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Review

Gasdermins in Apoptosis: New players in an 
Old Game
Corey Rogers and Emad S. Alnemri*

Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, 
PA

Apoptosis is a form of programmed cell death (PCD†) that plays critical physiological roles in removing 
superfluous or dangerous cell populations that are unneeded or threatening to the health of the host 
organism. Although the molecular pathways leading to activation of the apoptotic program have been 
extensively studied and characterized starting in the 1970s, new evidence suggests that members of the 
gasdermin superfamily are novel pore-forming proteins that augment apoptosis by permeabilizing the 
mitochondria and participate in the final stages of the apoptotic program by inducing secondary necrosis/
pyroptosis. These findings may explain outstanding questions in the field such as why certain gasdermin 
members sensitize cells to apoptosis, and why some apoptotic cells also show morphological features of 
necrosis. Furthermore, the interplay between the gasdermins and apoptosis may also explain why genetic 
and epigenetic alterations in these genes cause diseases and disorders like cancer and hearing loss. This 
review focuses on our current understanding of the function of several gasdermin superfamily members, 
their role in apoptosis, and how they may contribute to pathophysiological conditions.
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INTRODUCTION

Apoptosis is a genetically encoded form of pro-
grammed cell death (PCD) that is carried out by pro-
grammed molecular machinery and plays a variety of 
vitally important physiological roles in organismal devel-
opment and homeostasis (Table 1). In humans, a coordi-
nated series of complex cellular signaling events results 
in the transformation of a single-cell zygote to a fully 
mature adult composed of trillions of cells that make up 
very specialized organs. While mitosis results in the pro-
liferation of cells that eventually composes these organs, 
it is actually apoptosis that fine-tunes their structure, re-

sulting in the final form and function they eventually take. 
Apoptosis also plays important functions in eliminating 
transformed or pathogen-infected cells that are deleteri-
ous to the host. Apoptosis can be triggered intrinsically 
when cells sense their own irreparable cellular damage 
(e.g. DNA damage) and stress, or extrinsically through 
activation of death receptors on the plasma membrane by 
death-inducing cytokines released from cells as a result 
of infection with pathogens (Figure 1). Intrinsic apopto-
sis is triggered by signaling pathways controlled largely 
by members of the proapoptotic B Cell CLL/Lympho-
ma-2 (BCL-2) family which ultimately culminate on the 
BCL-2 effectors, BCL-2 Antagonist Killer 1 (BAK), and 
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Table 1. Cell death definitions.
Term Definition
Programmed Cell 
Death (PCD)

Cell death that is regulated by genetically encoded molecules in response to physiological 
or pathophysiological stimuli

Apoptosis An immunologically silent form of PCD driven by the executioner caspases that typically 
results in rapid engulfment by nearby phagocytes

Pyroptosis An immunogenic form of PCD driven by the inflammatory caspase-mediated cleavage of 
GSDMD in response to pathogen- and danger- associated molecular patterns (PAMPs and 
DAMPs, respectively)

Secondary Necrosis An immunogenic form of PCD driven by the caspase-3-mediated cleavage of GSDME that 
can sometimes follow the apoptotic program; secondary necrotic cells display very similar 
features to those undergoing pyroptosis

NETosis An immunogenic form of PCD occurring specifically in neutrophils driven by the 
inflammatory caspase-mediated cleavage of GSDMD, resulting in the release of neutrophil 
extracellular traps (NETs)

Figure 1. Features of cells undergoing apoptosis, pyroptosis or secondary necrosis. Apoptosis is orchestrated by 
the executioner caspases 3 and 7 which are activated by the apoptosome or death receptor ligation. Cells undergoing 
apoptosis are characterized by their defining blebs around the plasma membrane, cellular shrinkage, fragmentation 
into apoptotic bodies, nuclear condensation, and mitochondrial outer membrane permeabilization. Pyroptosis 
is orchestrated by cleavage of GSDMD by inflammatory caspases 1 and 11 within the inflammasome complexes, 
whereas secondary necrosis is orchestrated by cleavage of GSDME by caspase-3 during apoptosis. Cells undergoing 
pyroptosis/secondary necrosis exhibit permeabilized plasma and organelle membranes, cellular swelling, and release 
of intracellular contents through the GSDMD or GSDME pores. These cells, unlike apoptotic cells, do not maintain their 
plasma membrane integrity.
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BCL-2-Associated X Protein (BAX). Activation of these 
proteins leads to their oligomerization on the outer mito-
chondrial membrane resulting in its permeabilization and 
the release of proapoptotic factors such as cytochrome c. 
The released cytochrome c activates the Apaf-1 apopto-
some which in turn activates the executioner caspases 3 
and 7 leading to cellular dismantling [1-5]. While BAK 
and BAX have been the most extensively characterized 
apoptotic mitochondrial pore-forming proteins, recent 
evidence demonstrates that members of the gasdermin 
superfamily also possess similar functions.

The gasdermin superfamily is a group of proteins 
that has garnered much attention lately upon the discov-
ery that these members possess the ability to form pores 
in the plasma membrane leading to a necrotic form of 
programmed cell death called pyroptosis (Table 1; Figure 
1). This novel function was first discovered in gasdermin 
D (GSDMD) when it was shown that cleavage between 
the N- and C-terminal domains by the inflammatory 
caspases such as caspase-1 and caspase-11 liberates a 
cytotoxic N-terminus [6-8] that oligomerizes and perme-
abilizes the plasma membrane to drive pyroptosis [9-14]. 
Subsequently, it was identified that another member of 
the superfamily, GSDME, is also cleaved between its N- 
and C-terminal domains by caspase-3 during apoptosis 
which, similar to GSDMD, also liberates a cytotoxic 
N-terminus that permeabilizes the plasma membrane and 
may drive secondary necrosis (Table 1; Figure 1) [15,16]. 
Furthermore, this N-terminal pore-forming function is 
conserved in all superfamily members, except DFNB59, 
although the mechanism of activation of other members 
currently remains unknown [14]. Interestingly, recent 
evidence suggests that in addition to forming pores in the 
plasma membrane, this family also possesses the abili-
ty to form pores in mitochondrial membranes which is 
important in augmenting the apoptotic response and may 
serve to bridge activation of the pyroptotic pathway to the 
apoptotic pathway [17].

APOPTOSIS

Intrinsic Apoptotic Pathway
Mechanistically, apoptosis can be activated by one 

of two pathways: the intrinsic or the extrinsic apoptotic 
pathway. Activation of the intrinsic apoptotic pathway 
arises when cells sense intracellular or extracellular 
stresses such as DNA damage, viral or bacterial infec-
tion, growth factor withdrawal, glucocorticoids, ROS 
overload, or hypoxia. These stimuli begin a cascade of 
signaling by the pro-apoptotic BCL-2 family members 
whose expression and activation ultimately leads to dis-
ruption of mitochondrial function via mitochondrial outer 
membrane permeabilization (MOMP) [1,18-22].

All BCL-2 family members share one to four BCL-
2 homology (BH) domains and are divided into three 
groups: the proapoptotic effectors, the antiapoptotic 
BCL-2-like members, and the proapoptotic BH3-only 
members [2]. The proapoptotic effectors include BAK, 
BAX, and BCL-2-related ovarian killer (BOK) which are 
unique in their ability to oligomerize and directly form 
pores in the outer mitochondrial membrane (OMM) lead-
ing to MOMP and the release of additional proapoptotic 
factors that potentiate apoptotic signaling [1-5]. While 
BAX cycles between the cytosol and the OMM and BAK 
permanently localizes to the OMM, both are inhibited 
from forming mitochondrial pores by the activity of the 
antiapoptotic BCL-2 family members [23-25]. These 
members include BCL-2, BCL-w, BCL-2-related gene, 
long isoform (BCL-xL), myeloid cell leukemia 1 (MCL-
1), and BCL-2 related protein A1 (A1 or BFL-1) which 
reside predominantly in the OMM and function to an-
tagonize the proapoptotic BCL-2 family members by di-
rectly binding to and sequestering them [26-29]. Binding 
of antiapoptotic BCL-2 family members to proapoptotic 
effectors prevents their ability to form oligomers in the 
OMM and can also promote their retrotranslocation away 
from the OMM to the cytosol [1,2,25]. Furthermore, an-
tiapoptotic BCL-2 family members can block apoptosis 
by sequestering proapoptotic BH3-only members that 
directly activate BAK and BAX (Figure 2) [5,30,31].

To overcome the inhibitory effects of the antia-
poptotic BCL-2 members, the proapoptotic BH3-only 
members which include BCL-2 antagonist of cell death 
(BAD), BCL-2 modifying factor (BMF), harakiri (HRK), 
p53-upregulated modulator of apoptosis (PUMA), 
BCL-2-interacting killer (BIK), NOXA, BCL-2-interact-
ing mediator of cell death (BIM), and BCL-2-interacting 
domain death agonist (BID) are activated in response to 
cellular stresses or developmental cues. Activation occurs 
transcriptionally such as with the p53-mediated upregu-
lation of PUMA or post-translationally such as with the 
caspase-8-medited proteolytic cleavage of BID [32-35]. 
Some proapoptotic BH3-only members (i.e. BID, BIM, 
PUMA, and NOXA) directly activate the intrinsic apop-
totic pathway by binding to BAK and BAX leading to 
a conformational change that allows for their oligomer-
ization in the OMM [36-38] while other members (i.e. 
BAD, BMF, HRK) can promote apoptosis indirectly by 
binding to and inhibiting the antiapoptotic BCL-2 family 
members from sequestering BAK and BAX [39-41].

Once BAK and BAX induce MOMP, proapoptotic 
factors including Cytochrome c (Cyt c), High Tempera-
ture Requirement Protein A2 (HtrA2/Omi), and second 
mitochondrial activator of caspases/direct IAP-binding 
protein with low pI (Smac/DIABLO) are released from 
the mitochondria into the cytosol where they continue 
the apoptotic signaling cascade [42-45]. HtrA2/Omi and 
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receptor 1 (TRAILR1), respectively. Binding of these li-
gands to their receptors induces conformational changes 
in the intracellular trimerized receptor tails that allows for 
the recruitment of adaptor molecules like Fas associated 
death domain (FADD) protein to Fas and TRAILR1 or 
TNFR1 associated death domain (TRADD) protein to 
TNFR1 [57-63]. The initiator caspase pro-caspase-8 is 
then directly recruited to FADD via homotypic death ef-
fector domain (DED) interactions or indirectly recruited 
to TRADD via FADD-TRADD interactions leading to 
pro-caspase-8 dimerization and subsequent autoproteo-
lytic activation [63-65]. Of note, TNFα-mediated apopto-
sis can be dependent or independent on the kinase activity 
of the serine/threonine kinase receptor-interacting protein 
kinase 1 (RIPK1) depending on RIPK1 phosphorylation 
status [66] . Once activated, caspase-8 cleaves and acti-
vates pro-caspase-3 which carries out the dismantling of 
the cellular machinery as outlined above [67,68].

Intriguingly, activation of the extrinsic apoptotic 
pathway can lead to activation of the intrinsic apop-
totic pathway via the proapoptotic BH3-only member 
BID. BID is normally found inactive in the cytosol but 
is cleaved by caspase-8 generating an active C-terminal 
fragment called truncated BID (tBID) [32-34]. tBID trans-
locates to the mitochondria where it binds to and directly 
activates oligomerization of BAX/BAK pores leading to 
MOMP and activation of the Apaf-1 apoptosome (Figure 
2) [37,38]. It is interesting to note, however, that genetic 
knockout or knockdown of BID only partially reduces 

Smac/DIABLO function by binding to and inactivating 
the inhibitors of apoptosis (IAPs) which normally bind 
to and inhibit activation of the caspases [43,46-49]. In 
addition, Cyt c binds to the cytosolic adaptor molecule 
apoptotic protease activating factor 1 (Apaf-1) leading 
to a conformational change that results in its oligomeri-
zation, formation of the apoptosome, and recruitment of 
the initiator caspase pro-caspase-9 [50,51]. Pro-caspase-9 
autoproteolytically processes itself generating a fully ac-
tive caspase-9 protease which then cleaves the effector 
caspases pro-caspase-3, -6, and -7 leading to their ful-
ly active proteolytic forms [51]. These caspases target 
hundreds of cellular substrates for proteolysis, leading 
to the characteristic morphological changes associated 
with cells undergoing apoptosis such as DNA fragmen-
tation, plasma membrane blebbing, cell shrinkage, and 
the flipping of phosphatidylserine from the inner plasma 
membrane leaflet to the outer (Figures 1 and 2) [52-56].

Extrinsic Apoptotic Pathway
While the outcome of extrinsic and intrinsic apoptot-

ic signaling is virtually identical, these pathways differ in 
their mode of activation. In contrast to the intrinsic apop-
totic pathway, activation of the extrinsic apoptotic path-
way occurs via the extracellular binding of ligands such 
as Fas ligand (FasL), tumor necrosis factor (TNF) α, and 
TNF-Related Apoptosis-Inducing Ligand (TRAIL) to the 
cell surface death receptors Fas (CD95 or APO-1), TNF 
receptor superfamily member 1A (TNFR1), and TRAIL 

Figure 2. Intrinsic and extrinsic apoptotic activation. Activation of the apoptotic program can occur intrinsically 
when cells sense internal damage and stress leading to activation of the proapoptotic BH3-only BCL-2 family members. 
The BH3-only proteins prevent anti-apoptotic BCL-2-like proteins from inhibiting Bak/Bax oligomerization on the OMM. 
Once oligomerized, proapoptotic factors like Cyt c escape into the cytosol and activate caspase-3 via the Apaf-1 
apoptosome. Extrinsic apoptotic activation occurs when death ligands bind to cell surface death receptors leading 
to the recruitment and activation of pro-caspase-8. Active caspase-8 can then directly activate caspase-3 to begin 
dismantling the cell or cleave BID to activate the intrinsic apoptotic pathway.
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Figure 3. GSDMD-mediated pyroptosis. Macrophages and dendritic cells sensing DAMPs and PAMPs will activate 
canonical inflammasome assemblies leading to the recruitment and activation of procaspase-1 (procasp-1). Intracellular 
LPS from gram-negative bacteria binds to and activates procaspases -4 or -5 (-11 in mice; procasp-4, -5, -11) forming 
the noncanonical inflammasome. Active inflammatory caspases cleave GSDMD liberating an ~30 kDa N-terminal 
fragment (GSDMD-N) that translocates and oligomerizes to form pores in the plasma membrane. These pores allow 
the release of proinflammatory molecules like HMGB1, IL-1β, and IL-18 and disrupt ionic gradients leading to cellular 
swelling and pyroptosis. GSDMD-N also permeabilizes the mitochondria, releasing proapoptotic factors like Cyt c 
leading to activation of caspase-3 via the Apaf-1 apoptosome.

Figure 4. GSDME-N permeabilizes the plasma and mitochondrial membranes. Activation of the intrinsic apoptotic 
pathway by glucocorticoids, UV irradiation, etoposide, or serum starvation or the extrinsic apoptotic pathway by TNFα 
leads to activation of caspase-3. Active caspase-3 cleaves GSDME generating a pore-forming (GSDME-N) ~30 kDa 
N-terminal fragment that translocates to and permeabilizes the mitochondria. Proapoptotic factors are released through 
GSDME-N mitochondrial pores and positively feedback on caspase-3 activation and GSDME cleavage (green arrows). 
After mitochondrial permeabilization, GSDME-N forms pores in the plasma membrane leading to secondary necrosis/
pyroptosis, which allows the release of proinflammatory DAMP molecules like HMGB1.
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recruit the inflammatory caspase pro-caspase-1 either 
directly or indirectly through the adaptor protein apop-
tosis-associated speck-like protein containing CARD 
(ASC) leading to its autoproteolytic activation (reviewed 
in [72]). Active caspase-1 is a cysteine protease that 
cleaves pro-interleukin (IL)-1β and pro-IL-18 to generate 
their active signaling forms, IL-1β and IL-18, respective-
ly, which are released from cells undergoing pyroptosis to 
activate additional immune responses and inflammation 
[73,74]. In addition to canonical inflammasome-driv-
en pyroptosis, a caspase-1-independent inflammasome 
called the noncanonical inflammasome can also activate 
pyroptosis. The noncanonical inflammasome is activat-
ed when intracellular LPS from gram-negative bacteria 
binds to the caspase activation and recruitment domain 
(CARD) of pro-caspase-11 of mice (or the human ortho-
logs pro-caspase-4 or -5) leading to their oligomerization 
and autoactivation [75].

In 2015, using three different techniques (CRISPR/
Cas-9 screening, ENU-forward mouse genetic screen-
ing, and high-sensitive quantitative mass spectrometry), 
three independent laboratories simultaneously demon-
strated that GSDMD is a novel substrate of caspase-1, 
-4, and -5 (-11 in mice) that is cleaved between its N- 
and C-terminal domains downstream of canonical and 
noncanonical inflammasome activation and that the 
liberated N-terminus harbors intrinsic pyroptotic activ-
ity [6-8]. It wasn’t until a year later, however, that six 
independent groups then demonstrated mechanistically 
that GSDMD-N drives pyroptosis by oligomerizing and 
forming pores in the plasma membrane causing the cell 
swelling, lysis, and release of cytosolic contents like 
IL-1β, IL-18, and high mobility group box 1 (HMGB1) 
that characterize pyroptotic cell death (Figure 3) [9-14]. 
These studies also demonstrated that GSDMD-N binds 
specifically to phosphatidylinositol-4-phosphate [PI(4)
P], phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2], 
phosphatidylinositol-3,4,5-triphosphate [PI(3,4,5)P3], 
phosphatidylserine (PS), and cardiolipin (CL) phospho-
lipids present in biomembranes, a feature that is also 
shared with GSDMA-N and GSDME-N [10,14,16,71]. 
As phosphatidylinositol phosphates and PS are enriched 
on the inner leaflet of the plasma membrane, GSDMD-N 
only attacks the plasma membrane intracellularly and 
not when present extracellularly [10]. Physiologically, 
GSDMD-N may play a beneficial role by directly killing 
bacteria by forming pores in their cardiolipin-enriched 
membranes and by initiating pyroptosis [10,14], how-
ever, excessive GSDMD-N-mediated pyroptosis plays 
a detrimental role in promoting lethal endotoxemia that 
occurs during LPS-induced septic shock [6].

In addition to its role in pyroptosis, GSDMD was 
recently shown to play a vital role in NETosis (Table 1). 
In response to microbial attack, neutrophils will release 

the magnitude and delays the kinetics of Cyt c release, 
caspase-3 activation, and cell death in mouse hepatocytes 
and human islet cells treated with TNFα or FasL, respec-
tively, suggesting the possibility of other molecules that 
can bridge activation of the extrinsic apoptotic pathway 
to that of the intrinsic [69,70]. Indeed, it was recently 
demonstrated that similar to BID, GSDME is cleaved 
downstream of the extrinsic apoptotic pathway and that 
the active fragment, GSDME-N, independently induces 
the release of Cyt c from the mitochondria to promote 
caspase-3 activation [17].

The Gasdermin Superfamily
Humans encode six gasdermin superfamily mem-

bers including GSDMA, GSDMB, GSDMC, GSDMD, 
GSDME/DFNA5, and DFNB59 while mice encode ten 
including three GSDMA orthologs (Gsdma1, Gsdma2, 
and Gsdma3), four GSDMC orthologs (Gsdmc1, Gsd-
mc2, Gsdmc3, and Gsdmc4), Gsdmd, Gsdme/Dfna5, and 
Dfnb59, but no GSDMB orthologs. All members share 
~45% sequence homology and, except for DFNB59, 
adopt a two-domain architecture characterized by glob-
ular N- and C-terminal domains separated by a flexible 
linker region [7,14]. The N-terminal domains (GSDM-N) 
of all members except DFNB59 can oligomerize and 
form membrane-spanning pores in the plasma membrane 
resulting in the disruption of ionic gradients, osmotic 
cellular swelling, and cytolysis, ultimately resulting in 
necrotic cell death [9-14]. In healthy cells, however, the 
cytotoxic N-termini, are normally masked by the auto-
inhibitory C-termini which prevent the gasdermins from 
binding to negatively charged phospholipids, oligom-
erizing, and forming pores [14,71]. Interestingly, new 
evidence also demonstrates that several members includ-
ing GSDMA-N, GSDMD-N, and GSDME-N can also 
form pores in the mitochondria leading to the release of 
proapoptotic molecules (Figures 3 and 4) [17].

GSDMD-N pores Induce Pyroptosis and NETosis
Pyroptosis is another form of PCD that plays im-

portant roles in pathogen clearance and activation of the 
adaptive immune system. In contrast to apoptotic cells, 
which maintain their plasma membrane integrity, cells 
undergoing pyroptosis are highly inflammatory due to 
permeabilization of their plasma membranes and the 
consequential release of pro-inflammatory signaling mol-
ecules (Figure 1). This form of PCD is initiated in cells 
of the innate immune system such as macrophages and 
dendritic cells upon sensing a variety of diverse patho-
gen- and danger-associated molecular patterns (PAMPs 
and DAMPs, respectively) such as lipopolysaccharide 
(LPS) and ATP. These signals lead to the formation of 
multiprotein complexes termed inflammasomes that 
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Gasdermins Induce Apoptosis by Permeabilizing 
the Mitochondria

New evidence demonstrates that members of the gas-
dermin family also possess mitochondrial pore-forming 
functions. Indeed, downstream of intrinsic and extrinsic 
apoptotic activation, caspase-3 generated GSDME-N lo-
calizes to the mitochondria and is sufficient to form pores 
that release proapoptotic molecules like Cyt c and HtrA2/
Omi [17]. This event creates a positive feedback loop that 
promotes caspase-3 activation and further GSDME cleav-
age and augments the apoptotic program (Figure 4) [17]. 
This function appears to be conserved in the superfamily 
as other members like GSDMA-N and GSDMD-N also 
permeabilize the mitochondria to release proapoptotic 
factors [17]. Consistent with this idea, previous reports 
have demonstrated that GSDMA-N, GSDMD-N, and 
GSDME-N all bind to CL and form pores in CL-en-
riched liposomes [10,14,16,71], a major phospholipid 
constituent of the inner mitochondrial membrane that 
translocates to the outer mitochondrial membrane during 
PCD [85-87]. These findings may also explain previous 
observations that these members can activate the apoptot-
ic program, disrupt mitochondrial function, and suppress 
tumor growth.

Indeed, GSDMA has been shown to play a role in 
activating apoptosis in gastric pit cells. Overexpression 
of GSDMA in gastric cancer cell lines is sufficient to 
activate caspase-3/-7 as well as induce internucleosomal 
DNA cleavage, and physiologically, TGF-β-induced 
apoptosis in gastric pit cells is mediated by transcrip-
tional upregulation of GSDMA via recruitment of the 
transcription factor LMO1 to the GSDMA promoter [88]. 
The N-terminus of GSDMA3 can translocate to the mito-
chondria via Hsp90 where it stimulates the production of 
mitochondrial ROS, dissipates mitochondrial membrane 
potential, and induces mitochondrial permeability transi-
tion (MPT), ultimately leading to cell death [89,90]. In 
addition, several mutant mouse lines harboring mutations 
in Gsdma3 display alopecia, hyperkeratosis, and skin in-
flammation due to a depletion of the bulge stem cells that 
give rise to hair follicles [91-94], and polymorphisms in 
GSDMA have been linked to the development of asthma 
[95,96], supporting its role as a pore-forming protein that 
promotes both apoptosis and inflammation.

During pyroptosis, GSDMD induces mitochondrial 
depolarization in a BAK/BAX-independent manner [97], 
and GSDMD-N has recently been shown to localize to 
the mitochondria where it causes mitochondrial ROS 
generation downstream of Shiga toxin/LPS-induced 
canonical and noncanonical inflammasome activation 
[98]. Furthermore, several lines of evidence suggest 
that activation of the pyroptotic pathway can also lead 
to activation of the apoptotic pathway. For example, the 
apoptotic caspase-7 is activated downstream of caspase-1 

neutrophil extracellular traps (NETs) composed of DNA 
and antimicrobial proteins that trap and kill pathogens, al-
though the mechanism of NET release has remained elu-
sive. However, two groups demonstrated that activation 
of GSDMD is required not only for permeabilization of 
the plasma membrane that is required for NET extrusion, 
but also nuclear membrane permeabilization required for 
the release of DNA [76,77].

GSDME-N pores Switch Apoptosis to Secondary 
Necrosis

Apoptosis is a noninflammatory and immunologi-
cally silent form of PCD as cells maintain their plasma 
membrane integrity and do not release proinflammatory 
molecules. In addition, upon activation of the apoptotic 
pathway, dying cells display cell surface “eat-me” sig-
nals, such as PS and calreticulin, that are quickly recog-
nized by neighboring scavenger cells allowing for rapid 
phagocytosis through a process called efferocytosis [78-
80]. In some instances, however, the scavenging capac-
ity of a particular system is inhibited or insufficient to 
remove apoptotic cells in a timely manner which causes 
these dying cells to progress to secondary necrosis (Table 
1; Figure 1). In contrast to apoptosis, secondary necrotic 
cells lose their plasma membrane integrity, swell, and 
rupture leading to the release of proinflammatory, in-
tracellular molecules including HMGB1 and activated 
caspase-3 [81,82]. Interestingly, secondary necrosis has 
been thought to be a result of a passive breakdown of the 
plasma membrane over time, however recent evidence 
suggests that GSDME likely induces secondary necrosis 
upon cleavage by caspase-3 during apoptosis. Indeed, 
activation of apoptosis by many stimuli including TNFα, 
ultraviolet irradiation, etoposide, encephalomyocarditis 
virus, and vesicular stomatitis virus infection activates 
the apoptotic pathway and caspase-3 leading to cleavage 
of GSDME between its N- and C-terminal domains (Fig-
ure 4) [15-17]. Like GSDMD, this cleavage liberates the 
necrotic N-terminus which over time permeabilizes the 
plasma membrane and leads to cellular swelling, cytol-
ysis, and the release of proinflammatory molecules that 
characterizes secondary necrosis [15-17]. This function 
may contribute to the extensive intestinal tissue damage 
and inflammation that occurs in patients undergoing che-
motherapy and may be a beneficial target for alleviating 
such side effects [16]. Although the role of GSDME in 
secondary necrosis downstream of caspase-3 activation 
is now well documented, GSDME deficiency may not 
prevent secondary necrosis in all cell types [83,84], 
suggesting that additional GSDME-independent and cell-
type specific secondary necrosis mechanisms may play 
a dominant role in permeabilizing the plasma membrane 
downstream of caspase-3 activation.
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by many of the changes that a healthy cell must undergo 
in order to become tumorigenic including DNA damage 
and genomic instability caused by rapid cell division, 
hypoxia, oncogene overexpression, and survival factor 
depletion. Overtime, however, some cells may continue 
accumulating mutations that desensitize them to acti-
vation of the apoptotic program and inhibit them from 
responding to these triggers, initiating cell death, and 
preventing cancer. In fact, evasion of PCD is recognized 
as one of the “Hallmarks of Cancer” that most, if not all, 
cells must adopt in order to transform and become ma-
lignant [110,111]. Mutations that drive cancer can over 
activate molecules that inhibit apoptosis (oncogenes) or 
inactivate molecules that trigger apoptosis (tumor sup-
pressors).

Interestingly, many members of the gasdermin super-
family are thought to be tumor suppressors. Indeed, GSD-
MA expression is highly enriched in normal gastric and 
esophageal tissue but almost completely lost in a panel 
of 14 different gastric cancer cell lines and most primary 
esophageal squamous cell carcinomas [88,112,113], and 
overexpression of GSDMA in gastric cancer cell lines 
decreases colony formation [88]. GSDME also functions 
as a tumor suppressor as it is highly downregulated in 
breast, gastric, and colorectal cancers due to promoter 
hypermethylation [114-121], and its expression positive-
ly correlates with superior prognosis and 5-year survival 
rates in patients with esophageal squamous cell carci-
noma [122] and negatively correlates with an increased 
risk of breast cancer metastasis [118]. Furthermore, ex-
pression of GSDME in melanoma, acute lymphoblastic 
leukemia, gastric, lung, liver, and colon cancer cell lines 
leads to decreased cell growth, survival, and colony for-
mation [17,114,119,123,124]. One study also shows that 
deletion of GSDME from melanoma cells accelerates 
tumor growth and decreases survival outcomes in an in 
vivo allograft mouse model [17], however another study 
shows no significant difference in tumor growth when 
GSDME is deleted from lung cancer cells [125]. This dis-
crepancy may be explained by particular tissue- and/or 
cancer-specific drivers that may desensitize lung cancer 
cells, but not melanoma cells, to the proapoptotic effects 
of GSDME on tumor growth.

GSDMD has also been studied in the context of can-
cer, however, its function as either a tumor suppressor or 
oncogene remains unclear. Support for its role as a tumor 
suppressor comes from findings demonstrating that GSD-
MD is downregulated in primary esophageal squamous 
cell carcinomas and gastric cancers although it is normal-
ly highly enriched in these tissues and that expression of 
GSDMD reduces colony formation and cell proliferation 
in gastric cancer cell lines and reduces their ability to form 
tumors in xenograft models [113,126]. However, GSD-
MD was also found to be oncogenic as it is upregulated 

by a number of inflammasomes including the nod-like 
receptor family pyrin domain containing 3 (NLRP3) 
inflammasome to induce transcriptional upregulation of 
important pro-inflammatory cytokines [99], the nod-like 
receptor family CARD containing 4 (NLRC4) inflam-
masome in order to deliver bacteria to the lysosomal 
compartments for degradation [100], and the absent 
in melanoma 2 (AIM2) inflammasome [101]. In addi-
tion to canonical inflammasome-mediated activation of 
apoptotic caspases, the noncanonical inflammasome can 
also activate caspases-3/-7 and apoptosis independent 
of BID and caspase-1 in vitro and in vivo [102]. How 
these pathways are mechanistically linked has remained 
unknown, however a recent study demonstrates that 
GSDMD-N can form pores in the mitochondria and that 
macrophages deficient in GSDMD expression have a 
significant delay in caspase-3/-7 activation upon activa-
tion of the noncanonical inflammasome [17]. Therefore, 
GSDMD-N-mediated MOMP may explain how GSDMD 
disrupts mitochondrial function during pyroptosis and 
how these apoptotic caspases are activated downstream 
of inflammasome activation. It is also interesting to 
note, however, that caspase-3/-7 have also been shown 
to cleave GSDMD within its N-terminal domain, thus 
inactivating its pore-forming functions [15,103]. This 
mechanism suggests a potential negative feedback loop 
in GSDMD-N-mediated mitochondrial pore-formation, 
however future studies should determine the importance 
of this regulation.

Furthermore, overexpression of a gain-of-function 
mutant of GSDME that causes sensorineural hearing 
loss (GSDMEHL) activates apoptosis in HEK293T and 
yeast cells [17,104,105], and expression of WT GSDME 
sensitizes hepatocellular carcinoma, gastric, melanoma, 
thymoma, and acute lymphoblastic leukemia cancer cell 
lines to apoptosis [17,106-108]. In addition, GSDME-N 
and GSDMEHL colocalize with mitochondria and induce 
the production of ROS when expressed in HEK293T and 
yeast cells [17,105,109], and gene set enrichment anal-
ysis demonstrated that gene sets involved in apoptotic 
pathways are downregulated in GSDME-/- mice compared 
to GSDME+/+ mice [104] supporting the role of GSDME 
as a mitochondrial pore-forming protein that potentiates 
apoptotic signaling.

GASDERMINS IN DISEASES AND 
DISORDERS

Gasdermins in Cancer
Cancer results from the malignant transformation of 

cells that leads to their uncontrolled proliferation and me-
tastasis where they spread and form tumors throughout 
the body that disrupt organ function and ultimately lead 
to death of the organism. Apoptosis is normally triggered 
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function mutation. However, as GSDME appears to have 
widespread tissue distribution, albeit at varying levels, 
it remains to be seen why only the cochlea is affected 
and patients harboring these mutations do not present any 
obvious additional abnormalities.

One possibility is that expression of the C-terminally 
truncated mutant results in a protein that is highly unsta-
ble and rapidly degraded by the proteasomal machinery. 
Indeed, Wang et al. show that overexpression of GSD-
MEHL in HeLa cells followed by treatment with cyclohex-
imide resulted in nearly 100 percent degradation within 
24 hours whereas little to no loss was observed in cells 
expressing WT GSDME or WT GSDME-N [16]. Further-
more, Val Laer et al. generated a mouse model mimicking 
the GSDME HL mutation by specifically deleting exon 8 
and showed that although the truncated mRNA transcript 
is expressed in these mice, no mutant protein could be 
detected by immunoblotting [142]. These observations 
support the theory that the mutant protein likely has a 
short half-life and is degraded before it can cause exten-
sive damage in other organs. This notion, however, still 
begs the question of how GSDMEHL specifically damages 
the cochlear hair cells to cause HL.

Hair cells are terminally differentiated sensory ep-
ithelium that transform physical noises into chemical 
signals and transmit them to the brain. These cells must 
last the lifetime of mammalian species as they are not re-
generated to replace dead or damaged cells. Furthermore, 
outer hair cells are extremely sensitive to noise-induced 
trauma which can result in the accumulation of ROS, 
activation of apoptosis, and cell death [143]. It is there-
fore possible that hair cells express very low levels of 
GSDMEHL that are insufficient to activate apoptosis alone 
but instead further increase the sensitivity of these cells 
to noise-induced cell death by lowering the threshold for 
apoptosis activation. In this case, noise levels that would 
normally be insufficient to kill WT hair cells may be suffi-
cient to kill hair cells expressing GSDMEHL, and accumu-
lating exposure to these everyday noises would lead to a 
progressive increase in hair cell death, ultimately causing 
permanent HL. This theory would also explain the ex-
treme variability in the age of onset and why mutations 
cause progressive HL, as the noise levels experienced by 
an individual on a daily basis can drastically differ.

CONCLUSIONS AND OUTLOOK

Recent advances in PCD research have greatly deep-
ened our knowledge of gasdermin biology and provided 
novel avenues to pursue for therapeutic intervention for 
diseases and disorders like sepsis, cancer, and HL. While 
these past few years have taught us a lot, there are still 
many questions that remain open. GSDMD and GSDME 
are activated upon cleavage by the inflammatory caspases 

in non-small cell lung cancer (NSCLC) tissue compared 
to adjacent, non-cancerous tissue and that knockdown of 
its expression in NSCLC cell lines restricts cell growth 
in vitro and in vivo [127]. These observations suggest 
that the proapoptotic and tumor suppressive functions of 
GSDMD may be cancer- and/or tissue-specific.

On the other hand, one superfamily member, 
GSDMB, may function as an oncogene as it is amplified 
and overexpressed in several gastric cancer cell lines and 
primary gastric and breast tumors [113,128,129]. Further-
more, its expression does not limit colony formation in 
the same gastric cancer cells that GSDMA and GSDMD 
do [113], and its expression in breast cancer promotes in-
vasion and metastasis and decreases patient survival out-
comes [130]. Interestingly, GSDMA is highly expressed 
in the nondividing, differentiated cells of the esophagus 
and stomach while GSDMB is expressed in the rapidly 
dividing stem cells of these same organs suggesting that 
GSDMB may play a role in promoting cell proliferation 
and/or migration, while GSDMA does not [113]. In ad-
dition, GSDMB-N does not bind CL like GSDMA-N, 
GSDMD-N, and GSDME-N suggesting that it does not 
interact with the mitochondria [131]. As all members of 
the gasdermin superfamily, except DFNB59, possess the 
ability to permeabilize the plasma membrane while there 
is only evidence that GSDMA, GSDMD, and GSDME 
possess mitochondrial pore-forming activity, it is possi-
ble that only the latter function determines whether or not 
these members are tumor suppressors.

GSDME Mutations and Hearing Loss
A variety of mutations in GSDME have been report-

ed to cause autosomal dominant, progressive, sensorineu-
ral hearing loss (HL) with the age of onset being highly 
variable ranging from 0 to 50 years [132-138]. These mu-
tations are found in introns 7 and 8 and include base pair 
substitutions and indels that disrupt splice sites and splice 
site selection sequences which ultimately lead to skip-
ping of exon 8 during pre-mRNA splicing [135,137,139]. 
Splicing of exon 7 and 9 introduces a frameshift that 
translates amino acids 1-330 followed by an aberrant 
stretch of 41 amino acids and a premature stop codon. 
As the C-terminus of gasdermin members inhibit their 
pore-forming activity, this truncation represents a gain-
of-function mutation by unmasking the toxic N-terminus. 
Supporting this notion, truncating mutations in an Iranian 
family in exon 5 that would lead to an inactive N-termi-
nal protein product do not cause HL [140]. Furthermore, 
overexpression of GSDMEHL in HEK293T and yeast cells 
leads to apoptosis and necrosis [17,104,105], similar to 
GSDME-N, and histopathological analysis of inner ear 
tissue from patients with GSDME HL mutations revealed 
severe degeneration of the cochlea where WT GSDME 
is highly expressed [141], indicating that it is a gain-of-
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bers and identify specific inhibitors that prevent their 
pore-forming function.
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