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ABSTRACT: Although recent transfer learning soft sensors show promising applications
in multigrade chemical processes, good prediction performance mainly relies on available
target domain data, which is difficult to achieve for a start-up grade. Additionally, only
employing a single global model is inadequate to characterize the inner relationship of
process variables. A just-in-time adversarial transfer learning (JATL) soft sensing method is
developed to enhance multigrade process prediction performance. The distribution
discrepancies of process variables between two different operating grades are first reduced
by the ATL strategy. Subsequently, by applying the just-in-time learning approach, a similar
data set is selected from the transferred source data for reliable model construction.
Consequently, with the JATL-based soft sensor, quality prediction of a new target grade is
implemented without its own labeled data. Experimental results on two multigrade
chemical processes validate that the JATL method can give rise to the improvement of
model performance.

1. INTRODUCTION
In modern industries, multigrade processes have been widely
operated to satisfy the needs of flexible manufacturing and
diversified market. By altering the component ratio of raw
materials, different product grades that naturally fall under the
same chemical mechanism are produced.1−3 However, the key
quality variables of the polyethylene process (melt index, MI)
are obtained by offline laboratory analysis instead of online
measurement. In such a situation, a large measurement delay
occurs, which is not beneficial to process quality control and
optimization. Alternatively, soft sensing methods are developed
to alleviate the problem.4−16 The concerned hard-to-measure
quality variables are estimated with the help of process
variables. As known, adequate training samples are a key factor
in reliable model construction. However, for multigrade
processes, enough labeled samples often exist in a few specific
operating grades, while most of the grades can only collect
limited or even no labeled data. Also, a large distribution gap
exists between different grades. Therefore, for grades without
labeled samples, the construction of an appropriate soft sensor
is intractable but necessary.
As a branch of machine learning, transfer learning (TL) aims

to tackle the problem of insufficient training data between
domains.17−22 By leveraging knowledge from the related
domain having relatively sufficient annotated samples, the
predicted target domain having limited labeled samples is
expanded. Recently, with good feature extraction capability,
deep transfer learning methods23−26 attempt to transfer
knowledge. To address the problem of model construction
of multigrade processes with limited samples, deep transfer

learning-based soft sensors have been developed. Adversarial
transfer learning (ATL)17 reduces the distribution discrepancy
between domains. With the assistance of labeled target data,
the transfer learning method enhances the prediction perform-
ance.
However, existing TL soft sensors focus on global models,

which may be inadequate to learn all of the process
characteristics. As illustrated in ref 27, in fact, most soft sensor
methods have a finite lifespan. Therefore, flexible architecture
with an adaptable structure tends to be appealing and
appropriate for chemical processes. To this end, researchers
applied the just-in-time learning (JITL) approaches to several
local modeling tasks.2,28−30 As query comes, some relevant
samples are picked for the establishment of a local prediction
model, which is suitable to track the process characteristics. To
our best knowledge, the combination of JITL and TL to soft
sensing of multigrade processes has rarely been reported.
Moreover, based on ATL, JITL strategy can reduce the
dependence on labeled samples in the target domain.
This work develops a just-in-time adversarial transfer

learning (JATL) soft sensing model to predict multigrade
processes online. First, to reduce the distribution discrepancies
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across grades, the ATL strategy is adopted among process
variables. Virtual target labeled data are augmented by the
transferred labeled source domain data. Subsequently, the JITL
strategy is applied to select similar transferred source data
according to a query target sample for model construction.
Without loss of generality, two common methods, namely,
regularized extreme learning machine (RELM)31 and least-
squares support vector regression (LSSVR),32 are adopted for
the construction of JATL-based soft sensing models. The JATL
framework can also be combined with other soft sensors for
multigrade processes. By utilizing the source domain
information, it is expected that the prediction accuracy of the
target domain is enhanced.
The remaining sections are structured as follows. Some

preliminaries are concisely reviewed in Section 2. In Section 3,
the implementations of JATL are described. In Section 4, two
multigrade processes are evaluated to validate effectiveness.
Finally, Section 5 makes a conclusion.

2. PRELIMINARIES
2.1. Generative Adversarial Network. Recently, as a

popular deep generative model, generative adversarial network
(GAN)33 can generate virtual samples similar to real data. In
general, discriminator D and generator G form the GAN
network. A mini-max game is played between the G network
and the D network. Specifically, the trained G network
attempts to produce samples similar to the real data and
deceive the D network. Meanwhile, the trained D network
makes an effort to improve the ability to discriminate between
virtual and real data. The GAN’s adversarial training procedure
is described as follows:

(1)

where denotes the expectation. V(D, G) represents the
objective function. x represents the real samples with
distribution of pdata(x). The input to the G network is the
Gaussian noise z with distribution of pz(z). G(z) denotes the
generated virtual data.

2.2. RELM Modeling Method. As a typical neural network
with a simple structure, RELM31 shows its fast and good
modeling properties. RELM aims to learn a function mapping
f: X → Y depending on the labeled modeling data set {S} = {X,

Y} = {xi, yi}i = 1,···,r. The mathematical model of RELM is
defined as

(2)

where L, β, ω, b, and r, and h(·) denote the hidden-node
numbers, the output weight of the hidden layer, the input
weight of the hidden node, the bias, the labeled-sample
numbers, and the activation function, respectively.
The closed-form solution of β is expressed as

(3)

To efficiently determine the RELM method’s parameters,
namely, the regularization parameter λ and the hidden-node
number, the fast leave-one-out (FLOO) criterion is utilized.18

Hence, the predicted output ŷt of a test sample xt is obtained
by the RELM model as

(4)

2.3. LSSVR Modeling Method. LSSVR32 is a kernel-based
modeling method defined to minimize

(5)

where e = [e1, e2,···, er]T denotes the modeling error. w denotes
the model weight parameter vector. b denotes the bias term.
γ(γ ≥ 0) denotes the regularization parameter. ϕ denotes a
feature map.
Here, the FLOO strategy is also applied to the parameter

selection of LSSVR and the model estimation output ŷt of a
sample xt can be obtained

(6)

where [α1, ···, αr]T are the Lagrange multipliers which can be
obtained by solving eq 5.32

3. JUST-IN-TIME TRANSFER LEARNING MODELING
APPROACH

3.1. Problem Statement. Generally, traditional soft
sensor models such as RELM and LSSVR are constructed
for a labeled set {S} = {X, Y}. For multigrade processes, in

Figure 1. Structure of ATL strategy.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c01832
ACS Omega 2023, 8, 19900−19911

19901

https://pubs.acs.org/doi/10.1021/acsomega.3c01832?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01832?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01832?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01832?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c01832?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


some cases, no labeled samples are obtained for some specific
operating grades in their initial operating periods, which
hinders the construction of an accurate prediction model. To
this end, a JATL-based online soft sensing framework is
proposed for quality inferring in multigrade processes. Here,
the source domain having relatively sufficient labeled data is
represented as {XS, YS}, where {XS} = {XSi}i = 1

M denotes the
input and {YS} = {ySi}i = 1M denotes the output with M samples.
The target domain without labeled quality measurements is
denoted as {XT} = {xTj}j = 1N with N samples. In such a situation,
for the target domain, the construction of an accurate soft
sensor is intractable. Using the TL strategy in soft sensors,
useful information from the source domain is utilized.
Furthermore, the JITL strategy makes soft sensors flexible.
Consequently, the advantages of TL and JITL can be exploited
simultaneously by the JATL strategy.

3.2. Transfer Learning Model Based on Adversarial
Domain Adaptation. As a framework for unsupervised
learning, ATL attempts to align the distributions between
domains. As shown in Figure 1, a forward GAN and a
backward one make up the ATL. The loss functions for two
GANs are formulated as follows:17

(7)

(8)

where GS→ T and GT→ S represent the forward and backward
generator networks, respectively. DT and DS represent the
discriminator networks in the target and source domains,
respectively. Here, the least-square loss function replaces the
commonly used cross-entropy function, due to its vanishing
gradients problem.
Additionally, to guarantee the preservation of local variable

information in the process of distribution discrepancy

reduction, a cycle-consistent loss is employed.
Similarly, the least-squares loss function is utilized in

, expressed as

(9)

Consequently, the total optimization function is obtained as
follows:

(10)

When the training process of ATL reaches convergence, the
process variables of the source domain are transferred to the
target one and are denoted as {XSdtrans

}, while the quality
variables remain unchanged as {YS}. Meanwhile, the process
variables in the target domain can be transferred to the source
domain, denoted as {XTdtrans

}. Here, we choose the transferred
source domain for model construction instead of the
transferred target domain. The reason for choosing the
transferred source domain is that the useful information in
the source domain is expected to be transferred to the
concerned target domain using transfer learning. Moreover, the
transferred source domain is more convenient for online
prediction than the transferred target domain. This is mainly
because the former only needs to perform one transfer step
from the source domain to the target domain, while the latter
needs to perform multiple transfer learning steps for target test
samples. The marginal probability distributions of {XSdtrans

} and
{XT} are similar, and the distribution discrepancy is reduced.

3.3. JATL-Based Soft Sensor Framework. It is
challenging to directly apply a global model for complex
multigrade processes. Furthermore, the obtained training
samples are insufficient to characterize all of the process
properties. To alleviate the aforementioned problems, the JITL
methods have been developed for online modeling. When a

Figure 2. Flowchart of JATL-based soft sensor.
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query sample xq from the target domain comes, three steps are
involved in the JITL-based mode. First, select the most similar
samples from {XSdtrans

, YS} as a new set. Second, construct an
online soft sensor model such as RELM or LSSVR with the
selected samples. Third, give a prediction on the output ŷq.

Repeating the aforementioned three-step procedures, another
RELM or LSSVR prediction model is established for a new
query sample.
A general measurement rule, namely, Euclidean distance, is

applied in the JITL process to measure the similarity between

Table 1. Comparisons of Four RELM-Based Prediction Methods for CSTRa

RMSE/MAE

RELM JRELM ATL-RELM JATL-RELM

G1 → G2 0.730/0.570 0.677/0.511 0.954/0.816 0.894/0.782
G1 → G3 12.073/6.454 4.088/3.049 0.905/1.319 0.724/1.126
G2 → G1 0.902/0.740 0.418/0.326 1.689/0.954 1.302/1.028
G2 → G3 19.984/15.339 1.446/1.285 1.297/1.367 0.663/1.112
G3 → G1 100.81/71.965 1.523/1.296 0.636/0.494 0.515/0.415
G3 → G2 83.467/62.030 2.009/1.555 1.129/0.895 0.757/0.637

aValues in bold indicate better prediction results.

Figure 3. RMSE value comparisons of four RELM-based methods for CSTR.

Figure 4. Distribution scatter comparison between different domains for CSTR: (a) G1 and G2, (b) G1 and G3.
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samples. The similarity factor simqi between xi and xq is
formulated as29,30

(11)

where the value simqi varies between 0 and 1. The closer simqi
is to 1, the more similar xq is to xi. According to eq 11, a similar
data set {XSdsim

, YSdsim
} with nsim samples is collected, where nsim is

determined by the cumulative similarity factor2 defined as
below:

(12)

This index measures the cumulative similarity of the nsim most
similar samples to the total transferred source domain data. For
example, the choice of Sq = 0.9 means 90% of the most similar
samples are selected. Then, it can determine the number of the
most similar samples in practical applications. Although other
similarity criteria28 can also be applied to build a JATL-based
soft sensor, it is not our main purpose.
Combing the aforementioned strategy of ATL and JITL into

a unified framework, a JATL-based online soft sensor is
developed for the multigrade processes. It constructs the real-
time model while utilizing the information from the other
domains. The modeling scheme of the JATL-based method is
shown in Figure 2. First, the ATL strategy is used to align

Figure 5. Performance of four RELM-based methods for CSTR.
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Figure 6. Relative prediction errors of four RELM-based methods for CSTR.

Table 2. Comparisons of Four LSSVR-Based Prediction Methods for CSTRa

RMSE/MAE

LSSVR JLSSVR ATL-LSSVR JATL-LSSVR

G1 → G2 0.621/0.493 0.611/0.477 0.915/0.795 0.912/0.788
G1 → G3 2.871/2.807 1.911/1.766 0.752/0.585 0.692/0.534
G2 → G1 0.486/0.401 0.471/0.395 1.392/1.144 1.376/1.138
G2 → G3 2.043/1.930 1.290/1.033 1.253/0.798 0.926/0.776
G3 → G1 1.408/1.305 0.950/0.774 0.579/0.486 0.521/0.432
G3 → G2 1.696/1.571 1.563/1.358 1.066/0.866 0.906/0.764

aValues in bold indicate better prediction results.
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domain distribution. Then, the source process samples are
transferred to the target domain denoted as {XSdtrans

, YS}, which
follows the same distribution with the target domain.
Subsequently, according to the Euclidean distance-based
selection criterion, a similar data set {XSdsim

, YSdsim
} from the

transferred source data {XSdtrans
, YS} is selected for a query

sample xq. Based on {XSdsim
, YSdsim

}, an online RELM or LSSVR
model is constructed to perform prediction on the target query
sample. Consequently, compared to the fixed global transfer
learning models, JATL-based methods are more flexible.

Table 3. Comparisons of Four RELM-Based Prediction Methods for Polyethylenea

RMSE/MAE

RELM JRELM ATL-RELM JATL-RELM

G1 → G2 2.638/2.114 2.048/1.711 1.935/1.570 1.868/1.510
G1 → G3 79.389/74.693 40.465/32.694 25.085/18.950 22.607/18.127
G2 → G1 12.820/10.943 10.089/8.917 10.8860/9.932 9.919/8.691
G2 → G3 31.321/24.581 25.990/21.262 24.540/19.825 23.456/19.242
G3 → G1 34.189/29.098 27.382/22.396 13.251/10.386 8.929/7.040
G3 → G2 29.505/24.443 6.316/3.884 1.845/1.474 1.799/1.493

aValues in bold indicate better prediction results.

Figure 7. RMSE value comparisons of four RELM-based methods for polyethylene.

Figure 8. Distribution scatter comparison between G2 and G3 for polyethylene.
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4. RESULTS AND DISCUSSION

To verify the feasibility of the JATL strategy, it is conducted on
two multigrade chemical cases. RELM and LSSVR are adopted
to form JATL-RELM and JATL-LSSVR models. Meanwhile,
other models, i.e., RELM/LSSVR, JRELM/JLSSVR, and ATL-
RELM/ATL-LSSVR, are constructed for performance compar-
ison. Root-mean-square error (RMSE) and mean absolute
error (MAE) indices are used

(13)

(14)

where ŷt and yt are the predicted and real values with m test
samples.

4.1. Simulated Process. Continuous stirred tank reactor
(CSTR) is widely employed in the polymerization process to
produce multigrade products. The mechanism of the CSTR
process can be found in ref 34. To give a prediction on the
quality variable reactor concentration, two process variables are
selected as inputs.2,17,18 For convenience, three steady-state
grades with 60 labeled samples are explored. Among them, 36
samples are for training, and 24 samples are for testing. Each

Figure 9. Performance of four RELM-based methods for polyethylene.
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scenario assumes that only one grade has sufficient labeled
samples, while other grades only have unlabeled training
samples.

The detailed prediction results of RELM, JRELM, ATL-
RELM, and JATL-RELM methods are listed in Table 1.
Intuitively, RMSE value comparisons are shown in Figure 3.

Figure 10. Prediction scatters of four RELM-based methods for polyethylene.
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For the 1st scenario, grade 1 (i.e., G1) is taken as S, while
grade 2 (i.e., G2) and grade 3 (i.e., G3) are taken as T. For G1
→ G2, RELM and JRELM achieve higher prediction accuracy
than ATL-RELM and JATL-RELM methods. This is mainly
caused by the small distribution discrepancy between G1 and
G2, as described in refs 17 and 18. The source data of G1,
transferred source data by ATL strategy, and target query data
of G2 are plotted in Figure 4a. The small distribution gap
between the source data and the target query data weakens the
improvement of the model performance by ATL strategy. It
should be noted that benefit from the JITL strategy, JRELM is
superior to RELM, and JATL-RELM is more accurate than
ATL-RELM. For scenario G1 → G3, the JATL-RELM has the
smallest RMSE and MAE values, which indicates that JATL-
RELM outperforms the other three methods. Figure 4b shows
the scatter plot of the source data of G1, transferred data, and
query data of G3. For the first query sample, 20 relevant
samples are chosen from the transferred data of G1 by JITL
strategy. Different from the distribution of all of the transferred
data, selected samples are closer to the query sample. In the
second scenario, G2 is taken as S. Similar conclusions are
drawn from the prediction results. In the last scenario of G3
taken as S, the JATL-RELM method achieves the best accuracy
by selecting the most similar data from the transferred G3.
Due to the inferior prediction accuracy of RELM method,

Figure 5 only shows the comparison results of JRELM, ATL-
RELM, and JATL-RELM methods. In the two cases between
G1 and G2, the prediction results of JATL-RELM are inferior
to the JRELM method due to the large similarity between the
two grades. However, in other cases, the predicted output of
JATL-RELM tracks the real output values well. It illustrates
that the online JATL-RELM method shows more accurate
prediction results than others. The relative prediction errors (δ
= (ŷt − yt)/yt) are illustrated using box plots in Figure 6. For
G1 and G3, G2, and G3, the quartile and median values in the
box plots reveal that the JATL-RELM method achieves the
best prediction performance.
Additionally, to further illustrate the JATL-based soft sensor

framework for the CSTR process, the JATL-LSSVR model is
built. In different scenarios, RMSE and MAE values of four soft
sensing methods are tabulated in Table 2. Except for the
scenarios between G1 and G2, the prediction performance of
JATL-LSSVR is the most superior. The main reason lies in the
source, and the concerned target domains are distributed
similarly using the ATL strategy. Furthermore, the most
relevant samples to the query one assist in building a more
accurate LSSVR model.

4.2. Industrial Polyethylene Process. The JATL strategy
is further investigated using an industrial polyethylene process.
In total, 266 labeled samples with their related input variables
are obtained in three grades, with 83, 90, and 93 ones in G1,

G2, and G3, respectively.2,17,18 From each grade, 45 labeled
samples are regarded as training sets. In any online transfer
learning scenario, only the source grade has relatively enough
labeled training samples, while the target grade only contains
unlabeled data. The process characteristics of the three grades
are different, and product quality (i.e., MI) values vary widely,
i.e., G1 (30−50), G2 (10−20), and G3 (240−350).
In the three transfer learning scenarios, the RMSE values

and MAE values of four methods (i.e., JATL-RELM, RELM,
JRELM, and ATL-RELM) are listed in Table 3. For
visualization, the histograms of the RMSE values are shown
in Figure 7. After applying the ATL strategy, the ATL-RELM
method shows better prediction accuracy than RELM and
JRELM. Additionally, using the JITL strategy, similar samples
are selected from the transferred source domain. Therefore,
JATL-RELM outperforms the other three methods with the
smallest RMSE and MAE values. Taking G2 → G3 as an
example, the distribution scatters of source data and target
query data are shown in Figure 8. The distributions of G2 and
G3 differ significantly, which makes it impossible to predict the
query samples in G3 with the model trained by the labeled
samples in G2. By the ATL strategy, the distribution gap
between G2 and G3 is reduced. For the first query sample, 18
similar samples are chosen from the transferred data by the
JITL strategy. The prediction results and errors are shown in
Figure 9. Compared with the other methods, the JATL-RELM
tracks the trend of MI well. In addition, using the scattergrams
shown in Figure 10, the points of the JATL-RELM method
lying tighter than the other three methods indicate its better
prediction performance.
Moreover, the JATL-LSSVR model is constructed to further

show the feasibility of the JATL-based method. As shown in
Table 4, JATL-RELM achieves the smallest RMSE and MAE
values. This indicates that the combination of ATL and JITL
strategies can improve prediction accuracy compared to the
method with only one strategy. The reason is that the ATL
strategy aligns the distribution between grades, and the JITL
strategy selects the most similar samples to establish the local
model. According to the comparisons of the two cases, the
JATL-based framework achieves the best prediction results for
multigrade processes.

5. CONCLUSIONS
A JATL-based soft sensing modeling framework is developed
for reliable online prediction of multigrade processes without
annotated samples of the target domain. Specifically, the ATL
strategy reduces distribution discrepancies between different
grades by appropriately transferring process information. Based
on the transferred source domain data, a suitable similar data
set is collected for the query target sample, and the distribution

Table 4. Comparisons of Four LSSVR-Based Prediction Methods for Polyethylenea

RMSE/MAE

LSSVR JLSSVR ATL-LSSVR JATL-LSSVR

G1 → G2 3.213/2.568 2.986/2.415 2.269/1.828 2.078/1.613
G1 → G3 89.443/76.058 44.213/38.778 31.471/24.430 28.110/23.132
G2 → G1 16.859/12.234 11.821/10.394 12.228/11.250 10.945/10.002
G2 → G3 34.498/28.994 27.322/22.316 27.300/21.239 21.504/16.878
G3 → G1 40.027/16.878 36.847/25.327 16.631/12.222 13.374/10.321
G3 → G2 6.922/6.490 4.006/2.478 2.979/2.260 2.064/2.260

aValues in bold indicate better prediction results.
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gap is further minimized. By constructing the real-time
adversarial JATL modeling method, the prediction perform-
ance for multigrade processes is enhanced compared to several
common methods. Its feasibility and superiority are demon-
strated using two multigrade processes.

■ AUTHOR INFORMATION
Corresponding Author

Yi Liu − Institute of Process Equipment and Control
Engineering, Zhejiang University of Technology, Hangzhou
310023, People’s Republic of China; orcid.org/0000-
0002-4066-689X; Phone: +86-571-8529-0402;
Email: yliuzju@zjut.edu.cn

Authors
Yun Dai − Institute of Process Equipment and Control

Engineering, Zhejiang University of Technology, Hangzhou
310023, People’s Republic of China

Chao Yang − State Key Laboratory of Synthetical Automation
for Process Industries, Northeastern University, Shenyang
110819, People’s Republic of China

Jialiang Zhu − Institute of Process Equipment and Control
Engineering, Zhejiang University of Technology, Hangzhou
310023, People’s Republic of China

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.3c01832

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The work was supported by the National Natural Science
Foundation of China (Grant Nos. 62022073 and 61873241).

■ NOMENCLATURE
ATL adversarial transfer learning
CSTR continuous stirred tank reactor
FLOO fast leave-one-out
JATL just-in-time adversarial transfer learning
JITL just-in-time learning
LSSVR least-squares support vector regression
MAE mean absolute error
MI melt index
RELM regularized extreme learning machine
RMSE root-mean-square-error
TL transfer learning

■ SYMBOLS
b the bias vector
b model bias term
DS discriminator network in source domain of ATL
DT discriminator network in target domain of ATL

the expectation
e modeling error
G(z) the virtual data generated by the G network
GS→T the forward generator network of ATL
GT→S the backward generator network of ATL
h(·) activation function
L hidden nodes of RELM model
M size of source labeled samples
N size of target labeled samples
nsim number of similar samples

pdata(x) distribution of x
pz(z) distribution of z
r number of labeled samples
simqi similarity factor between xi and sample xq
Sq the cumulative similarity factor
V(D, G) objective function
w the model weight parameter vector of LSSVR
x real data
xq a query sample
xt test sample
ŷq predicted output of xq
yt real value of the test sample
ŷt predicted output of the test sample
z the Gaussian noise
β the output weight vector
γ regularization parameter
λ the penalty coefficient
ω the input weight of hidden node
ϕ feature map function
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