase the accuracy of risk predic-
tions in clinical practice [10,11]. Recently, The Cancer Genome
Atlas (TCGA) used somatic mutations or transcript fusions to define
PCa subtypes [12]. However, this classification fails to discriminate
patients with distinct prognoses, and therefore, its use in routine
clinical practice is severely compromised. Additionally, most pub-
lished molecular classifications did not investigate whether differ-
ent molecular subtypes respond differently to conventional
therapies [12–15,10], which limited their application into clinical
practice.

MicroRNAs (miRNAs) are a group of small non-coding regula-
tory RNA molecules that repress mRNA translation or promote
degradation by binding to targeted mRNAs [16]. Mounting evi-
dence suggests that miRNA aberrations occur frequently in PCa
and play key roles in PCa initiation and progression [17,18]. Never-
theless, it remains unclear to what extent miRNA deregulation
affects PCa heterogeneity, and thus molecular subtyping and ther-
apeutic response.

Herein, using miRNA-correlated (MIRcor) genes, we sought to
develop and validate a novel molecular classification that could
accurately identify PCa patients with differential prognoses and
therapeutic responses. We intended to characterize the identified
PCa subtypes at the epigenetic, genomic, transcriptional, immune,
and clinical levels. We also sought to determine potential subtype-
driven miRNAs in each subtype.
2. Materials and methods

2.1. Data collection and preprocessing

Mature miRNA expression (level 3, Illumina miRNA-Seq), pro-
cessed mRNA expression (level 3, Illumina RNASeq), 450 K methy-
lation data (level 3, Illumina HumanMethylation450 BeadChip),
somatic copy number alterations (SCNAs, level 3, Affymetrix SNP
6.0 array), somatic mutation (level 4, MAF files), and clinical infor-
mation of PCa patients up to November 2020 were obtained from
TCGA database (http://cancergenome.nih.gov/). We filtered out
miRNA, mRNA and CpG sites with>25% missing values across all
samples and imputed the remaining missing values using the
K-nearest neighbor (k-NN) approach in the ‘impute’ R package.
We used log2 (normalized count + 1) as the expression levels of
mRNA and miRNA. DNA methylation probes were filtered and nor-
malized using the R ‘ChAMP’ package. We only selected CpG sites
residing in the promoter region (TSS1500, TSS200, 50UTR, and
1stExon). Somatic variants were detected using the TCGA MuTect2
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pipeline and further analyzed by the R ‘maftools’ package. GIS-
TIC2.0 (Gene Pattern) was used to infer recurrent SCNAs [19]. After
removing ineligible samples, 478 treatment-naïve PCa patients
with complete prognostic information were selected for subse-
quent analyses (Table S1).

For external validation, we retrieved 8 independent datasets
with available GEPs and matched prognostic information, includ-
ing GSE116918 (n = 248), GSE70769 (n = 92), GSE70768
(n = 111), GSE107299 (n = 65), and GSE54460 (n = 91) from the
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/-
geo/), and DKFZ-PRAD (n = 81), SU2C-PRAD (n = 80) and MSKCC-
PRAD (n = 140) from the cBioPortal dataset (https://www.cbiopor-
tal.org/). Raw expression data from Affymetrix were background
adjusted and normalized using the robust multiarray average algo-
rithm (‘affy’ R package). The fragments per kilobase per million val-
ues in RNA sequencing cohorts were also transformed into
transcripts per million values that were more comparable with
the microarray data [20]. Next, the RNAseq- and microarray-
based cohorts were merged into two meta-cohorts (Table S2 and
Table S3), respectively. Batch effects were removed by ‘combat’
functions in the ‘sva’ R package (Fig. S1). Disease-free survival
(DFS), overall survival (OS), and biochemical recurrence (BCR) rates
were all considered as endpoint events but were analyzed
separately.

2.2. Identification of miRNA-mRNA pairs

A two-step approach was adopted to identify miRNA-correlated
genes as in other miRNA studies [21,22]. First, three miRNA data-
bases were used to predict potential mRNA targets of miRNAs in
the TCGA-PRAD dataset. Second, we computed the Pearson correla-
tion coefficients of the intersecting miRNA-mRNA pairs, with Ben-
jamini and Hochberg corrections (q-values) to control for multiple
testing. We selected only those with q-values < 0.05 and correla-
tion coefficients < -0.3 for downstream analysis because miRNAs
have been widely shown and validated to reduce mRNA levels
through complementary interactions between their seeding
sequences and the 30 untranslated regions of targeted mRNAs [16].

2.3. Development and validation of molecular subtypes

Non-negative matrix factorization (NMF, R ‘NMF’ package) was
applied to 570 MIRcor gene expression profiles with the setting of
30 iterations for k = 2 to k = 6. The optimal number of clusters was
determined by taking into account the cophenetic coefficient and
consensus maps from 2 to 6 clusters.

To validate the classification, we first identified differentially
expressed genes among the four subtypes using the R ‘limma’
package. A false discovery rate (FDR) < 0.05 and log2 |fold change|
>1 were used as the cutoff criteria when comparing each subtype
with the rest. The gene signature for each subtype was defined
as the unique and upregulated mRNAs in the corresponding sub-
type. Next, using subtype-specific signatures, the nearest template
prediction (NTP) algorithm [23] (Gene Pattern) was employed to
classify PCa patients in two merged datasets. To test the robustness
of class assignment, we conducted subclass mapping (SubMap)
analyses [24] (Gene Pattern) to evaluate the similarity of molecular
subtypes between validation cohorts and the TCGA-PRAD cohort.

2.4. Associations of PCa subtypes with multiomics data in TCGA-PRAD

We first performed differential expression analysis of miRNAs
by comparing each subtype to other tumor samples. FDR < 0.05
and log2 |fold change| >0.5 were used to define differentially
expressed miRNAs (DEmiRs). We also computed and compared
the mean expression of miRNAs of each subtype and adjacent
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normal samples. Furthermore, to search for DEmiRs potentially
driving PC subtypes, we defined miRNA gene sets using MIRcor
genes (correlation coefficients < 0 and q values < 0.05) and con-
ducted Gene Set Enrichment Analysis (GSEA) to determine contri-
butions of candidate miRNAs to gene expression profiles (GEPs) of
PCa subtypes. Normalized enrichment score > 1.5 and adjusted P
values < 0.05 were used as the cutoff points.

For DNA methylation analysis, we calculated and compared the
mean levels of promoter CpG methylation in each subtype. Differ-
entially altered and mutated genes were detected by comparing
their distributions among the subtypes. The focal and arm level
changes of SCNAs were determined as the total number of altered
mRNAs with absolute CNA values>0.2. The predicted aneuploidy
score, tumor neoantigens (TNAs) and tumor mutation burden
(TMB) data were extracted from a previous study by Thorsson
et al. [25].

2.5. Biological characterization of PC subtypes

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene
Ontology (GO) were analyzed via the ‘clusterProfiler’ R package.
Single-sample gene set enrichment analysis (ssGSEA, ‘GSVA’ R
package) was performed on molecular pathways from the Molecu-
lar Signature Database and curated gene sets representing lineage
plasticity, TMPRSS-ERG fusion, various biological processes and the
immune microenvironment (Table S4). Meanwhile, we used the R
‘estimate’ package to infer tumor purity and estimate the degree of
immune and stromal infiltration.

2.6. Exploration of therapeutic vulnerabilities across PC subtypes

Sequencing data of human cancer cell lines (CCLs) and drug sen-
sitivity data against 482 CCLs were retrieved from the Cancer Cell
Line Encyclopedia project (https://portals.broadinstitute.org/ccle/)
and the secondary PRISM Repurposing dataset (https://depmap.
org/portal/prism/), respectively. Area under the dose–response
curve (AUC) values were used to measure drug sensitivity with
lower AUC values indicating increased sensitivity. We applied
ridge regression models (R ‘pRRophetic’ package) to estimate the
AUC values of all PCa patients. Moreover, we used SubMap analysis
to infer the efficacy of enzalutamide, anti-cytotoxic T-lymphocyte
associated protein-4 (CTLA-4), anti-programmed cell death
protein-1 (PD-1) and anti-programmed death-ligand 1 (PD-L1)
therapies in PCa subtypes by evaluating the similarity of GEPs
between the PCa subtypes and patients receiving corresponding
therapies in previous studies [26–28].

2.7. Statistical analysis

All statistical and bioinformatics analyses were conducted with
R software version 4.0.2 and Gene Pattern. Associations between
PCa subtypes and categorical data were assessed by Fisher’s exact
or chi-square tests. For continuous variables, the Student’s t-test or
Wilcoxon rank-sum test was used to compare two groups while
the Kruskal–Wallis test or ANOVA was used for more than two
groups. Survival analyses were carried out by Kaplan–Meier curves
and log-rank tests. A two-sided P value < 0.05 was recognized as
statistically significant.
3. Results

3.1. Identifying the miRNA-regulated transcriptional subtypes in PCa

A flow chart was produced to summarize this study (Fig. 1).
First, we used three miRNA databases to predict potential mRNA
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targets of 494 miRNAs among 16,766 mRNAs in 478 PCa samples
of the TCGA-PRAD dataset. As shown in Fig. 2A, we obtained
281,308 miRNA-mRNA pairs from 487 miRNAs and 15,186 mRNAs
in the miRDB database [29], 91,401 miRNA-mRNA pairs from 494
miRNAs and 12,791 mRNAs in the miRTar database [30], and
453,371 miRNA-mRNA pairs from 489 miRNAs and 16,178 mRNAs
in the TargetScan v7.2 database [31], respectively. We then
selected 14,046 pairs of miRNAs (n = 461) and mRNAs (n = 4565)
that coexisted in the three databases. Eventually, using Pearson
correlation coefficients (<-0.3; Fig. 2B) and q-values (<0.05;
Table S5), we identified 570 MIRcor genes. KEGG and GO analyses
revealed that these MIRcor genes were significantly enriched in
epithelial cell proliferation and migration, cell cycle, reproductive
system development, PI3K-Akt signaling pathway, p53 signaling
pathway, T cell receptor signaling pathway, and transforming
growth factor b (TGFb) signaling pathway (Fig. 2C and Table S6).
These results suggested that MIRcor genes might play important
and diverse roles in regulating the biological functions of both
prostate tumor cells and the tumor microenvironment.

Next, we applied NMF to 570 MIRcor genes and chose k = 4 as
the optimal number of clusters according to the cophenetic corre-
lation coefficients and consensus maps (Fig. 2D and Fig. S2). Four
subclasses were therefore identified in the TCGA-PRAD cohort (S-
I, n = 80; S-II, n = 213; S-III, n = 70; S-IV, n = 115). Kaplan–Meier
analysis revealed that the four subclasses had distinct prognostic
differences (DFS, p < 0.001; Fig. 2E). S-IV (24.1%) was associated
with the poorest prognosis while the largest subtype, S-II (44.6%)
showed the best prognosis. The prognoses of S-I (16.7%) and S-III
(14.6%) were somewhere in between. These results indicated that
the MIRcor gene expression profile could stratify PCa patients into
distinct prognostic groups.

3.2. Validation of PCa subtypes across independent datasets

To verify the robustness of the clustering method, differential
expression analysis was first conducted to reveal 443 significantly
upregulated genes (Table S7) with 260 for S-I, 57 for S-II, 42 for S-
III, and 84 for S-IV, as shown in Fig. 2F. Pathway analysis of
subtype-specific genes (Fig. S3 and Table S8) showed that oxidative
phosphorylation andmitochondrial protein complexes were signif-
icantly enriched in S-III and that mesenchymal-related pathways
such as extracellular matrix modeling, focal adhesion and muscle
contraction were overrepresented in S-I. S-IV-specific genes were
more involved in cell division-relevant pathways while S-II-
specific genes were significantly associated with secretory and
transport processes. These results highlighted differentially active
pathways among the four PCa subtypes and further supported
the rationale of using MIRcor genes for class discovery.

Next, subtype-specific genes were used to assign class labels to
each sample in two merged datasets by the NTP algorithm. Sub-
Map analyses showed that the subtypes in both merged datasets
were specifically and significantly correlated with the correspond-
ing subtypes in TCGA-PRAD (all p < 0.01, Fig. 3A). Moreover, similar
prognostic differences were verified in the two merged datasets
(BCR, p < 0.001; Fig. 3B). All independent cohorts demonstrated
similar results (GSE54460: BCR, p = 0.001; GSE70768: BCR,
p < 0.001; GSE70769: BCR, p < 0.001; GSE107299: BCR,
p = 0.047; GSE116918: BCR, p = 0.002; DKFZ-PRAD: BCR,
p < 0.001; MSKCC-PRAD: DFS, p < 0.001; SU2C-PRAD: OS,
p = 0.002; Fig. 3C).

3.3. Associations of the PCa subtypes with miRNA, DNA methylation,
somatic copy number alterations and mutations

We first analyzed the miRNA patterns among four PCa sub-
types. Compared with normal samples, the four subtypes showed
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Fig. 1. The flow chart of the present study. The prostate cancer classification is developed by the TCGA-PRAD cohort (n = 478) and then validated by two merged datasets,
i.e. the microarray cohort (6 public datasets, n = 656) and RNAseq cohort (3 public datasets, n = 252).
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higher levels of mean miRNA expression (Fig. 4A). No significant
difference was observed among subtypes except that S-IV had a
higher level of miRNA expression than S-II (p < 0.001). Differential
analyses revealed that S-II exhibited fewer DEmiRs (n = 9) than
other subtypes (S-I, n = 29; S-III, n = 17; S-IV, n = 30; Fig. 4B
and Table S9). Next, GSEA was exploited to select DEmiRs that
were overrepresented in the corresponding subtypes (Fig. 4C
and Table S10). The results showed that four upregulated and
two downregulated DEmiRs were significantly enriched in S-III
and S-II, respectively. Hsa-miR-103a-3p enriched in S-III belongs
to the miR-103 family, which is responsible for targeting genes
involved in oxidative phosphorylation in PCa [18]. Of seven
DEmiRs enriched in S-IV, upregulated hsa-miR-106-5p and down-
regulated hsa-miR-135a-5p had been found significantly associ-
ated with very high-risk aggressive prostate cancer at
circulating levels [32]. S-IV was also overrepresented by downreg-
ulated hsa-miR-30d-5p, which inhibited PCa cell proliferation and
invasion by targeting Ecto-50-nucleotidase [33]. In contrast, over-
expressed hsa-miR-30d-5p was significantly enriched in S-I and
was correlated with low androgen receptor (AR) activity and inhi-
bition of PCa cell growth [34,33]. Altogether, these results sug-
gested that S-II was less affected by miRNA aberrations,
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whereas S-IV and S-I were heavily regulated. Furthermore, the
identified subtype-driven miRNAs have been extensively linked
to the distinct biological features of PCa subtypes (Fig. S4 and
Table S11) with some experimentally validated to act as tumor-
suppressive or oncogenic miRNAs.

To elucidate epigenetic and genomic alterations among PCa
subtypes, we calculated methylation levels, somatic mutations,
and SCNAs. Promoter methylation levels were comparable among
S-II, S-III and S-IV except that S-I showed a lower level of methyla-
tion (p < 0.01; Fig. 4D). S-IV had the highest aneuploidy score and
TMB, followed by S-III (p < 0.05; Fig. 4D). Both S-IV and S-III
showed higher TNA loads than S-I and S-II (p < 0.05; Fig. 4D). Com-
pared with other subtypes, S-IV had the highest burden in copy
number gain and loss at both focal and arm levels (p < 0.001;
Fig. 4E). Specifically, several tumor-suppressive genes (i.e. TP53,
RB1, and PTEN) were more frequently deleted in S-IV (p < 0.001;
Fig. 4F and Table S12). MYC and CCND1 amplifications were signif-
icantly observed in S-IV and least seen in S-II (p < 0.001). We also
identified the top 20 frequently mutated genes in PCa (Fig. 4G and
Table S13) and found that TP53 (31.30%, p < 0.001), FOXA1 (13.04%,
p < 0.01), and LRP1B (8.70%, p < 0.05) were most frequently
mutated in S-IV, followed by S-III.



Fig. 2. Identification of miRNA-correlated mRNAs and prostate cancer (PCa) subtypes with distinct prognoses and gene expression profiles. (A) Overlap of the miRNA-
mRNA pairs identified in three miRNA databases. (B) Distribution of Pearson correlation coefficients for intersecting miRNA-mRNA pairs in the TCGA-PRAD cohort. Pearson
correlation coefficients less than �0.3 with q values < 0.05 were used to define miRNA-correlated (MIRcor) genes. (C) KEGG and GO analyses of MIRcor genes. (D) Consensus
map (k = 4) of non-negative matrix factorization classification based on MIRcor genes. Four PCa subtypes (S-I, S-II, S-III, and S-IV) were identified in the TCGA-PRAD cohort. (E)
Kaplan-Meier curves show distinct prognoses among four PCa subtypes. (F) Heatmap of differentially expressed mRNAs and miRNAs among four subtypes and adjacent
normal samples in the TCGA-PRAD cohort.
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3.4. Associations of PCa subtypes with clinical and biological features

We then compared the available clinicopathologic features
among the four PCa subtypes (Tables S1–S3): elderly patients
(>60 years, p = 0.004), surgical margins (p < 0.001) and lymph node
invasion (p < 0.001) were significantly associated with S-IV in the
TCGA-PRAD cohort. TMPRSS2-ERG fusion was significantly
observed in S-II, S-III and S-IV when compared with S-I in both
TCGA-PRAD (p = 0.035) and RNAseq cohorts (p = 0.031). Advanced
ISUP (4 or 5, all p < 0.001) was significantly associated with S-I, S-III
and S-IV in both TCGA-PRAD and microarray cohorts. Moreover,
advanced pathological stage (T3 or T4, all p < 0.001) was remark-
ably correlated with S-IV in three cohorts. Notably, four subtypes
were identified in each independent cohort, suggesting widespread
intertumoral heterogeneity of PCa.

Using single-sample gene set enrichment analysis (ssGSEA), we
next identified and validated distinct biological characteristics
among the four subtypes in the TCGA-PRAD (Fig. 5A and
Fig. S5A), microarray (Fig. 5B, Fig. S5B), and RNAseq cohorts
(Fig. S6). S-I was significantly correlated with basal cell, stemness,
neuroendocrine prostate cancer (NEPC), prostate gland develop-
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ment and mesenchymal-related (epithelial-mesenchymal transi-
tion [EMT], hypoxia, angiogenesis, Wnt, Notch, and TGFb)
signatures whereas S-II was enriched in luminal cells, ERG fusion,
androgen response and metabolism-related (such as fatty acid
metabolism, butanoate metabolism, steroid biosynthesis, and pro-
tein secretion) signatures. S-III exhibited elevated oxidative phos-
phorylation and moderate levels of proliferation as indicated by
enriched DNA repair pathways (including base excision repair,
nucleotide excision repair, homologous recombination, and mis-
match repair). S-IV was characterized by moderate levels of NEPC,
stemness, EMT and angiogenesis, as well as marked activities of
DNA repair and cell cycle-related pathways such as E2F, G2M,
and MYC targets.

3.5. Associations of PCa subtypes with immune infiltration

Next, we characterized the immune landscape of PCa subtypes
in the TCGA-PRAD and microarray cohorts. The ESTIMATE algo-
rithm revealed that S-I and S-IV had relatively higher immune
and stromal scores and lower tumor purity than S-II and S-III
(p < 0.05; Fig. 6A and 6C). Hence, we suspected that S-I and S-IV



Fig. 3. Independent validation of the prognostic significance of PCa subtypes across eight external cohorts. (A) Subclass mapping analyses demonstrated that
corresponding subtypes were specifically and significantly correlated among the TCGA-PRAD, Microarray, and RNAseq cohorts. (B) Kaplan-Meier curves demonstrated
distinct biochemical recurrence rates (BCR) among four PCa subtypes in six public datasets. (C) Kaplan-Meier curves for each public dataset showing similar and significant
differences of BCR, DFS, or OS among PCa subtypes.
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were likely to be immune-related. To decode the immunemicroen-
vironments, ssGSEA was performed and revealed that S-IV was sig-
nificantly enriched in immune-inflamed signatures (such as
human leukocyte antigen signature, CD8 T effector cell, natural
killer cell cytotoxicity, and T cell inflamed GEP; Fig. 6B and 6D,
Fig. S7A and S7B). Although S-I displayed enrichment of
immune-inflamed signatures similar to S-IV, it was found to have
higher levels of myeloid-derived suppressor cells (MDSCs), regula-
tory T cells (Tregs), T-cell exhaustion, TGFb family members and
receptors and cancer-associated fibroblasts (CAFs) than other sub-
types. Thus, S-I showed an increased tendency toward an immune-
excluded subtype. Overall, PCa subtypes in the RNAseq cohort
demonstrated similar results (Fig. S8A-S8C).
3.6. Associations of PCa subtypes with therapeutic efficacy

To explore whether PCa subtypes responded differentially to
conventional PCa therapies, we computed the AUC values of abi-
raterone, olaparib and taxane-based chemotherapy (Fig. 7A-7C)
in PCa cohorts. As a result, S-II was significantly associated with
increased sensitivity to abiraterone whereas S-I was more sensitive
to olaparib than other subtypes. Although inconsistent results
were demonstrated across PCa cohorts, S-III and S-IV patients
were, in general, more susceptible to docetaxel and cabazitaxel.
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We also used subMap to compare GEPs between PCa subtypes
and 34 mCRPC patients treated with enzalutamide (160 mg/d).
Data showed that S-I was significantly correlated with the
enzalutamide-resistant group (all p < 0.01; Fig. 7D). In contrast,
the GEP of S-II was more similar to that of the enzalutamide-
sensitive group (TCGA-PRAD, p = 0.172; RNAseq cohort,
p = 0.067; Microarray cohort, p = 0.018). Since PCa subtypes corre-
lated with different immune phenotypes, we asked whether they
responded differently to immunotherapy. We first investigated
the expression levels of PD-1, PD-L1 and CTLA-4, and found that
they did not differ significantly between S-I and S-IV (except that
S-I had slightly higher PD-L1 levels in the RNAseq cohort
[p < 0.05]; Fig. S7C and S7D, Fig. S8D). SubMap analysis showed
that S-I was significantly associated with anti-PD-L1 and anti-PD-
1nonresponders. In contrast, S-IV shared similar GEP with anti-
PD-L1 responders (all p = 0.001; Fig. 7D), indicating that S-IV
may benefit from anti-PD-L1 therapy. Additionally, there were no
significant associations between PCa subtypes and anti-CTLA-4
patients.

4. Discussion

The present study is the first to establish a robust PCa molecular
classification based on miRNA-regulated GEPs, which offers new
insights into the role of miRNAs in PCa heterogeneity and subtyp-



Fig. 4. The genomic and epigenetic landscape of the PCa subtypes in TCGA-PRAD. (A) Comparison of mean miRNA expression level among four PCa subtypes and normal
samples. (B) A Venn diagram shows the number of unique and overlapping differentially expressed miRNAs (DEmiRs) among subtypes. (C) GSEA of subtype-specific DEmiRs
identifies a subset of miRNAs that significantly contribute to the mRNA expression profiles of corresponding subtypes. (D) The levels of promoter methylation, somatic
mutation, tumor neoantigen and aneuploidy were compared across subtypes. (E) The burden of copy number gain and loss at focal and arm levels in the four PCa subtypes.
Oncoprints of top 20 somatic mutations (F) and somatic recurrent copy number alterations (G) among subtypes. The proportion of alteration of listed genes was shown on the
right side. ‘‘ns” denotes no statistical significance, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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ing. We identified and validated four PCa subtypes exhibiting dis-
tinct epigenetic, genomic, transcriptional, and clinicopathologic
features. Of the four subtypes, S-I and S-IV exhibit immune-
excluded and immune-inflamed phenotypes, respectively. More-
4947
over, we uncovered subtype-driven miRNAs that could potentially
serve as circulating diagnostic biomarkers and therapeutic targets
for corresponding subtypes. Finally, possible treatment options for
each subtype were suggested based on drug sensitivity analysis.



Fig. 5. Associations of clinicopathologic and biological features with the PCa subtypes. Single-sample gene set enrichment analysis (ssGSEA) identified distinct biological
characteristics among subtypes in the TCGA-PRAD (A) and Microarray (B) cohorts. Red indicates enrichment of signatures while blue suggests the opposite. NEPC,
neuroendocrine prostate cancer. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Whether prostate adenocarcinoma and NEPC originate from
basal cells or luminal cells or both is constantly debated with con-
flicting results reported by previous studies [35–38]. Differences
between S-I and S-II in our study support the hypothesis that
PCa could be derived from either luminal or basal cell lineages,
and that different cell origins give rise to distinct subtypes with
divergent biological behaviors and drug responses. The identifica-
4948
tion of basal- and luminal-like subtypes has also been reported
by previous studies [10,11]. Zhao et al. used PAM50 classifiers of
breast cancer to assign PCa patients into luminal A, luminal B
and basal-like subtypes and found that the luminal B subtype
had worse prognosis than other subtypes [11]. Nevertheless, the
direct application of this breast cancer classifier to PCa subtyping
poses the risk of neglecting important genetic features of PCa.



Fig. 6. The immune landscape of the PCa subtypes. The immune score, stromal score and tumor purity were compared across subtypes in the TCGA-PRAD (A) and
Microarray (C) cohorts. ‘‘ns” denotes no statistical significance, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.Heatmaps of ssGSEA scores of curated immune-related gene
sets in the TCGA-PRAD (B) and Microarray (D) cohorts. Red indicates enrichment of signatures while blue suggests the opposite. HLA, human leukocyte antigen; TCR, T cell
receptor; IFN, interferon; GEP, gene expression profile; MDSC, myeloid-derived suppressor cells; Treg cells, regulatory T cells; TGFb, transforming growth factor b; Pan F TBRs,
pan tissue fibroblast TGF-b response signature. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Spratt et al. studied the heterogeneity of AR activity in primary
treatment naïve PCa and identified a low AR-active and androgen
deprivation therapy (ADT)-insensitive subclass that is in accor-
dance with S-I characterized by overexpression of basal and NEPC
signatures and decreased DNA repair [39]. These biological fea-
tures also support the results of drug sensitivity in S-I. NEPC and
low AR activity were extensively demonstrated to confer castration
resistance [40]. Deficient DNA repair mechanisms, especially
homologous recombination repair were associated with the antitu-
mor activity of PARP inhibitors in patients with mCRPC [41]. In
contrast to S-I, S-II was highly enriched in the androgen response
and therefore, showed favorable response to ADTs. Although nei-
ther luminal nor basal signatures were overrepresented in S-III
and S-IV, TMPRSS2-ERG fusion at both genomic and transcriptional
levels was more enriched in S-II, S-III, and S-IV than in S-I, favoring
4949
the assumption that S-III and S-IV shared luminal cell origin with
S-II. However, S-IV was also enriched in NEPC signatures, suggest-
ing a possible role of lineage plasticity during S-IV evolution. This
was supported by Dong et al. who used single-cell RNA sequencing
and found that luminal-like adenocarcinoma cells could transdif-
ferentiate into NE cells with loss of luminal markers [42].

Our data showed that basal-like S-I exhibited stem- and
mesenchymal-like properties, which was consistent with a previ-
ous study uncovering intrinsic stem cell and EMT features in pro-
static basal cells [43]. However, our study does not support the
linkage between the basal cell signature and aggressive PCa [43].
Instead of S-I, S-IV was characterized as a more aggressive subtype
of PCa with worse prognosis, significant enrichment in cell cycle-
related pathways, and moderate levels of EMT and stemness. In
support of this observation, lineage analysis by Wang et al.



Fig. 7. Associations of the efficacy of conventional therapy with the PCa subtypes. Sensitivity results of abiraterone, docetaxel, cabazitaxel and olaparib in the Microarray
(A), RNAseq (B) and TCGA-PRAD (C) cohorts. ‘‘ns” denotes no statistical significance, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. The similarity of gene expression profiles
between PCa subtypes and patients receiving enzalutamide, anti-PD-1, anti-PD-L1 or anti-CTLA-4 therapies were shown in three cohorts (C). ‘‘R” denotes responders while
‘‘NR” represents nonresponders.
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revealed that PCa of luminal origin was more aggressive than basal
origin prostate cancer and exhibited more active cell cycle-related
pathways [38]. The most likely explanation for this is that although
S-I is more migratory and mesenchymal-like, it is strikingly less
proliferative than S-IV. Reasonably, proliferative capacity is essen-
tial to generate PCa macrometastasis once tumor cells reach dis-
tant sites with the help of EMT [44]. Increased CNV burden and
4950
aneuploidy also contributed to the worse prognosis of S-IV, as
these factors were reported to promote aggressive PCa develop-
ment and earlier biochemical relapse [45,46]. Specifically, we iden-
tified higher frequencies of TP53 and RB1 functional loss in S-IV.
The biallelic loss of TP53 and RB1 has been associated with attenu-
ated AR activity, increased cell proliferation and DNA repair activ-
ity, as well as exhibition of stemness and NE differentiation in
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LNCaP cells [47]. Similar observations in S-IV support these associ-
ations, which highlight the important roles of TP53 and RB1 loss in
the development of aggressive PCa.

Immune checkpoint blockade (ICB) treatments have been pro-
ven to be effective against several cancers including melanoma
and bladder cancer. However, the use of ICB alone has thus far
shown modest efficacy in advanced PCa as most PCa has insuffi-
cient immunogenicity and few tumor-infiltrating T cells [48–50].
It is, therefore, necessary to select a subset of PCa that may benefit
from ICB. Our study showed that S-I was unlikely to respond to
anti-PD-1 and anti-PD-L1 therapies because it was mostly
immune-excluded, with enrichment in CAFs, MDSCs, and T cell
exhaustion. Furthermore, increased TGFb activity in S-I was
reported to promote T cell exclusion and concomitant resistance
to ICB [51]. Consequently, ICB resistance in S-I patients may be
overcome by combining anti-TGFb treatment. S-IV was mostly
immune-inflamed and therefore, may benefit from anti-PD-L1
therapy. The higher TMB and TAN loads in S-IV could also increase
the efficacy by driving infiltrating T cell responses, as evidenced by
previous studies [27,52]. Taken together, these findings suggest
that the current PCa subtypes offer the potential to provide ICB
guidance.

Our study has several limitations that need to be optimized in
the future. First, since we only used miRNA-regulated GEPs to clas-
sify PCa patients, our classification system is biased and may
obscure important features determined by other omics data. Sec-
ond, due to the lack of miRNA expression data, the classification
pipeline used in the TCGA-PRAD dataset was not repeated in the
validation datasets. Last, prospective cohorts and functional exper-
iments are needed to validate the proposed classification and con-
firm our findings.
5. Conclusions

In summary, findings from the present study expand our under-
standing of PCa heterogeneity from the perspective of miRNAs reg-
ulation. While the proposed classification has the potential to
predict clinical outcomes and inform personalized treatments for
PCa patients, further experimental studies are required to verify
this conclusion.
CRediT authorship contribution statement

Bing-Biao Lin: Conceptualization, Methodology, Software,
Investigation, Visualization, Writing – original draft. Han-Qi Lei:
Methodology, Investigation, Writing – original draft. Hai-Yun
Xiong: Methodology, Investigation, Writing – original draft. Xing
Fu: Methodology, Investigation, Visualization, Writing - review &
editing. Fu Shi: Investigation, Writing - review & editing. Xiang-
Wei Yang: Investigation, Writing - review & editing. Ya-Fei Yang:
. Guo-Long Liao: Writing - review & editing. Yu-Peng Feng: Writ-
ing - review & editing. Dong-Gen Jiang: Conceptualization, Writing
- review & editing, Funding acquisition, Supervision. Jun Pang:
Conceptualization, Writing - review & editing, Funding acquisition,
Supervision.
Acknowledgments

We would like to thank every author that contributes to TCGA,
GEO, cBioPortal, CCLE, and PRISM Repurposing datasets.
4951
Funding

This work was supported by the National Natural Science Foun-
dation of China (81772754 and 81902613), Major Basic Research
and Cultivation Program of Natural Science Foundation of Guang-
dong Province (2017A03038009), National Key R&D Program of
China (2018YFA0902800), Shenzhen Basic Science Research
(JCYJ20190809164617205), Sanming Project of Medicine in Shen-
zhen (SZSM202011011) and the Hospital Research Fund of SAH-
SYSU (ZSQYLCKYJJ202019).
Data availability

The data analyzed in this study are publicly available in TCGA,
GEO, cBioPortal, CCLE, and PRISM Repurposing datasets.
Appendix A. Supplementary data

Figure S1. Identification and removal of batch effects during
datasets merging. The principal component analysis demon-
strated significant batch effects in the microarray-based (A) and
RNA-sequencing (B) cohorts, respectively. Batch effects were
removed in the microarray-based (C) and RNA-sequencing (D)
cohorts.

Figure S2. Results of non-negative matrix factorization based
on miRNA-correlated mRNAs. Consensus maps (A) and cophe-
netic coefficients (B) of PCa classifications with clustering numbers
ranging from 2 to 6.

Figure S3. KEGG and GO analyses of subtype-specific upregu-
lated mRNAs. Distinct pathway enrichments were shown for S-I
(A), S-II (B), S-III (C) and S-IV (D).

Figure S4. KEGG and GO analyses of subtype-driven miRNAs.
Active pathways determined by correlated mRNAs were only
observed in S-I (A), S-II (B) and S-IV (C).

Figure S5. Biological features associated with the PCa sub-
types. Boxplots showing ssGSEA scores of biological pathways
across subtypes in the TCGA-PRAD (A) and Microarray (B) cohorts.

Figure S6. Clinicopathologic and biological features associ-
ated with the PCa subtypes in the RNAseq cohort. The heatmap
(A) and boxplots (B) showing ssGSEA scores of biological pathways
across subtypes. Red indicates enrichment of signatures while blue
suggests the opposite. ‘‘ns” denotes no statistical significance,
*p< 0.05, **p<0.01, ***p<0.001, ****p<0.0001. NEPC, neuroendocrine
prostate cancer.

Figure S7. Immune characterization of the PCa subtypes.
Boxplots showing ssGSEA scores of immune-related pathways for
the PCa subtypes in the TCGA-PRAD (A) and Microarray (B) cohorts.
The levels of immune checkpoint expression in the TCGA-PRAD (C)
and Microarray (D) cohorts. ‘‘ns” denotes no statistical significance,
*p< 0.05, **p<0.01, ***p<0.001, ****p<0.0001. HLA, human leukocyte
antigen; TCR, T cell receptor; IFN, interferon; GEP, gene expression
profile; MDSC, myeloid-derived suppressor cells; Treg cells, regula-
tory T cells; TGFb, transforming growth factor b; Pan F TBRs, pan
tissue fibroblast TGF-b response signature. CTLA-4, cytotoxic
T-lymphocyte associated protein-4; PD-1, programmed cell death
protein-1; PD-L1, programmed death-ligand 1.

Figure S8. Immune characterization of the PCa subtypes in
the RNAseq cohort. The immune score, stromal score and tumor
purity were compared across subtypes (A). The heatmap (B) and
boxplots (C) show ssGSEA scores of immune-related pathways in
the four PCa subtypes. Red indicates enrichment of signatures
while blue suggests the opposite. Boxplots (D) showing the levels
of immune checkpoint expression. ‘‘ns” denotes no statistical sig-
nificance, *p< 0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2021.08.046.
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