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Simple Summary: This review discusses the role of non-coding RNAs (ncRNAs) in cancer epigenetics,
mostly focusing on how deregulated microRNAs (miRNAs) and long non-coding RNAs (lncRNAs)
alter the expression of cancer-promoting genes by targeting epigenetic factors to facilitate cellular
malignancy. The potential for using ncRNAs as targets for early prognosis and for developing cancer
therapies to be used in conjunction with current treatments is discussed.

Abstract: Non-coding RNAs (ncRNAs) are untranslated RNA molecules that regulate gene
expressions. NcRNAs include small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs),
ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), circular RNAs (cRNAs) and piwi-interacting
RNAs (piRNAs). This review focuses on two types of ncRNAs: microRNAs (miRNAs) or short
interfering RNAs (siRNAs) and long non-coding RNAs (lncRNAs). We highlight the mechanisms
by which miRNAs and lncRNAs impact the epigenome in the context of cancer. Both miRNAs
and lncRNAs have the ability to interact with numerous epigenetic modifiers and transcription
factors to influence gene expression. The aberrant expression of these ncRNAs is associated with the
development and progression of tumors. The primary reason for their deregulated expression can be
attributed to epigenetic alterations. Epigenetic alterations can cause the misregulation of ncRNAs.
The experimental evidence indicated that most abnormally expressed ncRNAs impact cellular
proliferation and apoptotic pathways, and such changes are cancer-dependent. In vitro and in vivo
experiments show that, depending on the cancer type, either the upregulation or downregulation of
ncRNAs can prevent the proliferation and progression of cancer. Therefore, a better understanding
on how ncRNAs impact tumorigenesis could serve to develop new therapeutic treatments. Here,
we review the involvement of ncRNAs in cancer epigenetics and highlight their use in clinical therapy.
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1. Introduction

The pathophysiology of cancer is associated with multiple molecular and cellular dysfunctions,
including genetic and/or epigenetic alterations [1]. Epigenetic changes are catalyzed by specific
enzymes capable of modifying the chromatin structure, e.g., acetylation, methylation, phosphorylation,
ubiquitylation and glycosylation [2,3]. These modifications can be influenced by environmental
changes [4,5]. The cellular epigenetic landscape can be regulated by non-coding RNAs (ncRNAs) to
modify gene expressions [6–8]. ncRNAs are untranslated RNA molecules capable of regulating gene
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expression through multiple pathways. For instance, ncRNAs can target the chromatin to induce gene
silencing through direct interaction with epigenetic factors. ncRNAs can also interact with transcription
factors to either prevent or promote the expression of target genes. Additionally, ncRNAs can silence
gene expressions by directly binding to mRNA targets, a process known as RNA-induced silencing.
This review article is focused on the epigenetic function of small and long ncRNAs: microRNAs
(miRNAs), short interfering RNAs (siRNAs) and long non-coding RNAs (lncRNAs) in the context of
cancer biology.

In general, miRNAs typically repress specific gene targets by RNA-induced silencing at the
post-transcriptional level [9]. In contrast, lncRNAs can use multiple methods to regulate gene
expressions. These include the remodeling of chromatin to activate or repress transcription, modulating
pre-mRNA splicing and inhibiting mRNA translation [10]. In addition to miRNAs and lncRNAs,
other ncRNAs have specialized functions. These include small nuclear RNAs (snRNAs), small nucleolar
RNAs (snoRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs) and piwi-interacting RNAs
(piRNAs). snRNAs are approximately 150 nucleotide bases and are primarily located within the
splicing regions of nuclei. Due to their locations, snRNAs have been reported to be associated with
pre-mRNA splicing, particularly in the formation of the spliceosome [11]. The spliceosome is a large,
dynamic complex that is composed of the five snRNAs: U1, U2, U4, U5 and U6, along with other
protein components [11–13]. The combination of snRNAs and other splicing proteins, a small nuclear
ribonucleoprotein or snRNP complex, includes a singular spliceosomal snRNA within a complex with
various splicing proteins [11]. Similar to snRNAs are snoRNAs; there is documentation of a group of
ncRNAs primarily located in the nucleoli of eukaryotic cells with functions to modify and contribute to
the processing of rRNA, particularly during the synthesis of the ribosomal subunits [14–17]. The two
main functions of snoRNA in relation to rRNA modifications involve methylation of the ribosomal
subunits or 2′O-ribose-methylations and pseudouridylation to convert uridine into pseudouridine
for the generation of mature rRNAs [18]. rRNAs and tRNAs are long and well-studied ncRNAs with
known specific functions in mRNA translation. rRNAs are known to have a role in the assembly
of ribosomal subunits and tRNAs in protein synthesis, particularly in the transfer of individual
amino acid subunits into the ribosome during the translation of mRNA [19,20]. Notably, small RNA
fragments derived from tRNAs can function as ncRNAs, as described below. The function of piRNAs
is predominantly linked to transposons, particularly to protect the genome from invasive transposable
elements in the germlines of animals through gene silencing [21]. This ncRNA is approximately 24–32
nucleotide bases and is transcribed from a series of repetitive elements within the genome known as
piRNA clusters [22]. piRNAs interact with PIWI, a subfamily of ARGONAUTE proteins, to regulate
their targets, including self-biogenesis [23]. In addition to the silencing of transposable elements,
piRNAs also regulate DNA rearrangements, mRNA turnover and epigenetic programming [23,24].
Overall, both miRNAs and lncRNAs can function as key components of epigenetic modulations to
alter gene transcription in response to intracellular and extracellular cues. The expression of ncRNAs
is deregulated in a variety of cancer types promoting tumor growth, invasion and metastasis. Thus,
ncRNAs are potential therapeutic targets for cancer treatment. Here, we discuss how miRNAs and
lncRNAs regulate the epigenome as part of cancer pathophysiology.

2. MiRNA-Mediated Epigenetic Mechanisms

MiRNAs are a class of double-stranded RNAs (dsRNAs) that are approximately 22 nucleotide
bases. This class of ncRNA is mostly responsible to silence mRNA translation by direct interaction with
the transcript [25]. MiRNAs exert multiple cellular processes, including cell proliferation, adhesion,
cell death and differentiation [26]. They were first characterized in Caenorhabditis elegans, with the
discovery of lin-4, which was shown to silence lin-14 mRNA, which is a protein involved in the initial
stage of larval (L1) development [27].

MiRNA gene transcription forms a stem-loop, double-stranded structure known as primary
miRNA (pri-miRNA) in the nucleus (Figure 1) [28]. The pri-mRNA is processed, in the nucleus, by the
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RNase III enzyme Drosha [29] and its cofactor, Pasha, resulting in the formation of pri-miRNA into
pre-mRNA. The pre-mRNA is further processed by the ATP-dependent protein/enzyme Dicer into a
mature miRNA [30–33]. Once in the cytoplasm, one of the two strands of the mature miRNA is taken
up by a member of the ARGONAUTE protein family. ARGONAUTE then delivers the miRNA to
a target mRNA sequence, causing its degradation or preventing its translation [34]. ARGONAUTE
forms complexes with different proteins in order to deliver the miRNA to its targets. For instance,
the heat-shock protein 90 (Hsp90) can form a complex with the ARGONAUTE 1 (AGO1) in plants,
along with the single miRNA strand [35]. This overall complex is known as the RNA-induced silencing
complex or RISC. The single miRNA strand either binds with perfect or imperfect complementarity
to the mRNA target, generally in the 3′ UTR, which leads to translation repression or mRNA
degradation [36].

NUCLEUS CYTOPLASM

Drosha
Pasha

+1

Post-Translational Gene 
Silencing (PTGS)
• mRNA target cleavage
• translational repression
• mRNA deadenylation

Figure 1

miRNA Gene

DICER/TRBP

Pol II/ Pol III
Transcription

pri-miRNA

pre-miRNA

RISC

Exportin 5

5’3’

Degradation

3’5’

m7G

poly (A)

Cleavage

5’

3’

5’

3’5’
3’

mature miRNA

miRNA duplex

5’

3’

pre-miRNA

RISCmRNA target
m7G AAA

5’3’ARGONAUTE

ARGONAUTE

Figure 1. MicroRNA (MiRNA) biogenesis pathway. Transcription of the miRNA gene by RNA
polymerase Pol II or Pol III produces a primary transcript (priRNA) that is cleaved by the ribonuclease
III Drosha and processed by the double-stranded RNA-binding protein Pasha in the nucleus. This results
in the formation of a precursor miRNA (pre-miRNA) hairpin, which is exported from the nucleus via
exportin-5-mediated translocation. Once in the cytoplasm, the pre-miRNA is cleaved by the RNase
DICER in a complex with the double-stranded RNA-binding protein TRBP to generate a miRNA
duplex. The non-functional strand of the miRNA duplex is subjected to degradation, while the mature
miRNA (functional strand) binds to ARGONAUTE proteins and the RNA-induced silencing complex
(RISC). The mature miRNA guides RISC to silence mRNA targets by cleavage, translational repression
or deadenylation.

SiRNAs are also small RNAs, commonly used experimentally as RNA interference or RNAi
to silence genes. The use of RNAi was originally implemented in C. elegans in order to decrease
the expression of specific genes and, since then, has been widely applied in varied experimental
conditions [37]. This study found that double-stranded RNA interference (dsRNAi) molecules could
be relatively more effective in silencing genes as compared to single-stranded siRNA. Shortly after this
pioneering finding by Fire and colleagues in 1998, RNAi was implemented in the form of short hairpin
RNAs (shRNAs) produced in plasmid vectors [38,39]. This followed the wide use of shRNAs through
cell engineering with genomic-integrated shRNA [40]. Both siRNAs and shRNAs are used to silence
genes for in vitro and in vivo experiments. In contrast to siRNAs, shRNA constructs are capable of
DNA integration. After transcription, shRNAs are exported from the nucleus and recognized by Dicer
in the cytosol to be processed into siRNA duplexes [41].
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Post-transcriptional gene silencing (PTGS) and mRNA degradation allow miRNAs to regulate
the epigenome through the downregulation of key epigenetic modifiers and to change the chromatin
landscape [42]. Key examples of miRNA-interacting epigenetic factors include histone deacetylases
(HDACs), histone methyltransferases (HMTs) and DNA methyltransferases (DNMTs) [42,43]. A list of
miRNAs targeting specific repressive epigenetic modifiers is shown in Table 1. Thus, the upregulation
of these miRNAs can specifically reactivate genes whose expressions were silenced by such epigenetic
modifiers targeted by specific miRNAs. For instance, the miR-29 family has complementarities to the 3′

UTRs of DNMT3A and DNMT3B [44], resulting in their repression at the PTGS level. Similarly, miR-148
targets DNMT3B not at the 3′ UTRs but at the conserved protein-coding region [45]. Consequently,
miR-148 interactions with DNMT3B mRNA lead to both PTGS, which could lead to translation
deficiency or mRNA degradation [45]. DNA-methyl transferase 1 (DNMT1) is targeted by multiple
miRNAs, including miR-148a, miR-152, miR-185 and miR-342. Many of the miRNAs listed in Table 1
have been reported to interact and repress the expression of the HMT, EZH2 (Enhancer of zeste
homolog 2), which is part of the polycomb group repressive complex 2 (PRC2) [46]. EZH2 is targeted by
several miRNAs, including miR-101, miR-137, miR-26a, miR-98, miR-124, miR-214 and let-7. In cases
when miRNAs capable of suppressing DNMT1, DNMT3A, DNMT3B and EZH2 are decreased, it could
lead to abnormal DNA methylation patterns to silence specific gene targets, resulting in cancer [47].
Abnormal DNA/histone methylation patterns could lead to the reactivation of oncogenes and/or the
repression of tumor suppressors to facilitate cancer formation, progression and metastasis.

Table 1. MicroRNAs (MiRNAs) targeting epigenetic regulators. DNMT1: DNA-methyl transferase 1
and AML: acute myeloid leukemia.

miRNA Targets Function References

miR-29 a, b, c DNMT3A and DNMT3B

Tumor suppression by
repression of de novo DNA

methylation. Protects
tumor-suppressor genes from

been silenced by DNA
methylation.

Fabbri et al., 2007 [44]
Suzuki et al., 2013 [47]

miR-148 DNMT3B
DNMT1

Negative feedback loop between
DNMT1 and miR-148 in AML.
Inhibition of cell proliferation

and increase of apoptosis.

Duursma et al., 2008 [45]
Wang et al., 2019 [48]

miR-449a HDAC1

Inhibition of tumor growth,
invasion and metastasis.
Promotes apoptosis and

differentiation.

Noonan et al., 2009 [49]
Yong-Ming et al., 2017 [50]

miR-152
miR-185
miR-342

DNMT1
DNA hypomethylation.

Promotes the expression of
tumor-suppressor genes.

Suzuki et al., 2013 [47]

miR-26a
miR-98

miR-124
miR-214

let-7
miR-101
miR-137

EZH2 Prevents the progression of
prostate cancer and metastasis. Suzuki et al., 2013 [47]

In addition to miRNAs capable of regulating the epigenome, the expression of such miRNAs
themselves can be regulated by epigenetic modifications. For instance, CpG islands, which are
generally found at gene promoters, are also found in approximately half of all miRNA genes, which can
consequently undergo aberrant DNA methylation and deregulated expression [42]. These modifications
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can lead to either the upregulation or downregulation of miRNA expressions that can be associated
with different states of tumorigenesis.

3. LncRNA-Mediated Epigenetic Mechanisms

LncRNAs are approximately 200 nucleotide bases in length and can be produced during the
transcription of noncoding and protein-coding genomic regions. LncRNAs are mostly known in the
context of gene repression. However, additional lncRNA roles include organizing the 3D genome,
sequestering proteins for regulating gene expressions at the level of transcription or serving as
scaffolding for the recruitment of proteins to specific genomic loci [51–55]. Thus, lncRNAs can be
distinguished based on their molecular functions. For instance, lncRNAs can function as: (1) signals
through the activation or repression of genes, (2) guides to bring chromatin modifiers to specific
genomic loci, (3) decoys by displacing transcriptional repressors, (4) scaffolds for multiple protein
complexes [56] and (5) competing endogenous RNAs (ceRNAs) [57]. Interactions between lncRNAs
and epigenetic modifiers are highly relevant in the context of cancer, known for a vast number of
epigenetic aberrations.

Physiologically relevant roles for lncRNAs include X-chromosome inactivation, imprinting and
the general remodeling of the chromatin landscape [58]. X-chromosome inactivation is controlled
by the lncRNA XIST, originally studied in mice and humans. XIST is approximately 15–17 kb
in length and exclusively located in the nucleus [59,60]. XIST has multiple regions that serve as
protein-binding domains, which confers them the ability of binding multiple factors to regulate
gene expressions. The process of X-chromosome inactivation occurs in females as a mechanism of
gene dosage compensation to equalize the gene expression with males having one X-chromosome.
The XIST-mediated inactivation of the X-chromosome can occur in two ways—random X-inactivation
or imprinted-mediated X-inactivation [61]. XIST is able to inactivate X-chromosome genes due to its
ability to recruit repressive epigenetic factors such as HDACs, PRC1 and PRC2-involved chromatin
compaction, which results in gene repression [62,63]. Lamin B receptor (LBR), a critical protein
required for tethering chromatin to the nuclear lamina, is important for the localization of XIST [64].
In addition to XIST, various lncRNAs interact with epigenetic modifiers to remodel the chromatin and
regulate the gene expression. The Homeobox transcript antisense RNA (HOTAIR) is a well-studied
lncRNA involved in regulating the epigenome whose expression is dysregulated in multiple cancers.
It can bind to histone modifiers, such as the REST/CoREST/LSD1 complex and PRC2, which modify
histone methylation at gene promoters. More specifically, the binding between HOTAIR and the
REST/CoREST/LSD1 complex results in the methylation of histone H3 at lysine 4 (H3K4me), while the
HOTAIR-PRC2 complex results in the methylation of histone H3 at lysine 27 (H3K27me), which are
associated with the activation and silencing of genes, respectively [65]. The aberrant expression of
HOTAIR impairs the functionality of such epigenetic modifiers. Upregulated HOTAIR results in the
hypermethylation of H3K4 and/or H3K27, resulting in key gene targets to be activated and/or silenced,
respectively. On the other hand, the downregulation of HOTAIR causes the hypomethylation of H3K4
and/or H3K27, leading to the deregulation and/or de-repression of its target genes. The accumulation
of these epigenetic abnormalities leads to cancerous phenotypes. Unlike the ability of HOTAIR to work
in conjunction with its corresponding epigenetic factors, other lncRNAs, such as SCHLAP1 (second
chromosome locus associated with prostate-1), can directly affect the recruitment of the ATP-dependent
chromatin-remodeling complex SWItch/Sucrose Non-Fermentable (SWI/SNF). SCHLAP1 inhibits
the genomic recruitment of SWI/SNIF [66,67]. The SWI/SNF complex facilitates the recruitment of
transcription factors by opening the chromatin [68]. Thus, mutations and/or the irregular expression of
SCHLAP1 can affect the binding of SWI/SNF to chromatin and, consequently, disable the recruitment
of transcription factors, resulting in deregulated gene expression. Along with SCHLAP1, the lncRNAs
UCA1 (urothelial carcinoma associated 1) and NEAT1 (nuclear paraspeckle assembly transcript 1) can
also alter the recruitment of SWI/SNF by binding to BRG1, a SWI/SNF subunit capable of activating
transcription [69,70]. Another lncRNA, ANRIL (anti-sense non-coding RNA in the INK locus),
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can interact with PRC1 and PRC2 complexes to repress gene transcription, including tumor-suppressor
genes such as the p15/CDKN2B, p16/CDKN2B and p14ARF gene clusters [71,72]. In addition to
being repressed by miRNAs, EZH2, the catalytic subunit of PRC2, can interact with several lncRNAs,
including HOTAIR, GAS5, MEG3, MALAT1 and KCNQ1OT1 [73]. These lncRNAs facilitate the
recruitment of EZH2 at gene promoters to repress transcription [74]. The lncRNA PVT1 (plasmacytoma
variant translocation 1) can also interact with EZH2, influencing H3K27me patterns of key genes,
such as the angiopoietin-like 4 (ANGPTL4) [75]. Related to methylation, the lncRNA H19 can interact
with S-adenosylhomocysteine hydrolase (SAHH), an enzyme required for the regeneration cycle of
S-adenosylmethionine (SAM), which is the major donor of methyl groups during methylation [76].
Thus, alterations in the level of H19 can change global methylation patterns.

The deacetylation of histones, which might preclude repressive histone methylation marks, leads
to compaction of the chromatin landscape, resulting in gene repression. The lncRNA MALAT1
(metastasis-associated lung adenocarcinoma transcript 1) can form a complex with HDAC9 and the
chromatin remodeling enzyme BRG1, which results in the dysfunction of smooth muscle tissue and
contributes to thoracic aortic aneurysms [77]. This highlights the widespread involvement of lncRNAs
and their interactions with key epigenetic modifiers in regulating the expression of multiple target
genes. Table 2 summarizes the discussed lncRNAs and their interactions with epigenetic modifiers.
This relationship is a critical aspect in cancer epigenetic mechanisms, since variations in lncRNA levels
can alter the expression of key epigenetic genes associated with multiple states during carcinogenesis.

Table 2. Long non-coding RNA (LncRNA) interactions with epigenetic regulatory complexes.

lncRNA Origin/Location
Interactions with

Epigenetic
Regulators

Function References

HOTAIR
(HOX transcript
antisense RNA)

Transcribed from
antisense strand of

homeobox C gene in
chromosome 12

PRC2
LSD1/CoREST

Gene silencing by
methylation of
H3K27me3 and

demethylation of
H3K4me2

Cai et al., 2014 [65]

SCHLAP1
(second chromosome
locus associated with

prostate-1)

From chromosome 2 SWI/SNF
Partially antagonizes
location and function

of SWI/SNF
Raab et al., 2019 [67]

NEAT1
(nuclear paraspeckle

assembly transcript 1)

Transcribed from the
multiple endocrine
neoplasia locus in
chromosome 11

Subpopulation of
SWI/SNF

complexes

Nuclear paraspeckle
(nuclear bodies)

assembly
Neve et al., 2018 [69]

XIST
(X-inactive specific

transcript)
Chromosome X PRC1 Silencing one pair of X

chromosomes
Pintacuda et al.,

2017 [63]

ANRIL
(antisense non-coding

RNA in the INK4 locus)

Transcribed from the
CDKN2A/B gene

cluster at
chromosome 9 in the
antisense direction

PRC1 (CBX7),
PRC2 (SUZ12)

Transcriptional
repression Chi et al., 2017 [71]

GAS5
Growth arrest-specific 5) From chromosome 1 PRC2

Repression of
glucocorticoids
receptors, IRF4

(interferon regulatory
factor 4)

Wang et al., 2018 [73]
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Table 2. Cont.

lncRNA Origin/Location
Interactions with

Epigenetic
Regulators

Function References

MEG3
(maternally expressed 3)

Maternally
expressed, generates
multiple isoforms by
alternative splicing,

from chromosome 14

JARID2,
EZH2

Transcriptional
repression Wang et al., 2018 [73]

PVT1
(plasmacytoma variant

translocation 1)
From chromosome 8 PRC2 (EZH2) Oncogene Yu et al., 2018 [75]

MALAT1
(metastasis associated
lung adenocarcinoma

transcript 1)

Also known as
NEAT2 (non-coding

nuclear-enriched
abundant transcript

2). Infrequently
spliced ncRNA, from

chromosome 11

PRC2 (EZH2),
HDAC9,

BRG1

Tumorigenesis
Vascular disease

Wang et al., 2018 [73]
Cardenas et al.,

2018 [77]

KCNQ1OT1
(KCNQ1 overlapping

transcript 1)

Part of an imprinting
control region in
chromosome 11

G9a,
PRC2 (EZH2)

Gene silencing by
H3K9me2
H3K27me3

Wang et al., 2018 [73]

H19
(H19 imprinted

maternally expressed
transcript)

From imprinted
region in

chromosome 11

SAHH,
PRC2 (EZH2)

Tumor-suppressor
Oncogene Zhou et al., 2015 [76]

UCA1
(urothelial cancer

associated 1)
From chromosome 19 PRC2 (EZH2),

SWI/SNF Tumorigenesis Neve et al., 2018 [69]

PANDAR
(promoter of CDKN1A
antisense DNA damage

activated RNA)

From chromosome 6 PRC1
PRC2 Tumorigenesis Puvvula et al.,

2014 [78]

4. MiRNAs in Solid Tumors

A growing amount of evidence supports the role of miRNAs in cancers. Within the last two
decades, it has been shown that either the upregulation or downregulation of miRNAs correlate with
the progression of both hematological and solid tumors (Table 3). Shown are the upregulated or
downregulated miRNAs in multiple solid tumors.

Table 3. MiRNAs implicated in multiple cancers.

miRNA Cancer/Disease Involvement References

miR-15b
miR-16

Upregulated in gastric cancer and
downregulated in chronic lymphocytic

leukemia (CLL)

Xia et al., 2008 [79]
Cimmino et al., 2005 [80]

Xia et al., 2008 [79]

LET-7 Downregulated in lung, pancreatic cancer and
acute lymphoblastic leukemia (ALL)

Takamizawa et al., 2004 [81]
Kugel et al., 2016 [82]

miR-34 (a, b and c)

Downregulated in gastric and cervical cancer
neuroblastoma. Upregulated in glioblastoma
multiforme (GBM) (miR-34b) and colorectal

cancer (miR-34a)

Zhang and Liao, 2019 [83]
He et al., 2009 [84],

Hermeking et al., 2012 [85]
Bommer et al., 2007 [86]
Tarasov et al., 2007 [87]

He et al., 2009 [84]
Hasakova et al., 2019 [88]

Han et al., 2002 [89]
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Table 3. Cont.

miRNA Cancer/Disease Involvement References

miR-21 Upregulated in GBM, solid tumors and
multiple myeloma

Kumarswamy et al., 2011 [90]
Asangani et al., 2008 [91]

Wang et al., 2019 [92]
Jesionek-Kupnicka et al., 2019 [93]

Pfeffer et al., 2015 [94]

miR-125 (a and b) Upregulated in AML and GBM (miR-125b)

Bousquet et al., 2010 [95]
Chaudhuri et al., 2012 [96]

Wu et al., 2013 [97]
Romero et al., 2015 [98]

Liu et al., 2017 [99]
Jesionek-Kupnicka et al., 2019 [93]

miR-181d Downregulated in GBM
Zhang et al., 2012 [100]
Yang et al., 2018 [101]

Jesionek-Kupnicka et al., 2019 [93]

miR-648 Downregulated in GBM Kreth et al., 2013 [102]
Jesionek-Kupnicka et al., 2019 [93]

miR-155 Upregulated in AML, colorectal cancer and
Hodgkin’s lymphoma

Fabbri et al., 2008 [103]
Narayan et al., 2017 [104]

Witten and Slack, 2020 [105]
Kluiver et al., 2005 [106]

Narayan et al., 2018 [107]
Eis et al., 2005 [108]

miR-221 Upregulated in GBM Lukiw et al., 2009 [109]

miR-30a-5p Downregulated in colorectal cancer Wei et al., 2016 [110]

miR-29 family Upregulated in colorectal and cervical cancer
and downregulated in lung cancer and AML

Fabbri et al., 2007 [44]
Jiang et al., 2014 [111]

miR-145 Downregulated in colorectal cancer Michael et al., 2003 [112]
Sheng et al., 2017 [113]

miR-128a Upregulated in AML De Luca et al., 2017 [114]

miR-17/92 cluster
Upregulated and downregulated in myeloid

leukemias and upregulated in colorectal cancer
and CLL

Fabbri et al., 2008 [103]
Jiang et al., 2011 [115]

Moussay et al., 2011 [116]
Willimott and Wagner, 2012 [117]

He et al., 2013 [118]

miR-7 Downregulated in GBM Luo et al., 2015 [119]

miR-185 Downregulated in GBM Zhang et al., 2011 [120]

miR-24a Upregulated in AML Fabbri et al., 2008 [103]

miR-200 Downregulated in breast cancer Mekala et al., 2018 [121]

miR-150 Downregulated in CTCL, AML
Jiang et al., 2012 [122]

Ito et al., 2014 [123]
Abe et al., 2017 [124]

Solid tumors can be metastatic, and such processes, including malignant cell survival, can be
partly due to deregulated miRNAs (Table 3). For instance, miR-15b and miR-16 are upregulated
in gastric cancer and correlate with a poor prognosis [79]. The expressions of miR-15b and miR-16
are linked to the upregulation of the antiapoptotic protein BCL2, resulting in decreased apoptosis
or programmed cell death in gastric cancer cells [79]. In contrast, both miR-15b and miR-16 were
found to induce apoptosis by the direct targeting of BCL2 in a leukemia cell line, suggesting varied
roles for miRNAs in specific cancers [80]. Another miRNA, LET-7, is downregulated in lung cancers,
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which correlates with a poor patient prognosis [81]. Concomitantly, the overexpression of LET-7 can
reduce metastatic lesions [81]. In terms of its epigenetic involvement, it was shown that deficiency of
the histone deacetylase SIRT6 increased the progression of pancreatic cancer and metastasis due to
upregulation of the oncofetal protein Lin-28, which is a negative regulator of LET-7 miRNA [82].

Both miR-21 and miR-34, with opposing roles, are dysregulated in several solid tumors [83,85–87,90–92].
Upregulated miR-21 in several cancers (Table 3) can be classified as a proto-oncogene and can be used as a
biomarker of malignancy. Additionally, miR-21 is involved in the maintenance of pluripotency and can
promote epithelial-to-mesenchymal cellular transitions (EMTs), with both roles associated with the process
of cancer initiation [90]. Additionally, high levels of miR-21 correlate with increased tumor cell proliferation
and invasion in colon cancer [91] and in breast cancer proliferation and metastasis [92,125]. Conversely,
the miR-34 family was found to be downregulated in multiple cancers and are therefore considered as tumor
suppressors [83]. The miR-34 family of miRNAs is expressed predominantly in the lungs, brain and the
gastrointestinal tract and was shown to be part of a positive feedback with the tumor suppressor p53 to
induce cell cycle arrest and apoptosis, thereby inhibiting tumorigenesis [85–87]. Targets of miR-34 include
BCL2, CDK4/6 and cyclin E2, which are involved in blocking apoptosis or promoting cell cycle progression,
thereby facilitating tumorigenesis [84,86]. Additionally, low levels of miR34a correlates with breast cancer
aggressiveness and decreased patient survival. Mechanistically, miR-34a targets the stem cell-associated
transcription factors E2F1/E2F3, which are upregulated in breast cancer patients [126].

MiRNAs are also known to repress key epigenetic regulators, and as discussed above, the outcomes
of miRNA deregulation are associated with malignancies. These miRNAs (Table 1) are either
upregulated or downregulated in cancer, causing epigenetic irregularities (Table 3). For instance,
the miR-29 family is downregulated in lung cancer and is therefore considered a tumor suppressor
due to its ability to inhibit DNA methylation, which causes the reactivation of tumor-suppressor
genes [111]. Both in vitro and in vivo studies show that the forced expression of miR-29a can decrease
the proliferation of lung cancer cells lines by repressing the expression of the DNA methyltransferases
DNMT3A and DNMT3B [44].

The two most common cancers that are affected by deregulated miRNAs are colorectal cancer
and glioblastoma multiforme (GBM). Additionally known as bowel or colon cancer, colorectal
cancer has become a leading cause of death predominantly in Western countries, with a 4–5%
probability of malignancy [127]. A large number of miRNAs are associated with the formation and
progression of colorectal cancer, including miR-21, miR-30a, miR-34a and miR-145. As mentioned
above, miR-21 is involved in various cancers. In colorectal cancer, miR-21 downregulates the
tumor suppressor PDC4 at the post-transcriptional level, thereby stimulating cancer invasion and
metastasis [91]. MiR-30a-5p is downregulated in colorectal cancer and can suppress tumor metastasis
by targeting integrin ß3 (ITGB3) [110], which is overexpressed in colorectal cancer [128,129]. Integrins
are transmembrane receptors involved in cell-to-cell adhesions and mediate critical signal transduction
pathways such as mitogen-activated protein kinase (MAPK) to control cell proliferation, migration and
survival [110,128,129]. A recent study showed that the upregulation of miR-34a was linked to increased
survival in colorectal cancer patients [88]. Interestingly, the upregulation of miR-34a in colorectal
cancer correlates with a decreased expression of Period1 (PER1) and Period 2 (PER2) genes, which are
core components of the circadian clockwork mechanism [88,89,130]. MiR-145 is also downregulated in
colorectal cancer [112]. A recent study confirmed that miR-145 is involved in the inhibition of cancer
cell migration and invasion through the p21-activated kinase 4 (PAK4)-dependent pathway [113].
PAK4 is an essential kinase involved in cytoskeletal reorganization, which is an important step for cell
migration [113]. MiR-145 specifically suppresses the migration and subsequent invasion of colorectal
cancer cells by the direct inhibition of PAK4 [113].

GMB is the most aggressive brain cancer, with very limited treatment options. Surgery is the
most commonly used method to remove GBM tumors but with poor prognosis [131]. Radiotherapy
and chemotherapy with temozolomide are the most common/frontline nonsurgical treatments [132].
Several miRNAs are involved in the progression of GBM and resistance to chemotherapy. Thus, a
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better understanding of their mechanisms could facilitate the development of new treatment options.
Some miRNAs involved in GBM include miR-7, miR-221, miR-125b, miR-181d, miR-648, miR-185
and miR9. MiR-7 is downregulated in GBM and is known to play a role in the inhibition of glucose
metabolism and cell growth through regulation of the IGF-1R/Akt signaling pathway, which is essential
for cellular proliferation [119]. In contrast, miR-221 is upregulated in GBM, causing the increased
proliferation of glioma cells by targeting BIRC1, a neuronal inhibitor of apoptosis [109]. The upregulation
of miR-125b increases cellular proliferation and inhibits apoptosis by directly targeting the p53 and p38
MAPK pathways, thereby functioning as an oncogene in GBM [97]. In vitro studies showed that the
knockdown of endogenous miR-125b increases apoptosis and decreases cell proliferation in GBM [97].
miR-181d, which is downregulated in gliomas, targets O6-methylguanine DNA methyltransferase
(MGMT), a protein that is critical for maintaining genomic stability [100,101,133–135]. MGMT can be
epigenetically silenced upon methylation of its promoter, which is associated with the longer survival of
GBM patients treated with temozolomide, a drug that methylates DNA at O6-methylguanine, causing
DNA damage and the death of tumor cells [136–138]. Similar to miR-181d, miR648 was thought to
affect the expression of MGMT [102]. However, later studies showed that transfected glioma cell lines
with miR-648 did not show a suppression of MGMT expression [139] but, instead, a negative correlation
between the MGMT expression and miR-648 [93]. As mentioned previously, miR-185 targets DNMT1
and, in doing so, regulates global DNA methylation. This is prevalent in GBM, because perturbations
in DNA methylation are commonly associated with cancerous phenotypes [140,141]. A study that
looked at the relationship between methylation and GBM found multiple hypermethylated genomic
regions that were affected by the downregulation of miR-185 [120]. The same study found DNA
hypermethylation at gene promoters in primary glioma cell lines [120]. Some of these hypermethylated
genes included histone H3.1 (HISTH3E), glutamate decarboxylase (GAD1) and ankyrin repeat and
death domain-containing protein 1A (ANKDD1A). Hypermethylation, as previously mentioned,
correlates with a closed chromatin configuration and is therefore linked to gene repression. Collectively,
some miRNAs target single proteins affecting key cellular pathways, while other miRNAs target
epigenetic regulators, which have greater impact due to their ability to alter the expressions of multiple
genes, as seen with miR-185. Another miRNA involved in brain tumorigenesis is miR9. This miRNA
is upregulated in GBM patients and causes a resistance to temozolomide, a drug currently used for
GBM treatment that targets the Sonic Hedgehog receptor PTCH1 [142].

5. MiRNAs in Hematologic Malignancies

Hematologic malignancies are those that derive from hematopoietic cells, also referred to as
blood-related cancers. Such malignancies include chronic lymphoid leukemia (CLL), multiple myeloma,
acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), Hodgkin’s lymphoma, cutaneous
T-cell lymphoma (CTCL) and non-Hodgkin’s lymphoma (NHL).

The role of miRNAs in healthy and malignant hematopoietic processes has been extensively studied,
and it is this fact that links miRNAs to the formation of hematological malignancies. For instance,
miRNAs involved in hematopoietic differentiation through a translational control of targeted mRNAs
include miR-128a and miR-181a [95,96,103,143–146]. These miRNAs control the differentiation of
multipotent progenitor cells (MPPs) to form distinct lineages with the myeloid and lymphoid pathways.
MiR-128a targets Lin28, which is highly expressed in embryonic stem cells, and has been shown
to sustain cancer stem cells [143–145]. MiR-125b, another miRNA targeting Lin28, is involved in
the gradual development of myeloid leukemia [95,96]. However, the role of miRNAs is complex,
with multiple miRNAs targeting a distinct stage of hematopoietic development.

Upregulated miR-181a increases the proliferation of the B-lymphoid cells, while miR-17, miR-24a
and miR-155 are linked to early stages of myeloid differentiation [103,146]. Mechanistically, miR-17
inhibits p21 and STAT3, which are key players in cell cycle arrest, and can induce the differentiation of
myeloid cells through the HIF-1α (hypoxia-inducible transcription factor 1α)-mediated differentiation
of AML cells [118].
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The ectopic expression of miR-24 promotes the survival of both myelopoiesis and lymphopoiesis
by blunting apoptosis by targeting proapoptotic proteins, including caspase 9 (Casp 9) [147–149].
An increased expression of miR-24 is observed in AML and Hodgkin’s lymphoma (HL) [150,151].
Interestingly, the enforced expression of miR-155 exhibits dual roles—oncogenic and tumor-suppressive
in AML [104]. Overall, miRNAs involved in hematopoiesis can impact cell proliferation, differentiation
and apoptosis, and thus, their dysregulation can contribute to hematological cancers.

Additional key miRNAs involved in hematological malignancies include miR-125b, miR-150,
miR-155 and the miR-17/92 cluster. MiR-125b is upregulated in numerous neoplastic hematological
disorders, particularly in AML [152,153]. Mechanistically, miR-125b targets numerous downstream
effectors involved in the cell cycle, differentiation and apoptosis [154]. One of these downstream
effectors is the CCAAT/enhancer-binding protein-α (C/EBPα), which is frequently mutated in AML
patients [155]. C/EBPα is a transcription factor and a tumor suppressor previously shown to prevent the
expansion of myeloid progenitors [156]. Paradoxically, the upregulation of miR-125b can potentially
be attributed to C/EBPα activity, as one recent study shows that miR-125b is a direct target of
C/EBPα in AML [98]. Like many miRNAs, miR-125b affects the expression of multiple targets.
For example, miR-125b can promote the expression of the vascular endothelial growth factor (VEGFA),
which promotes angiogenesis and metastasis. The overexpression of miR-125b is able to increase the
expression of VEGFA, in part by reducing the expression of ten-eleven translocation enzyme 2 (TET2),
which is a critical epigenetic enzyme involved in an active DNA demethylation process mediated
by successive DNA oxidations [99,157]. Liu and colleagues [99] also provided in vivo evidence,
using an AML mouse model, that the overexpression of miR-125b can cooperate with MLL-AF9
(mixed-lineage leukemia (MLL) fused to the ALL1-fused gene from chromosome 9 (AF9)), a fusion
protein associated with AML. MLL is a histone methyltransferase targeting H3K4, a modification
associated with gene activation, and AF9 is part of the Super Elongation Complex (SEC) and one
of the most common fusion partners of MLL [158–160]. Previous studies have also shown that
miR-125b silences proapoptotic proteins, including Puma, Bak1 and Bmf, as well as p53, to induce cell
cycle arrest [153]. In contrast to the upregulation of miR-125b, the downregulation of miR-150 was
also correlated with the development and progression of hematological malignancies. For example,
miR-150 is downregulated in AML, causing an increase in c-Myb and Flt3, which are key antiapoptotic
proteins that promote cell proliferation [122]. Additionally, miR-150, which inhibits tumor invasion
and metastasis, is downregulated in cutaneous T-cell lymphoma (CTCL) [123,161]. This study by Ito
and colleagues provides in vivo evidence that miR-150 is capable of suppressing tumor metastasis and
invasion by targeting the chemokine receptor or CCR6, which prevents autocrine signaling in advanced
CTCL, particularly IL-22-CCL20-CCR6 signaling [123]. Another miRNA, miR-155, is overexpressed in
multiple hematological malignancies and associated with poor survival in AML patients [105–107].
miR-155 is formed by RNA processing of the B-cell integration cluster (BIC), which is a non-coding
gene upregulated in Hodgkin’s lymphoma [107,108]. miR-155 is also upregulated in AML, particularly
in the subtype FLT3-ITD tumors, which is generally correlated with poor prognosis [105].

Interestingly, there is a polycistronic group of miRNAs, known as the miR-17/92 cluster within
chromosome 13 in humans [162]. The miR-17/92 cluster, also referred to as “oncomiR-1”, is an
oncogenic cluster of miRNAs that include miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and
miR-92a-1. This cluster is collectively involved in apoptosis, homeostasis and cell proliferation.
The miR-17/92 cluster is regulated by various oncogenic transcription factors, including MYC, MYCN,
STAT3 and E2F, and it represses key proteins involved in various cellular processes—for example:
BCL3 (cell proliferation), E2F (G1/S cell cycle progression), CDKN1A (cell cycle arrest) and ZBTB4
(p53 response) [163]. miR-17/92 is also epigenetically regulated by the histone demethylase JARID1B,
which targets di- and trimethylated histone H3 at lysine 4 (H3K4me2 and H3K4me3), thereby causing
the silencing of this cluster [164–166]. The miR-17/92 cluster is often dysregulated in solid tumors
and hematological malignancies [167,168]. Under normal conditions, in vivo studies in mice show the
involvement of this cluster in hematopoiesis—for example: lymphocyte development (miR-17 and
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miR-19b-1) and B-cell differentiation and maturation [115,169]. miR-17 and miR-19b-1 are significantly
upregulated in CLL [116] and exhibit a moderate upregulation of miR-18a, miR-19a and miR-92a [117].
Collectively, the role of these miRNAs is critical for regulating downstream effector proteins involved
in cell migration, apoptosis, cell cycle arrest and proliferation, as well as epigenetic modulators.
Thus, altering the levels of these miRNAs can disrupt the cellular physiology and homeostasis,
resulting in cancer.

6. LncRNAs in Solid Tumors

LncRNAs are transcribed by Pol II from either coding or non-coding sequences, resulting in over
200 nucleotide RNA sequences forming specific three-dimensional conformations, which enables them
to interact with specific proteins, such as epigenetic regulators to modulate gene expressions (Figure 2).
Alternatively, lncRNAs can regulate translation and mRNA stability by direct binding to target mRNAs
or by functioning as competing endogenous RNAs (ceRNAs) to quench specific miRNAs (Figure 2).
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Figure 2. Long non-coding RNA (LncRNA)-mediated gene regulation mechanisms. Generally,
lncRNAs originate from antisense transcripts produced by RNA polymerase II (Pol II). LncRNAs can
be produced from diverse genomic locations, including introns, coding regions and sequences between
genes. LncRNAs can recognize specific mRNA targets to modulate their expression by affecting
post-transcriptional processes, including translation and mRNA stability. Alternatively, lncRNA can
recruit proteins such as epigenetic regulators (activators or repressors) as a scaffolding system guided
to regulate the expression of specific target genes. Additionally, lncRNAs can regulate specific gene
expressions by functioning as competing endogenous RNAs (ceRNAs) capable of sequestering miRNAs.

Similar to miRNAs, the expression of lncRNAs is affected in multiple types of cancers. The altered
expressions and/or mutations of lncRNAs facilitate the formation of tumors and, subsequently, lead to
metastasis [170]. Either the upregulation or downregulation of lncRNAs can have negative effects on
key downstream targets, including epigenetic regulators, thereby altering the expression of numerous
genes. LncRNAs are involved in multiple oncogenic pathways, and their dysregulation affects cellular
survival. Table 4 lists key examples of lncRNAs involved in the formation of solid tumors. Note that
some of the lncRNAs in this list overlap with those listed in Table 2, further highlighting the fact that
the dysregulation of lncRNAs can be a consequence of epigenetic alterations.
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Table 4. LncRNAs implicated in diverse cancers. T-ALL: T-cell acute lymphoblastic leukemia.

lncRNA Cancer Involvement References

PVT1
Gastrointestinal, renal, breast
cancer, acute promyelocytic

leukemia

Martínez-Barriocanal et al., 2020 [171]
Wang et al., 2019 [172]
Sun et al., 2015 [173]

Zeng et al., 2015 [174]

HOXD1-AS1

Bladder, cervical, gastric, ovarian,
colorectal, prostate, GBM,

melanoma, osteosarcoma, liver
and non-small-cell lung cancers

Braga et al., 2020 [175]
Wang et al., 2017 [176]

Chi et al., 2018 [177]
Yang et al., 2019 [178]

HOTAIR Pancreatic, cervical, breast, lung,
oral, gastric cancers, AML

Liu et al., 2013 [179]
Liu et al., 2014 [180]

Xing et al., 2015 [181]
Bhan et al., 2015 [182]

Zhang et al., 2018 [183]
Hajjari and Salavaty, 2015 [184]

SPRY4-IT1 Breast and cervical cancer Li et al., 2017 [185]
Shi et al., 2015 [186]

GAS5 Breast, lung, prostate cancer, blood
Pei et al., 2015 [187]
Xu et al., 2016 [188]
Ji et al., 2019 [189]

PANDAR Breast, gastric, colorectal, bladder
cancer

Sang et al., 2016 [190]
Zou et al., 2018 [191]

MEG3 Gastric and pancreatic cancer,
AML

Benetatos et al., 2010 [192]
Modali et al., 2015 [193]

Jiao et al., 2019 [194]
Bhan et al., 2017 [170]

SNHG1 Cervical cancer Liu et al., 2018 [195]

CCAT-1 Colon, gastric cancer, AML Li et al., 2019 [196]

H19 Breast, gastric cancer Wang et al., 2020 [197]
Ghafouri-Fard et al., 2020 [198]

UCA1 Pancreatic, colorectal cancer, AML Neve et al., 2018 [69]
Hughes et al., 2015 [199]

MALAT1 Lung, cervical, breast cancer,
lymphoblastic leukemia

Sun et al., 2016 [200]
Yang et al., 2015 [201]

Tripathi et al., 2010 [202]

SChLAP1 Prostate cancer Prensner et al., 2013 [66]

NEAT1 Breast, gastric, colorectal cancer,
acute promyelocytic leukemia

Zeng et al., 2014 [203]
Zhang et al., 2019 [204]

ANRIL Gastric cancer, breast cancer, adult
T-cell leukemia

Meseure et al., 2016 [72]
Liu et al., 2018 [205]

Song et al., 2018 [206]

LUNAR1 T-ALL, lymphoblastic leukemia Trimarchi et al., 2014 [207]

IRAIN AML Sun et al., 2014 [208]

PVT1 is a lncRNA amplified in human cancers, particularly in gastrointestinal tumors,
and associated with poor prognosis [171]. PVT1 has several different isoforms exhibiting differential
expression patterns, which are linked to multiple cellular pathways [171]. For instance, PVT1 functions
as a competing endogenous RNA (ceRNA) for miRNAs [209,210]. Thus, PVT1 can quench the function
of several miRNAs, inhibiting their activity and thereby affecting the invasive and proliferative
capacity of tumor cells [172]. Some of these miRNAs include miR-30a, miR-186 and miR-128 [211–213].
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The downregulation of these miRNAs can promote tumorigenesis and metastasis. Furthermore,
the location of the PVT1 gene is considered to be a cancer risk genomic locus, primarily because it shares
such a region with MYC, which is a well-studied oncogene [214]. Moreover, the stability and activity of
MYC is potentiated when partnered with PVT1 [215]. In addition to PVT1, the lncRNAs HOXD1-AS1,
HOTAIR and MALAT1 are also associated with multiple types of solid tumors. HOXD cluster
antisense RNA 1 (HOXD1-AS1) is dysregulated in various tumor types (Table 4). The dysregulation
of HOXD1-AS1 in a vast number of cancers increases the growth, migration and invasion of tumor
cells [176,177]. Mechanistically, HOXD1-AS1 can suppress the growth of colorectal carcinomas and
metastasis by inhibiting MAPK/AKT signaling (a crucial pathway involved in cell proliferation) and the
HOXD3-mediated transcriptional activation of integrin ß3, which initiates MAPK/AKT signaling [178].
At the epigenetic level, HOXD1-AS1 represses the transcription of HOXD3 through the recruitment of
PRC2, which induces the accumulation of the repressive epigenetic mark H3K27me3 on the HOXD3
promoter. In addition to HOXD1-AS1, HOTAIR is a well-studied lncRNA that is upregulated in a
variety of cancer types (Table 4). HOTAIR is an intergenic lncRNA that functions as an oncogene
by promoting tumor cell growth, invasion, metastasis and drug resistance [184]. Mechanistically,
HOTAIR increases tumor cell proliferation in lung adenocarcinomas by reducing the expression of p21,
an inhibitor of cell cycle progression at the G1 phase [179]. HOTAIR was proposed to function as a
scaffold to facilitate the recruitment of PRC2 and LSD1/CoREST/REST epigenetic complexes to increase
H3K27me3 and H3K4me2, respectively, on targeted genomic loci [216–218]. Since p21 expression is
regulated by PRC2 in lung cancer cells, it is possible that the upregulation of HOTAIR can promote the
recruitment of PRC2 to downregulate p21 expression in lung adenocarcinoma cells [219,220]. However,
the artificial chromatin tethering of HOTAIR in breast cancer cells caused transcription repression
independently of PRC2 [221].

HOTAIR is also upregulated in gastric cancer promoting tumor growth and metastasis and
is therefore proposed as biomarker for poor prognosis in gastric cancer patients [180]. Notably,
HOTAIR can also function as a ceRNA to derepress the expression of HER2 (human epithelial growth
factor receptor 2), an oncogene that produces a growth factor receptor involved in augmenting cell
proliferation and tumorigenesis [180,222]. Mechanistically, HOTAIR blocks the miR-331-3p-mediated
downregulation of HER2 in gastric cancer [180]. miR-331-3p inhibits colorectal cancer cell growth
by targeting HER2 [223]. Concordantly, the inhibition of HOTAIR reduces the progression and
invasiveness of gastric cancer cells [224]. HOTAIR is also upregulated in cervical cancer, and its
expression is activated by the transcription factor STAT3 [183]. As shown in Table 2, HOTAIR interacts
with key epigenetic factors; therefore, its upregulation can result in the regulation of many downstream
gene targets [182].

Another lncRNA whose expression is upregulated in multiple cancers is MALAT1
(metastasis-associated lung adenocarcinoma transcript 1). The knockdown of MALAT1 inhibits
cervical cancer cell invasion, which occurs by blocking EMT in both in vitro and in vivo model
systems [200]. The upregulation of MALAT1 promotes cancer cell growth and invasion, disables
apoptotic pathways and correlates with a poor prognosis in cervical cancer patients [201]. Notably,
MALAT1 can regulate mRNA splicing, transcription, ceRNA function and can interact with PRC2 to
promote the methylation of H3K27 [202,225–228]. The upregulation of MALAT1 in a variety of cancers,
which combines with its pleiotropic roles in gene regulation, has become the focus for therapeutic
interventions of cancers [228].

Another lncRNA whose function is linked to epigenetic alterations is SChLAP1, capable of interacting
with the ATP-dependent chromatin remodeling complex SWI/SNF (Table 2). The interaction with SChLAP1
antagonizes the tumor-suppressive function of SWI/SNIF, thereby promoting prostate cancer cell invasion
and metastasis [66,229]. SNHG1 is a lncRNA whose expression correlates with aggressive cervical cancer
by promoting tumor cell proliferation, migration and invasion [195]. Consequently, SNHG1 depletion
reduced metastatic lesions in cervical cancer [195]. Overall, an upregulation of the lncRNAs HOTAIR,
MALAT1 and SChLAP1 promote cancer cell proliferation and metastasis by interacting with transcription
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factors or epigenetic regulatory complexes to modulate gene expressions, which, in turn, facilitate the
invasiveness and metastatic phenotypes of aggressive solid tumors.

LncRNA are also deregulated in other solid tumor types, such as breast and gastric cancers that
exhibit deregulated levels of the lncRNAs [173]. SPRY4-IT1, GAS5, PANDAR and H19 are lncRNAs
dysregulated in breast cancer. Upregulated SPRY4-IT1 (SPRY4 intronic transcript 1) promotes the
proliferation of human breast cancer cells by increasing the expression of the transcription corepressor
ZNF703 (zinc finger 703), which may function as an oncogene in breast carcinoma cells [186]. Related to
cell proliferation, GAS5 dysregulation is involved in multiple signaling pathways, all of which correlate
with the progression of breast cancer. For instance, GAS5 is downstream of the NOTCH signaling
pathway, which can promote the proliferation of breast cancer cells [187]. Additionally, GAS5 is
downstream of NODAL signaling, which is involved in cancer stem cells (CSCs) self-renewal [188,189].
PANDAR, is upregulation in breast cancer, and its silencing in vitro suppresses the transition of
breast cancer cells from G1 to the S phase, resulting in a decrease in tumor cell proliferation [190].
Mechanistically, PANDAR suppresses the expression of the cell cycle regulator p16(INK4A) by
recruiting the repressive epigenetic factor BMI1—a component of the polycomb repressive complex 1
(PRC1)-to-p16(INK4A) promoter (Table 2) [190]. H19 regulates the tumorigenesis and progression of
breast cancer by modulating the gene expressions at multiple levels: transcriptional, post-transcriptional
and epigenetically [197].

Gastric cancers show the deregulation of several lncRNAs, including MEG3, CCAT-1 and ANRIL.
The downregulation of MEG3 results in decreased apoptosis and increase proliferation [194]. Possibly,
MEG3 can suppress gastric cancer growth by inhibiting the EMT [194] or by reducing the stemness of
gastric cancer cells, which has been reported to mediate gastric cancer progression [230]. The lncRNA
CCAT-1 (colon cancer-associated transcript 1) contributes to the growth and invasion of gastric cancer
cells by functioning as a ceRNA targeting miR-219-1 [196]. ANRIL is upregulated in tumorigenesis and
prevents the miR-99a-mediated inhibition of BMI1 [205]. Additionally, ANRIL can directly interact
with the PRC components (Table 2). Collectively, the misregulation of various lncRNA affect the
diverse epigenetic pathways that, consequently, change gene expression programs, favoring tumor cell
proliferation and invasion.

7. LncRNAs in Hematologic Malignancies

The role of lncRNAs in hematological malignancies is closely linked with the role of lncRNAs in key
hematopoietic processes. Some examples of known lncRNAs that are known to be involved in malignant
hematopoiesis are GAS5, FAS-AS1 and LUNAR1. GAS5 regulates T-cell proliferation by suppressing
DNA binding of the glucocorticoid receptor [231]. The FAS-AS1 lncRNA represses the expression of the
FAS receptor, which promotes apoptosis [232]. The LUNAR1 (leukemia-induced non-coding activator
RNA) lncRNA functions as an oncogenic RNA promoting T-cell acute lymphoblastic leukemia (T-ALL)
by increasing the IGF1R mRNA levels to maintain IGF1 signaling and to increase cell proliferation [207].

Altered levels of the discussed lncRNAs can alter the hematopoietic homeostatic balance, leading
to hematological malignancies. Another target of IGF1R is the lncRNA IRAIN, which is downregulated
in AML [208]. The abnormal regulation of IGF1R is associated with the progression and therapeutic
resistance of hematological cancers. IGF1R is one of the most phosphorylated receptors in AML, and this
phosphorylation causes continuous activation of the PI3K/Akt signaling pathway, which promotes
cellular growth. Located within the IGF1R gene locus, the IRAIN gene transcribes the IRAIN lncRNA
that has the ability to interact with chromatin to form intrachromosomal enhancer/promoter loops [208].
Therefore, due to its genomic proximity to the IGF1R gene, the abnormal expression of IRAIN can
interfere with the IGF1R signaling pathway.

Deregulations of a wide range of lncRNAs have been implicated in hematological malignancies,
as well as solid tumors. These include PVT1, HOTAIR, MEG3, UCA1, CCAT-1, ANRIL and NEAT1,
while others such as LUNAR1 and IRAIN are only associated with blood cancers. In addition to
solid tumors, PVT1 upregulation has been shown to be involved in acute promyelocytic leukemia
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and parallels MYC expression [174]. As described above, PVT1 and MYC are in adjacent genomic
loci and could thereby influence each other’s expressions. The lncRNA HOTAIR can modulate
the expression of c-KIT, a proto-oncogene, through competitive interaction with miR-193a [181].
MiR-193a is downregulated in AML, due to hypermethylation in the promoter region, and can
increase cell proliferation [181]. Although the deregulation of HOTAIR is primarily associated with
solid tumors, it is also upregulated in AML and correlates with a poor prognosis [233]. MEG3 is
an imprinted gene, and its promoter hypermethylation can serve as biomarker for AML and MDS
patients [192]. Hypermethylation and, therefore, the downregulation of MEG3 are associated with a
poor prognosis [192]. Possibly, hypermethylation of the MEG3 promoter in AML is due to decreased
TET2 activity [234]. The oncogenic lncRNA, urothelial carcinoma-associated 1 (UCA1), promotes
tumor cell proliferation in AML [199]. The upregulation of UCA1 occurs upon inactivation of its
transcription repressor C/EBPα (CCAAT/enhancer-binding protein α), which is mutated in AML,
resulting in the expression of a dominant negative isoform (C/EBPα -p30) capable of inducing UCA1
expression [199]. The lncRNA CCAT1 (colon cancer-associated transcript 1) acts as a ceRNA to
modulate the cell growth and differentiation in AML [235]. In AML patients, upregulated CCAT1
functions as a ceRNA targeting miR-155 to increase the MYC expression [235]. Notably, AML patients
have decreased levels of miR-155 [235]. The lncRNA ANRIL was found to increase the proliferation of
adult T-cell leukemia (ATL) cells by interacting with EZH2. ATL malignancy is caused by infection
with human T-cell leukemia virus type 1 (HTLV-1) [236]. The binding of ANRIL to EZH2 (Table 2)
results in activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB)
pathway in ATL cells by promoting p65 binding to its target genes [206]. ANRIL is upregulated
in HTLV-1-infected cells, leading to the increased proliferation of ATL cells [206]. LncRNA NEAT1
(nuclear enriched abundant transcript 1) is repressed in primary chronic myeloid leukemia (CML)
cells [203]. The inhibition of NEAT1 impairs myeloid differentiation in acute promyelocytic leukemia
(APL) cells, correlating with a malignant phenotype [203]. Collectively, either the upregulation or
downregulation of lncRNAs can affect cell proliferation, cell cycle arrest and apoptosis, which, in turn,
may favor carcinogenesis (Figure 3). In addition to assisting on epigenetic pathways, lncRNAs are
subjected to epigenetic regulation
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Figure 3. Non-coding RNAs (NcRNAs) in cancer. A decrease in cell cycle arrest and apoptosis, along
with an increase in cell proliferation, are hallmarks of cancer cells associated with solid tumors and
hematological malignancies. NcRNAs can regulate these cancer hallmarks by the direct targeting
of cancer-promoting genes involved in the cell cycle, apoptosis and proliferation or by targeting
epigenetic factors that modulate the expression of such genes. Additionally, lncRNAs can regulate the
expression of cancer-promoting genes by functioning as scaffolds to recruit epigenetic factors or by
acting as ceRNAs.
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8. Use of ncRNAs in Clinical Therapy

Alternative treatments for cancers are active areas of research aiming to combine or replace
chemotherapy, immunotherapy and surgery. Gene therapy approaches involving CRISPR/Cas-9 and
chimeric antigen receptor (CAR) T-cell therapy are promising for treating cancers [237–239]. RNAi
can be used as a potential treatment for silencing overamplified, proto-oncogenic ncRNAs; however,
using a siRNA-based technology comes with its challenges: a low cellular uptake, off-target effects,
triggering of an immune response and a low efficiency in unstable physiological environments [240].
The premise is to deliver siRNAs with lipid-based nanoparticles or chemically modified siRNAs in
combination with current anticancer drugs [240]. The advantages for implementing nanoparticles in
RNAi delivery [241,242] include: (1) their small sizes, ranging from 10–1000 nm, (2) their ability to
protect anticancer RNAi molecules from degradation, (3) to prevent an immune reaction and (4) higher
transporting efficiency [242]. In addition to nanoparticles, lipid-based delivery mechanisms can offer
promising advantages for RNAi delivery [243], including: (1) easy preparation, (2) the ability to
load anticancer drugs on lipids in conjunction with RNAi molecules and (3) their physically stable
structures [244]. A specific example of this delivery system in action is the use of lipid nanoparticles to
deliver siRNA directly into the bloodstream of CML mice models [245]. The goal would be a delivery
system that is efficient, minimally invasive and deprived of nonspecific target effects.

As highlighted in this review, alterations in the epigenetic modification of ncRNA genes can
impact their expression. Thus, chemical inhibitors or activators targeting such epigenetic modifiers
could serve as treatments against cancer. For instance, HDAC inhibitors could be used as a potential
therapy against triple-negative breast cancer to derepress the expression of miR-200, which functions as
a tumor suppressor by preventing EMT and metastasis [121,246]. MiR-200 is downregulated in breast
cancer due to increased HDAC activity. Thus, a broad spectrum of HDAC inhibitors, such as sodium
butyrate (NaB) and panobinostat (LBH589), could increase the expression miR-200 [121]. Another
HDAC inhibitor, vorinostat, was shown to reduce metastasis in cutaneous T-cell lymphoma by targeting
miR-150, which is downregulated in the early stages of this cancer [124]. Additionally, the use of DNMT
inhibitors (DNMTi) for cancer therapy is a prevalent area of cancer research therapy [247]. However,
the FDA-approved DNMTis decitabine and azacitidine show very limited reductions in solid tumors,
despite showing a global increase in DNA demethylation [248,249]. Possibly, these DNMTis would
be more effective in combination with other therapies. Another epigenetic target to be considered is
EZH2 because of its association with numerous ncRNAs. Indeed, EZH2 inhibition showed therapeutic
efficacy against ovarian, colon and bladder cancers [175,250]. Tazemetostat, an EZH2 inhibitor, showed
encouraging results in a phase 1 clinical trial for treating relapsed or refractory B-cell non-Hodgkin’s
lymphoma [251]. However, potential off-target effects and the inability to discern between normal
and cancerous cells remain as major challenges for the use pharmacological agents to modulate the
epigenome of tumor cells.

One of the major challenges in cancer therapy is the acquisition of chemoresistance, which leads to
cancer recurrence [252]. The dysregulated expression of miRNAs can promote cellular dedifferentiation
into cancer stem cells (CSCs) capable of promoting therapeutic resistance and metastasis [253,254].
For example, miR-128, considered a tumor suppressor in lung cancer, inhibits CSC proliferation, thereby
increasing the sensitivity to the chemotherapeutic drug paclitaxel [253]. Similarly, miR-181b, functioning
as tumor suppressor in lung cancer, can decrease CSC self-renewal, causing chemosensitivity [253].
Thus, augmented CSC proliferation due to a low expression of miR-128 and/or miR-181b could
result in chemoresistance, metastasis and lung cancer relapse. In contrast, other miRNAs such as
miR-221 and miR-21 can promote CSC proliferation in colorectal and gastric cancers, respectively [253].
Thus, the upregulation of these miRNAs could promote metastasis and chemoresistance. Therefore,
specific miRNA targeting in combination with current therapies could diminish the renewal of CSCs,
thereby augmenting the chemosensitivity and prolonging the survival of cancer patients. Additionally,
misregulated expressions of lncRNAs can confer chemoresistance. For instance, the upregulation of
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HOTAIR confers a resistance to tamoxifen, a conventional therapeutic for breast cancer patients, and is
therefore a potential target for reversing chemoresistance [252,255].

Notably, tRNA-derived small RNA fragments (tsRNAs) can function as ncRNAs and were shown
to be deregulated in both solid tumors and hematological malignancies [256,257]. For instance,
overexpression of the tsRNAs ts-46 and ts-47 inhibit the growth and survival of lung cancer cell
lines [256]. More recently, ts-43 and ts-44 were shown to be downregulated in chronic lymphocytic
leukemia (CLL) and proposed to function as tumor suppressors [258]. In contrast, other tRNA-derived
short non-coding RNA fragments called tRFs (tRF-3 and tRF-5) were shown to be upregulated in CLL
and suggested to have an oncogenic role [258]. Thus, these newly discovered ncRNAs derived from
tRNAs, functioning as tumor suppressors or oncogenes, add a new layer of complexity to the gene
regulatory programs involved in malignancies. TsRNA expression levels could be used as diagnostic
tools before and during cancer therapy to anticipate the drug resistance and relapse. Importantly,
tsRNAs, which are similar to piRNAs, can interact with PIWI proteins to regulate the gene expressions
via epigenetic modifications and can thereby serve as potential targets for developing new cancer
treatments [259,260]. It would be informative to determine if dysregulated tsRNAs are involved in
CSC renewal, metastasis and chemoresistance.

Overall, ncRNAs are plausible targets for developing new anticancer therapies that could be
used in combination with chemotherapeutic drugs to prevent the expansion of CSCs, metastasis,
chemoresistance and cancer relapse. A potential strategy for targeting ncRNAs could include antisense
oligonucleotides delivered by nanoparticles, a concept referred to as cancer nanomedicine, which is
based on nanotechnology [261].

9. Conclusions

Overall, the aberrant expressions of miRNAs and lncRNAs correlate with cancerous phenotypes
and the poor prognosis of cancer patients. Thus, understanding the mechanisms by which ncRNAs are
expressed could facilitate the development of cancer therapies. As previously discussed, one of the
primary causes of the upregulation and downregulation of ncRNAs can be attributed to epigenetic
changes resulting in their abnormal expressions in a variety of cancer types. NcRNAs can modify the
epigenome by interacting with epigenetic regulators or modifying their expression, which ultimately
leads to changes in the gene expression that could favor the amplification of oncogenic pathways.
Epigenetic alterations can be accumulated in response to environmental changes capable of altering the
expression of ncRNAs, resulting in cancerous phenotypes [262–265]. For instance, mutations in ncRNA
affecting epigenetic programs might have been formed upon exposure to carcinogenic agents [266].
Additionally, pharmacologically based anticancer treatments could impact the expression of ncRNAs
to facilitate cancer recurrence, a possibility that remains to be determined.

The expression of multiple miRNAs can be altered by epigenetic mechanisms leading to the
misregulation of target genes and causing cancer. For instance, the upregulation of miR-21, observed in
several cancers (Table 3), can be attributed to a loss of DNA methylation in its promoter [267].
DNA hypomethylation increases the expression of miR-21 and miR-146b in papillary thyroid
carcinoma [267]. The expression of other miRNAs, such as miR-338-5p and miR-421, were proposed
to be epigenetically silenced by EZH2 in prostate cancer [268], although in a H3K27me3 analysis,
remained undetermined.

Epigenetic mechanisms were also shown to control the expression of lncRNAs. For instance,
the upregulation of the lncRNA NEAT1 in gastric cancer was attributed to a decrease in methylation by
the RNA demethylase ALKBH5 (alkylation repair homolog protein 5) [204]. Furthermore, the binding
of NEAT1 and ALKBH5 can negatively affect the expression of EZH2, thereby promoting tumor cell
invasion and metastasis [204]. HOTAIR is deregulated in various cancers and can serve as a scaffolding
to facilitate the recruitment of the PRC2 and LSD1/CoREST/REST complexes [218] (Table 4). MEG3,
which is downregulated in multiple cancer cell lines, is epigenetically activated upon the methylation
of histone H3 at lysine 4 (H3K4me3) by MEN1 (multiple endocrine neoplasia type 1), a component
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of the MLL complex that functions as a tumor suppressor [78,193,269]. Thus, epigenetic changes can
alter the expression of ncRNAs affecting downstream pathways, as well as other epigenetic factors,
thereby establishing a complex network that is disrupted during carcinogenesis. This complex network
could be altered in response to environmental changes and/or stress responses, including exposure
to toxic pollutants (Figure 4) [4,5]. Ultimately, a better understanding of the mechanisms underlying
the deregulation of ncRNAs will advance cancer treatments by serving as biomarkers for the early
detection of cancers and for developing new clinical therapies.Figure 4

Solid 
tumors

5’

3’

miRNA
EPIGENETIC REGULATORS

Hematological
malignancies

[Epigenetic Regulator – lncRNA] complex

lncRNA

Apoptosis

Cell cycle arrest

Cell proliferation

Gene expression
Figure 4. Environmental factors impact the link between the epigenome and ncRNAs. Environmental
factors, including dietary changes and exposure to carcinogens, can affect the expression of epigenetic
regulatory complexes targeting the regulation of ncRNAs. Epigenetic modulation can either upregulate
or downregulate the expression of ncRNAs, which, in turn, feed back onto the epigenetic landscape,
promoting the gene expression profiles involved in carcinogenesis.

Approximately 95% of the human genome represents non-coding sequences that are
transcribed into ncRNAs capable of regulating gene expressions by multiple pathways, including
post-transcriptional, translational and epigenetic mechanisms. Therefore, it is highly possible that
ncRNAs play an essential role in maintaining the cell fate identity to prevent the transformation
into malignancies. Hence, the deregulation of ncRNAs promote tumorigenesis by increasing cancer
cell proliferation, CSC renewal, metastasis and therapy resistance. Rapidly advancing genome-wide
technologies are facilitating the identification of novel ncRNAs and their regulatory mechanisms in the
contexts of health and disease. Some of these mechanisms include the role of ncRNAs in modulating
the three-dimensional (3D) genomic architecture [270]. Future studies are expected to elucidate the
interlocking functions of ncRNAs with the epigenome and the 3D genomic architecture for developing
new cancer therapies and/or earlier prognosis methods.
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