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Abstract

Background: Despite the rapidly evolving therapeutic landscape, immunotherapy has

demonstrated limited activity in prostate cancer. A greater understanding of the

molecular landscape, particularly the expression of immune‐related pathways, will

inform future immunotherapeutic strategies. Consensus nonnegative matrix factoriza-

tion (cNMF) is a novel model of molecular classification analyzing gene expression data,

focusing on biological interpretation of metagenes and selecting meaningful clusters.

Objective: We aimed to identify molecular subtypes of prostate cancer using cNMF and

correlate these with existing biomarkers to inform future immunotherapeutic strategies.

Methods: A cohort of archival tumor specimens from hormone‐sensitive and

castration‐resistant disease was studied. Whole transcriptomic profiles were generated

using TruSeq RNA Access technology and subjected to cNMF. Comprehensive

genomic profiling was performed with the FoundationOne assay. NMF subtypes were

characterized by gene expression pathways, genomic alterations and correlated with

clinical data, then applied to The Cancer Genome Atlas data set.

Results: We studied 164 specimens, including 52 castration‐resistant and 13 paired

primary/metastatic specimens. cNMF identified four distinct subtypes. NMF1 (19%)

is enriched for immune‐related and stromal‐related pathways with transforming

growth factor β (TGFβ) signature. NMF2 (36%) is associated with FOXO‐mediated

transcription signature and AKT signaling, NMF3 (26%) is enriched for ribosomal
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RNA processing, while NMF4 (19%) is enriched for cell cycle and DNA‐repair

pathways. The most common gene alterations included TMPRSS22 (42%), TP53

(23%), and DNA‐repair genes (19%), occurring across all subtypes. NMF4 is

significantly enriched for MYC and Wnt‐signaling gene alterations. TMB, CD8

density, and PD‐L1 expression were low overall. NMF1 and NMF4 were NMF2 was

associated with superior overall survival.

Conclusions: Using cNMF, we identified four molecularly distinct subtypes which

may inform treatment selection. NMF1 demonstrates the most inflammatory

signature with asuppressive TGFβ signature, suggesting potential benefit with

immunotherapy combination strategies targeting TGFβ and PD‐(L)1. Prospective

studies are required to evaluate the use of this novel model to molecularly stratify

patients for optimal treatment selection.
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1 | INTRODUCTION

The therapeutic landscape in advanced prostate cancer is rapidly

evolving following development of multiple life‐prolonging treat-

ments.1 In contrast, immune checkpoint inhibition has demonstrated

limited activity in prostate cancer, despite unprecedented survival

benefits in other malignancies. The biological underpinning for this

limited antitumour activity remains poorly understood and islikely

multifactorial including an immunosuppressive tumor micro-

environment, low PD‐L1 expression, and low tumor mutation burden

(TMB).2,3 Previous studies suggest activity in certain subsets

including those with high PD‐L1 expression and high TMB or specific

genomic alterations involving mismatch or DNA repair genes.4–7

Greater understanding of the molecular landscape in prostate cancer,

namely the expression of immune‐related pathways, may inform

patient selection and lead to new immunotherapeutic strategies.

Several methods have historically been utilized for genomic or

molecular subtyping of prostate cancer. Gene expression‐based

subtyping using the PAM50 model developed for breast cancer8

was subsequently applied to prostate cancer, distinguishing luminal

and basal subtypes.9 However, a de novo prostate cancer‐specific

model that features immune pathways has not been reported.

Consensus nonnegative matrix factorization (cNMF) is an

unsupervised machine learning approach for identifying transcriptomic‐

based molecular subtypes using gene expression.10,11 cNMF has been

utilized in several tumor types, including prostate cancer, using data from

The Cancer Genome Atlas (TCGA), demonstrating feasibility in grouping

genetic information and identifying metagenes correlating with tumor

subtypes or characteristic genomic alterations.12,13

Our study aimed to evaluate distinct molecular subtypes of

prostate cancer using cNMF clustering in a cohort of primary and

metastatic tumor specimens spanning hormone‐sensitive (HSPC) and

castration‐resistant (CRPC) states. Established biomarkers including

TMB, PD‐L1 expression, CD8 T‐cell density, genomic alterations, and

immune‐related signatures were overlaid onto NMF subtypes and

correlated with clinicopathological features, patient demographics,

and clinical outcomes.

2 | MATERIALS AND METHODS

2.1 | Patient cohort

A selected cohort of 164 formalin‐fixed paraffin‐embedded (FFPE)

archival prostate cancer specimens was analyzed in this study

including primary prostate and metastatic specimens across both

HSPC and CRPC disease states (Figure 1 and Table 1). Tumor

specimens were identified using institutional pathology and prostate

cancer databases from two institutions and had been acquired

between 2000 and 2015. Retrospective review of medical

records provided clinicopathological details including disease state

(HSPC/CRPC), age, Gleason score, prior therapies, clinical follow‐up,

and overall survival data. Institutional ethical approval was granted

for the analysis of archival tissue and clinical data from this cohort.

FFPE tissue was macro‐dissected for the tumor area. RNA was

extracted using the High Pure FFPET RNA Isolation Kit (Roche) and

assessed by Qubit and Agilent Bioanalyzer for quantity and quality.

Whole transcriptome profiles were generated using TruSeq RNA

Access technology. Specimens without sufficient tumor content were

excluded from RNAseq analysis.

2.2 | cNMF

We sought to identify transcriptomic subtypes by applying cNMF to

gene expression data from n = 94 primary tumor specimens only
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(n = 80 HSPC and n = 14 CRPC), given primary tissue is most

commonly available in men with metastatic prostate cancer. We

selected 2804 genes (top 10%) with the highest variability across

patients, using median absolute deviation analysis (CRAN. R package

version 0.22.0).11 cNMF computes multiple k‐factor factorization

decompositions of the expression matrix and evaluates the stability

of the solutions using a cophenetic coefficient. We tested k2–8

clusters and used the maximal optimization of the cophenetic score

to determine the number of clusters (Figure S1).

To further validate our molecular subtyping schema, we used

the random forest machine learning algorithm (R package) to

derive a classifier and predict cNMF clusters in an independent

data set (TCGA) including 333 primary prostate specimens, and

inthe metastatic specimens from our cohort.14 We limited the

gene expression matrix in the test and training set to the top 10%

of most variable genes used in the NMF clustering (n = 3072)

above.

To show the advantages of cNMF over existing subtyping

methods, we also classified the primary tumors from our cohort using

PAM50 subtyping as previously described8,9 and compared biological

features of interest in this study.

2.3 | Differential gene expression by gene set
enrichment analysis (GSEA)

GSEA was performed by Camera enrichment method in the

multiGSEA R package to compare NMF subtypes, with the use of

the Reactome gene set collections from the Molecular Signature

Database.15 Pathway Z scores were calculated for each gene set

using the scores function. Deconvolution analyses for tumor samples

were performed using the xCell cell types enrichment score tool

(http://xcell.ucsf.edu/)16 and the MCPcounter R package.17

2.4 | Genomic profiling

Comprehensive next‐generation sequencing (NGS) was carried out

using the FoundationOne (FM1) assay (T7 baitset; Foundation

Medicine Inc.) that profiles 395 genes. We assessed all classes of

genomic alterations including short variants, deletions, amplifications,

and rearrangements, with only known (COSMIC18) or likely altera-

tions considered for analysis, as described previously.19

2.5 | Immunohistochemistry: PD‐L1 and CD8

FFPE tumor tissue (4 uM sections) was stained for PD‐L1 by

immunohistochemistry (IHC) using Roche Diagnostics (Ventana)

anti‐human PD‐L1 monoclonal antibodies (SP142 or SP263).

Samples were scored for PD‐L1 expression on tumor cells and

surrounding immune‐infiltrating cells as IC0, 1, 2, or 3 if <1%,

≥1% but <5%, ≥5% but <10%, or ≥10% of cells were PD‐L1

positive, respectively.

Tumors were stained for CD8 IHC with a mouse monoclonal

antibody (clone C8/144B) on 4 uM FFPE sections. Whole slide images of

the CD8‐stained tumors were then analyzed with Definiens, where the

tumor regions of interest were generated. The area fraction (%marker

area) of the CD8‐stained area was then digitally calculated.

2.6 | Statistical analysis

All analyses were conducted using the R package (version 3.6.1; R

Foundation for Statistical Computing). Unless otherwise stated, all

comparisons for continuous variables use two‐sided Mann–Whitney

U tests for two groups and Kruskal–Wallis tests for over two groups.

p Values are reported as ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. Survival

F IGURE 1 Samples for biomarker analysis. Flowchart showing the number of primary and matched metastatic samples with
immunohistochemistry (IHC) and next‐generation sequencing (NGS) included for analysis. CRPC, castrate‐resistant prostate cancer; HSPC,
hormone‐sensitive prostate cancer
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analyses were conducted using Cox‐proportional hazard models.

Overall survival was calculated from the date of prostate cancer

diagnosis to the date of death. Alive patients were censored at the

date of the last follow‐up. We constructed Kaplan–Meier curves to

visualize overall survival, stratified by NMF subtypes, and compared

groups using log‐rank tests.

3 | RESULTS

A total of 164 tumor specimens were retrieved from 149 patients:

103 primary prostate and 61 metastatic specimens, including 52

CRPC and 106 HSPC (Table 1). The majority of metastatic sites were

bone (N = 24) or lymph node (N = 17) sites. There were 13 patients

with paired primary/metastatic specimens, including seven HSPC and

six CRPC metastatic specimens. Median follow‐up from the date of

prostate cancer diagnosis was 12.2 years. Table 1 details Gleason

scores and prior systemic treatments. As shown in Figure 1, RNAseq

was successful in 94 primary specimens (91%), NGS in 111 specimens

(68%), CD8 IHC in 138 specimens (84%), and PD‐L1 IHC (SP263) in

158 specimens (96%).

cNMF was applied to transcriptomes of 94 primary tumor

samples (n = 80 HSPC and n = 14 CRPC), the most robust clustering

was identified for k = 4, leading to identification of four molecular

subtypes of prostate cancer, NMF1 (n = 18, 19%), NMF2 (n = 34,

36%), NMF3 (n = 24, 26%) and NMF4 (n = 18, 19%) (Figure S1). RNA

quality was consistent across all subtypes. There was no significant

difference in total reads and total analyzed reads between the

subtypes (data not shown). NMF1 is enriched for immune‐related

pathways such as PD‐L1 and activated T‐cell signaling pathways

including interleukin‐2 and interferon‐γ (Figure 2A,B). Additionally,

NMF1 has strong enrichment for stromal‐related pathways. Using

unbiased GSEA analysis, NMF1 had significantly higher immune

signatures involving T‐effector, interferon‐γ, immune checkpoint, and

macrophages (Figures 2C,D and S2). Deconvolution analyses demon-

strate higher infiltration of immune cells including monocytes, CD8,

and dendritic cells in NMF1 (Figure S3A). The transforming growth

factor β (TGFβ) signature is also significantly enriched in NMF1,

characterized by the enrichment for fibroblasts and smooth muscle

cells (Figure 3A,B).

NMF2 subtype is associated with FOXO‐mediated transcription

signature and regulation of PI3Kinase/AKT signaling. NMF3 subtype

is enriched for ribosomal RNA processing and translation, whereas

NMF4 subtype is enriched for cell cycle, DNA repair pathways, and

androgen receptor signature (Figures 2C–E and S2). NMF3 and four

demonstrate lower expression of PI3Kinase/AKT‐associated genes

(Figures 2C–E and S2). NMF4 is enriched for CRPC samples,

while NMF3 and NMF4 were enriched for metastatic specimens

(Figure 2C). NMF2 were associated with superior overall survival (OS)

compared to other NMF subtypes (p = 2.13e−4) (Figure 2F).

PD‐L1 expression was low within most primary tumors; 65

(69.1%) tumors were IC0, while 3 (3.2%) were IC2 by SP142 assay

and there were no significant differences in PD‐L1 IC scores between

cNMF subtypes (Figure S4A,B). NMF3 and NMF4 subgroups had

higher Gleason score compared to NMF1 and NMF2 (p = 1.7e−7)

(Figure S4C); however, CD8 density was not significantly different

between cNMF subtypes (Figure S4D).

When cNMF was applied to metastatic specimens in our cohort,

all were classified within NMF3 or NMF4 subtypes (Figure 3A).

Notably, 11 of the 13 cases with paired primary and metastatic

TABLE 1 Clinicopathological features

All HSPC CRPC Unknown

Number of specimens 164 106 52 6

Number of patients 149a 98a 51a 6

Median age 66.0 64.4 69.7 75.9

Specimen sites

Prostate 103 83 20 0

Bone 24 6 13 5

Pelvic lymph node 9 9 0 0

Distant lymph node 8 6 2 0

Liver 3 0 3 0

Lung 4 2 2 0

Soft tissue 10 0 10 0

Brain 3 0 2 1

Other 0 0 0 0

Gleason scoreb

6 3 3 0 0

7 46 46 0 0

8 10 10 0 0

9 38 38 0 0

10 5 5 0 0

Unknown 8 2 0 6

Not available 54 2 52 0

Treatment received before specimen collection

Androgen deprivation therapy 53 3 50 0

Chemotherapy 6 0 6 0

Abiraterone/enzalutamide 1 0 1 0

Year of specimen

2000–2004 12 4 7 1

2005–2009 92 67 21 4

2010–2015 60 35 24 1

aThere were eight patients with two separate Hormone‐Sensitive Prostate
Cancer (HSPC) specimens, one patient with two separate castrate‐
resistant prostate cancer (CRPC) specimens, six patients with paired
HSPC/CRPC specimens, and 12 patients with paired primary/metastatic
specimens.
bGleason grade cannot be determined in specimens where ADT had
already been started.
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specimens had consistent NMF classification. Only two cases

had discordance: one had NMF1 classified primary and NMF4

classified metastatic specimen, while another patient had NMF4

classified primary and NMF3 classified metastatic specimen

(Figures 3B and S5A). The metastatic specimens had numerically

higher IC scores compared to primary specimens (p = 0.45): IC1

(8/24 = 35% vs. 26/94 = 28%) and IC2 (3/24 = 13% vs. 3/94 = 3%)

(Figure S5B). The majority of CRPC specimens were IC0 including

primary (12/14 = 86%) and metastatic (8/9 = 89%) sites. Most primary

specimens had low CD8 cell density (median: 0.48%), with 116 (84.7%)

being ≤1%. Although CD8 density was not significantly different

between cNMF subtypes (Figure S2D), CD8 density was higher in

metastatic specimens (median 1.31), compared to primary HSPC

samples (Median 0.51) (Figure S5C). However, most metastatic

specimens were lymph nodes (N = 17), where CD8 density is expected

to be high as a result of the surrounding nodal tissue. Notably, primary

(p = 0.039) and metastatic (p = 0.014) HSPC specimens had signifi-

cantly higher CD8 densities compared to CRPC specimens.

F IGURE 2 Distinct molecular signatures in each NMF subtype that is associated with overall survival. (A) Unbiased Reactome pathway
enrichment analysis depicts distinct biology associated with each NMF subtype. (B) Heatmap shows mean expression levels of some enriched
pathways in (A). (C) Heatmap shows representative genes from different gene signatures. Red, high expression; blue, low expression. (D) Boxplot
shows the expression levels of the gene signatures in (C). Statistical significance between NMF subtypes is calculated by Mann–Whitney U test,
*p < 0.05, **p < 0.01, and ***p < 0.001. (E) Radar plot shows the overall patterns of gene signatures in (C). (F) Kaplan–Meier curves showing
patients with available diagnosis follow‐up data and overall survival stratified by NMF subtypes. p Value is computed by log‐rank test. NMF,
nonnegative matrix factorization; TMB, tumor mutation burden [Color figure can be viewed at wileyonlinelibrary.com]
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Our cNMF clusters demonstrated concordant gene expression

patterns for each NMF subtype in both our cohort and that of the

TCGA (Figure 4A,B). Within the TCGA cohort, NMF1 was character-

ized by high expression of immune genes, TGFβ/stromal‐related

genes, and PI3Kinase/AKT‐activated signature. The NMF4 subgroup

demonstrated the highest expression of the cell cycle, DDR pathway,

and AR‐related genes (Figure 4C,D).

We also performed PAM50 subtyping8 (Figure S6A) and

compared it with the cNMF subtyping. While immune signatures

such as T‐effector, interferon‐γ and macrophages, as well as TGFβ

signature, showed significant enrichment in the cNMF subgroups

(Figure 2D), there was no significant enrichment of these signatures

across the three PAM50 subtypes (Figure S6B,C). However, LumB

subtype was enriched for the cell cycle, DDR, and AR signatures but

not the PTEN signature (Figure S6B,C). Basal and LumB subtypes

were associated with the best and worst OS, respectively, in the

PAM50 subtyping (Figure S6D).

The FM1 Assay identified transmembrane serine protease 2

(TMPRSS2) as the most commonly altered gene (42%) in this cohort

(Figure S7). Alterations in TP53 (23%) and DNA repair‐associated

tumor suppressor genes (19%) such as BRCA2 and PTEN were also

common (Figure S7).

Among the most commonly altered genes (≥5%), 20 of 62

(32.2%) occur in all four NMF subtypes (Figure S9A,B). Comprehen-

sive genomic alteration profiles and somatic variants by NMF subtype

are demonstrated in Figure 5A,B as well as Figure S8–S11,

respectively. NMF4 is significantly enriched for oncogene MYC

(p = 0.037) and Wnt‐signaling genes such as APC (p = 0.014) and

TSC2 (p = 0.024) (Figure S9C). Wnt (p = 0.029) and SHH (p = 0.046)

signaling pathways were significantly enriched in NMF4 (Figure S12).

SHH pathway alterations were primarily short variant alterations of

Protein patched homolog 2 (PTCH2) (Figures 5B and S11A). No other

pathways or signatures were significantly different between NMF

subtypes.

Median TMB in our cohort was low (1.75 mutations/Mb). NMF4

samples have the highest TMB (median: 2.63 mutations/Mb), while

NMF2 have the lowest (median: 0.88 mutations/Mb) (Figure 5C).

Tumor samples with alterations in the homologous recombination

repair (HRR) pathway demonstrated significantly higher TMB

compared to the overall cohort (Figure S12A,B), however within

each NMF subtype there was no difference (Figures S13 and S14).

GSEA demonstrated that genes related to the mitotic cell cycle, DNA

repair, and translation were significantly associated with higher TMB

(Figure 5D). TMB was not statistically different between CRPC and

HSPC settings, nor between primary and metastatic specimens

(Figure S15).

4 | DISCUSSION

In this study, we describe a novel classification system utilizing cNMF

subtyping in a cohort of both HSPC and CRPC and compare it with

established biomarkers. By including both disease states from patient

samples with minimal treatment before collection, we sought to

compare the inherent biology for both HSPC and CRPC within the

same analyses. We molecularly stratified prostate cancer into four

distinct subtypes. NMF1 demonstrated enrichment of stromal‐ and

immune‐related pathways, including PD‐L1 and T‐cell signaling. In

contrast, the NMF4 subtype was significantly enriched for DNA‐

repair pathways, androgen receptor gene signature, and increased

TMB. As expected, CRPC samples were over‐represented within this

subtype, supporting previous observations of enrichment for somatic

alterations in the DNA repair and androgen receptor signaling

pathways in CRPC.20 Metastatic specimens were also enriched

F IGURE 3 Biomarkers between hormone‐sensitive prostate cancer (HSPC) and matched castrate‐resistance prostate cancer (CRPC).
(A) Heatmap shows expression of gene signatures in Figure 2C with the addition of metastatic samples. (B) Heatmap shows gene signatures
with matched HSPC and CRPC samples from nine patients with RNAseq data. [Color figure can be viewed at wileyonlinelibrary.com]
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within NMF4, consistent with previous literature identifying cell cycle

control and DNA damage response as key pathways in progression to

metastatic disease.21 It is noteworthy that paired primary and

metastatic specimens had mostly consistent NMF classification,

lending support for the clinical utility of cNMF classification using

FFPE tumor material from the original diagnosis.

We applied our model to the TCGA cohort and demonstrated

consistency between subtypes. Although previous classification

models have been utilized in prostate cancer, including unsupervised

hierarchical clustering22,23 and self‐organizing map methods24, cNMF

represents a novel subtyping methodology with several advantages.

It is an efficient method for the identification of distinct molecular

patterns. Additionally, cNMF has a higher resolution than hierarchical

clustering and is more stable than self‐organizing maps.11,25 When

compared to PAM50, which is often used in prostate cancer despite

being developed in breast cancer, our study has shown the

advantages of cNMF, particularly toward the clustering of biological

features related to cancer immunology. For example, significant

enrichment of immune and TGFβ signatures was in the NMF1

subtype while no such enrichment was observed across the three

PAM50 subtypes. Therefore, cNMF provided a more distinctive

clustering of immune biology compared with the PAM50 clustering.

Previous immunotherapy studies have demonstrated limited

activity in advanced prostate cancer, despite a firmly established

role in many malignancies. In many cancers, high PD‐L1 expression

on immune cells plus high TMB can predict response to checkpoint

inhibition.7,26,27 Furthermore, responses were more likely in prostate

cancer patients with high PD‐L1 expression.28 In our cohort, CRPC

specimens were more likely to demonstrate lower PD‐L1 scores,

while TMB and PD‐L1 expression were low overall, consistent with

previous literature. PD‐L1 expression was not significantly different

between NMF subtypes, despite significant differences in TMB and

gene expression. To date, most immunotherapy trials have focussed

on CRPC. However, perhaps the HSPC setting, where higher PD‐L1

levels are associated with more aggressive disease,29 and shorter

time to biochemical recurrence,30 warrants further study. Although

F IGURE 4 Distinct molecular signatures in each NMF subtype in The Cancer Genome Atlas. (A) Unbiased Reactome pathway enrichment
analysis depicts distinct biology associated with each NMF subtype. (B) Heatmap shows mean expression levels of some enriched pathway in
(A). (C) Representative genes from different gene signatures. Red, high expression; blue, low expression. (D) Radar plot shows the overall
patterns of gene signatures in (C). NMF, nonnegative matrix factorization; TMB, tumor mutation burden [Color figure can be viewed at
wileyonlinelibrary.com]
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higher PD‐L1 levels are observed in metastatic specimens within our

cohort, the majority of these were obtained in the HSPC setting, a

particularly unique aspect of our real‐world cohort, supporting the

greater potential for immunotherapy in this setting.

In our cohort, NMF4 demonstrated the highest TMB, without

corresponding upregulation in immune signatures. Genes related to

the mitotic cell cycle, DNA repair, and translation were significantly

associated with high TMB. DNA repair defects have been associated

with high TMB and improved responses to immunotherapy.4,31

Although the PD‐1 inhibitor pembrolizumab has been approved in

all tumors with TMB ≥ 10 mutations/megabase following results of

Keynote‐158,32 higher TMB did not correlate with response in the

prostate cancer‐specific study Keynote‐199.33 You et al.13 also

described a subtype with greater cell cycle expression that was

associated with the worst prognosis, as seen in NMF4, which was

associated with worst overall survival in our cohort. Furthermore,

higher TMB is expected in CRPC specimens, due to the emergence

and accumulation of genomic mutations later in the disease

trajectory, without necessarily harboring intrinsic sensitivity to

checkpoint inhibition.

In some tumor types, high CD8 T‐cell infiltration and upregula-

tion of immune signatures such as interferon‐γ, are linked to

checkpoint inhibitor activity.34 In prostate cancer, however, there

are conflicting data regarding CD8 T‐cell densities and their influence

on prognosis.35,36 In our cohort, such inflammatory signature was

observed within NMF1, representing 19% of patients. Despite this,

there remains limited activity with checkpoint inhibition in prostate

cancer. This may be explained by concurrent upregulation of TGFβ in

NMF1. Meng et al.12 similarly reported an “immune‐suppressed”

subtype by cNMF clustering, characterized by greater immune cells

and TGFβ activation. In our cohort, CD8 density was lower in CRPC

specimens. Given the higher PD‐L1 and CD8 levels demonstrated in

HSPC, further study of immunotherapy in this setting is again

warranted.

TGFβ‐associated genes are associated with immune evasion and

resistance to immunotherapy, mediated by cancer‐associated fibro-

blasts and extracellular matrix cytokines.37 In metastatic urothelial

cancer, TGFβ pathway upregulation is associated with nonresponse

to PD‐L1 inhibitors and preclinical data suggest that combination

therapies inhibiting PD‐L1 and TGFβ promote robust antitumor

immunity.34 Jiao et al.38 demonstrated TGFβ upregulation in murine

CRPC models and combined PD‐1/PD‐L1 plus TGFβ inhibition

resulted in increased effector T‐cell response and decreased tumor

burden. Similarly, Meng et al.12 demonstrated improved recurrence‐

free survival in the “immune‐activated” subgroup, characterized by a

rich immune infiltrate, alongside a low TGFβ signature. Our study

F IGURE 5 Genomic alterations and molecular pathways associated with NMF4 subtypes. (A) Association between NMF subtypes and
alterations of some specific genes. (B) Monoprint summarizes altered genes in common molecular cancer signaling pathways/signatures based
on NMF subtypes. Genes with higher than 3% alterations are shown. The horizontal bar plots on the right of the oncoprint show the number of
samples bearing different types of alterations. (C) The levels of TMB among the NMF subtypes. Statistical significance between NMF subtypes is
calculated by Mann–Whitney U test, **p < 0.01. (D) Top enriched biological pathways associated with TMB with median cut‐off from gene set
enrichment analysis (GSEA) using the Reactome database (FDR < 0.05). FDR, false discovery rate; NMF, nonnegative matrix factorization; TMB,
tumor mutation burden [Color figure can be viewed at wileyonlinelibrary.com]
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supports this novel treatment combination that may be active in the

NMF1 subset.

We acknowledge the limitations of our cohort. Given the small

sample size, our findings are hypothesis‐generating but under-

powered to detect significant differences in clinical outcomes based

on NMF subtyping. The clinical data may also reflect differences in

disease state and heterogenous use of prior therapies between

groups. Furthermore, most patients were treated before the

availability of novel therapies and the known emergence of genomic

changes following these therapies may not have been entirely

captured. Additionally, our analyses utilized archival FFPE specimens

that span a 15‐year period. Given the potential of RNA degradation,

any differences we have identified between HSPC and CRPC, where

there may be years separating each specimen, should be interpreted

with caution. However, given the consistent total reads and total

analyzed reads across our study, RNA degradation did not appear to

be an issue.

5 | CONCLUSIONS

Our study demonstrates the utility of cNMF subtyping to identify

molecularly distinct prostate cancer cohorts in both HSPC and CRPC

and across primary and metastatic specimens. Although NMF1 was

associated with the most inflammatory signature, it did not achieve

overall survival advantage due to lower TMB and highTGFβ signature

expression. NMF4 was enriched for cell cycle and DNA‐repair

pathways and had greater CRPC samples. Further understanding of

the association between molecular subtypes, immune signatures,

and mutation profiles will guide future individualized therapeutic

strategies.
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SUPPORTING INFORMATION

Additional supporting information can be found online in the

Supporting Information section at the end of this article.
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