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Abstract: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease characterized
by irreversible lung scarring, which achieves almost 80% five-year mortality rate. Undeniably,
commercially available pharmaceuticals, such as pirfenidone and nintedanib, exhibit certain effects
on improving the well-being of IPF patients, but the stubbornly high mortality still indicates a
great urgency of developing superior therapeutics against this devastating disease. As an emerging
strategy, gene therapy brings hope for the treatment of IPF by precisely regulating the expression of
specific genes. However, traditional administration approaches based on viruses severely restrict the
clinical application of gene therapy. Nowadays, non-viral vectors are raised as potential strategies for
in vivo gene delivery, attributed to their low immunogenicity and excellent biocompatibility. Herein,
we highlight a variety of non-viral vectors, such as liposomes, polymers, and proteins/peptides,
which are employed in the treatment of IPF. By respectively clarifying the strengths and weaknesses
of the above candidates, we would like to summarize the requisite features of vectors for PF gene
therapy and provide novel perspectives on design-decisions of the subsequent vectors, hoping to
accelerate the bench-to-bedside pace of non-viral gene therapy for IPF in clinical setting.

Keywords: idiopathic pulmonary fibrosis; gene therapy; non-viral delivery systems; nanoparticles

1. Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease, of which
the pathogenesis is still masked [1,2]. The main clinical manifestations of patients with
IPF are unexplained exertional dyspnea, chronic dry cough, and velcro-like crackles. The
prevalence of IPF appears to be increasing and the incidence of the disease is higher in
Europe and North America (3 to 9 cases per 100,000 person-years) than in East Asia and
South America (fewer than 4 cases per 100,000 person-years) [2]. IPF usually occurs in older
adults (>50 years), and men are at higher risk than women [3]. In addition to factors such
as aging, smoking, and dusty living environments, IPF sometimes runs in families, and
several genes are involved in its development [3]. Due to the lack of effective treatments,
the average life expectancy of the patients after diagnosis is usually 2.5–3.5 years [4–6].

Current treatments for IPF are mainly composed of nonpharmacological manage-
ments (including smoking cessation, supplemental oxygen, pulmonary rehabilitation, lung
transplantation) and pharmacotherapeutic approaches [2]. Up to now, only nintedanib
and pirfenidone are recommended as the first-line therapeutic drugs for the treatment of
IPF [1,2]. Although these two drugs can attenuate the development of pulmonary fibrosis
to a certain extent, the restricted curative effects do not reduce the five-year mortality rate of
IPF patients, actually. Moreover, the accompanying side effects, such as bleeding, diarrhea,
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and liver toxicity, even aggravate the patients’ suffering [7–10]. In view of the limitations of
current pharmacotherapeutics for IPF, safer and more effective drugs are urgently needed.

The increasing number of approved nucleic acid-based therapies has demonstrated
the potential of gene therapy for various diseases, including IPF [11]. By transfecting the
target cells with specific exogenous nucleotide fragment, such as DNA, mRNA, small
interfering RNA (siRNA), microRNA (miRNA) mimics, and short hairpin RNA (shRNA),
gene therapy is able to precisely regulate gene expression and subsequently modulate the
function of target cells [12]. Lipid-based, polymeric nanoparticles, and protein/peptides
are the main categories of non-viral gene delivery systems. To deliver gene cargos to the
target cells with high efficiency, the employed vectors need to be well-designed, which
should simultaneously possess favorable stability, desirable target affinity, optimal loading
capacity, and satisfactory biocompatibility [13]. In order to achieve above goals in IPF
treatment, herein we review the pathophysiological process of pulmonary fibrosis and
summary gene-therapy strategies applied in treating IPF, especially the applications of
non-viral vectors, hoping to accelerate the bench-to-bedside pace of non-viral gene therapy
for IPF.

2. Pathophysiology of IPF

Idiopathic pulmonary fibrosis has been considered as the result of multiple environ-
mental and interacting genetic risk factors. Senescence [14], tobacco smoking [15,16], air
pollution [17,18], gastroesophageal reflux [19], obstructive sleep apnea [20], herpesvirus
infection [21], and certain occupational exposures [22] have been identified as nongenetic
risk factors for IPF. Variations in genes that are associated with host defense (MUC5B,
ATP11A, TOLLIP) [23–27], telomerase length maintenance (TERT, TERC, PARN, RTEL1,
OBFC1, DKC1, TINF2) [23,25,28–30], surfactant dysfunction (SFTPC, SFTPA2, ABCA3), and
cell–cell adhesion (DSP, DPP9) increase susceptibility to IPF [31–34].

Fibrogenesis is often defined as an out-of-control repair of damaged tissues with an ex-
cessive accumulation of extracellular matrix (ECM), which consists of a clotting/coagulation
phase, an inflammatory phase, a fibroblast migration/proliferation phase, and a remodel-
ing phase [35]. Epithelial cells and endothelial cells release inflammatory mediators when
tissue damage, causing an antifibrinolytic-coagulation cascade and a recruitment of inflam-
matory cells. Activated macrophages and neutrophils produce a variety of cytokines and
chemokines that amplify the inflammatory response and trigger fibroblasts proliferation
and recruitment. Fibroblasts are activated and transitioned to matrix-producing myofi-
broblasts, which secrete abundant ECM components (e.g., hyaluronic acid, fibronectin,
proteoglycans, and interstitial collagens) and remodel lung interstitium [1,35] (Figure 1).

Transforming growth factor-β (TGF-β), fibroblast growth factor (FGF), Wnt, hedge-
hog, and Notch signaling pathways have been proven to be involved in the pathogene-
sis of pulmonary fibrosis by orchestrating the functions of effector cells (e.g., epithelial
cells, macrophages, fibroblasts, and myofibroblasts) [36]. Current and potential treatments
mainly concentrate on targeting these signaling pathways. For example, nintedanib and
pirfenidone are two kinds of classical small-molecule drugs which are recommended for the
treatment of IPF [1,2]. Nintedanib is a tyrosine kinase inhibitor targeting soluble vascular en-
dothelial growth factor receptor (VEGFR)/fibroblast growth factor receptor (FGFR)/platelet
derived growth factor receptor (PDGFR) which exhibits anti-fibrotic and anti-inflammatory
effects in IPF treatment [9]. Pirfenidone plays an anti-inflammatory and anti-fibrotic effect
by down-regulating TGF-β and tumor necrosis factor-α (TNF-α) pathways, which could
reduce fibroblast proliferation and inhibit collagen synthesis [7,8]. Although these drugs
can attenuate the development of pulmonary fibrosis to some degree, the non-specificity of
the drugs’ targets may cause serious side effects, such as bleeding, diarrhea, and liver toxic-
ity [7–10]. A study used spermidine (Spd)-modified poly(lactic-co-glycolic acid) (PLGA)
NPs to encapsulate fluorofenidone (AKF) and improve the antifibrotic efficacy of the drug
in the lung. After intravenous injection of the nanomedicine into paraquat-induced mice,
in vivo fluorescence imaging and HPLC analysis of the distribution of the NPs in various
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tissues showed that the NPs were aggregated in the lungs. Histopathological analysis
exhibited that fibrohyperplasia, alveolar collapse, neutrophil infiltration, and pulmonary
septal injury were significantly reduced after SPD-AKF-PLGA NP treatment [37]. An-
other study used chitosan–sodium alginate as a vector to delivery pirfenidone to mice
through transdermal administration. Skin penetration was significantly increased, with
nanoparticle-loaded pirfenidone compared with pirfenidone solution [38]. Although drugs
loaded by the nanoparticles can improve their distribution and reduce their toxic side
effects, the fact that small molecule inhibitors have multiple targets with low specificity
still limits their clinical applications. Therefore, superior pharmacotherapeutics for IPF are
urgently needed.
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3. Gene Therapeutics for Pulmonary Diseases

With the in-depth understanding of diseases and the development of gene technology,
gene-based therapy has become a reality. Compared with conventional drugs that usually
target proteins, genetic drugs achieve highly specific and durable therapeutic effects by
introducing exogenous nucleic acids into cells to counteract the effects of defective genes.
Since exogenous nucleic acids are immunogenic, intolerant to the nucleases, and are difficult
to be transfected into cells, appropriate vectors are required for gene therapy [11]. These
vectors use biological and chemical modifications to protect nucleic acids from degradation
during the circulation, deliver them to the target tissue, and ensure the effective transfection
of nucleic acids into cells. According to their biochemical characteristics, the vehicles can
be classified as viral vectors and non-viral vectors. The outstanding transfection ability
makes viral vectors attractive for gene therapy [39]. Although retrovirus, adenovirus,
adeno-associated virus (AAV), and herpes simplex virus have been employed in clinical
applications, the risks caused by their immunogenicity, carcinogenesis, and non-targeted
delivery still impede the extensive utilization [12]. In addition, the limited DNA packaging
capacity and high production cost of viral vectors also slow down the bench-to-bedside
pace of virus-based gene therapy [12]. Compared to viral vectors, non-viral vectors exhibit
lower immunogenicity, higher loading efficiency, and are easier to be synthesized, which
are more tailor-made for clinical requirements and might bring new hope for the gene
therapy of pulmonary fibrosis [12,40].

For the gene therapy of pulmonary diseases, multiple administration routes are avail-
able, such as intravenous administration and airway administration. Due to the large
surface area, high membrane permeability, extensive blood vessels, and low degrading
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enzyme activity in lung, drugs could pass through the air–blood barrier along with gas
exchange [41]. Inhalation delivery strategies, including intratracheal/intranasal instillation
and nebulization, are the simplest and most common non-invasive routes for drugs to be
directly infused into lungs [41]. Considering pulmonary fibrosis-pathogenic molecules
(such as TGF-β) might participate in the maintenance of normal physiological functions in
other organs, systemic administration of drugs would cause severe side effects. Thus, for
the treatment of pulmonary diseases, the lung in situ administration through inhalation
is preferable due to the attenuated side effects and enhanced curative effects, as well as
reduced administration dosages [42].

However, there are still some obstacles that hinder gene therapeutics’ application
in the treatment of pulmonary diseases. Firstly, airway epithelium is covered with neg-
atively charged mucus which is in charge of the capture of inhaled extraneous matters.
Gene carriers are also likely fixed in the mucus through polyvalent adhesion interactions.
Subsequently, the presence of proteins, lipids, surfactants, ions, and various soluble macro-
molecules in airway mucus may impair the stability of gene vectors [41]. For example,
cationic polymers and lipid-based non-viral gene vectors can easily adhere to negatively
charged mucus components by electrostatic adsorption, leading to massive aggregation.
Negatively charged soluble substances in the mucus may also damage non-viral gene vec-
tors and destabilize the complexes of DNA and cationic vectors. Secondly, gene vectors in
the mucus gel will be removed from the lungs by mucociliary clearance (MCC), which pre-
vents them from reaching potential target cells efficiently [43]. Even after the gene vectors
pass through the mucus layer and reach to the alveolar sac region, the negatively charged
surfactants in the alveolar sac, composed of phospholipids, cholesterol, and surfactant
proteins, would prevent vectors from deeply penetrating into the focus [44]. Furthermore,
although alveolar macrophages seem not to be a significant barrier for gene vectors; since
gene vectors are generally smaller than the size phagocytosed by macrophages [45], ag-
gregation of gene vectors in the presence of pulmonary surfactants may make them more
easily be cleared by alveolar macrophages. Moreover, there is an embarrassing dilemma
in the design of vectors. If the gene vectors can overcome the above extracellular barri-
ers, such as escaping from the phagocytosis of macrophage, the characteristics that assist
vectors extracellularly would in turn prevent gene vectors from entering target cells due
to inefficient endocytosis through the membrane and tight connections between cells [46]
(Figure 2). Besides the above extracellular barriers, lots of intracellular barriers also impact
the efficacy of gene transfection. Once internalized by the target cell, the gene vectors must
pass through various intracellular barriers including, but not limited to, acidic vesicles (e.g.,
endosomes and lysosomes), molecules in cytoplasm, and nuclear membranes to achieve its
therapeutic effect [47]. Accordingly, to conquer the above obstacles, a variety of non-viral
vectors have been raised for the gene therapy of IPF, including liposomes, polymers, and
proteins/peptides. We will summarize the features of each vector in the following part.
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4. Non-Viral Gene Therapeutics

Non-viral gene therapeutics can mediate gene transfection by utilizing the physico-
chemical properties of non-viral vectors, which are usually formed by a polyvalent elec-
trostatic interaction between positively charged carrier materials and negatively charged
nucleic acids. Compared with viral vectors, non-viral vectors can encapsulate more nu-
cleic acids [12]. The preparation of non-viral vectors is simple and the production cost
is much cheaper than that of viral vectors [13]. In addition, non-viral vectors possess
lower immunogenicity than that of viral vectors [12]. Advances in materials gift non-viral
vectors with the ability to penetrate extracellular barriers, target specific cells, and enhance
intracellular delivery. Lipid-based, polymeric nanoparticles, and protein/peptides are the
main categories of non-viral gene delivery systems (Figure 3). Herein, we will discuss the
applications of these three gene therapeutic delivery systems in the treatment of pulmonary
fibrosis (Table 1).

Table 1. Publications on non-viral gene vectors for pulmonary fibrosis.

Vector Composition Target Gene Nucleotide Expression Species Route Model Year Ref.

Liposomes DOTMA, DOPE SOD2 plasmid Up mice i.t. bleomycin 1999 [48]
Polycations MAA-PEI HGF plasmid Up mice i.v. bleomycin 2005 [49]
Liposomes DharmaFECT™ 1 SPARC siRNA down mice i.t. radiation 2010 [50]
Polycation PEI psTNFR-I plasmid Up mice i.m. bleomycin 2011 [51]
Polycations PMAPEG, PDMAEMA CTGF siRNA down mice i.t. bleomycin 2013 [52]
Polycations DODMA, DSPC, PEG AR or CTGF siRNA down mice i.t. bleomycin 2016 [53]
Liposomes vitamin A, DC-6-14 HSP47 siRNA down rats i.t. bleomycin 2017 [54]
Liposomes NLCs-PGE2 MMP3, CCL12, HIF1A siRNA down mice i.t. bleomycin 2017 [55]
Peptides CADY peptide SPARC, CCR2, SMAD3 siRNA down mice i.p. bleomycin 2018 [56]
Polycations PEI-C22 PAI-1 siRNA down mice i.t. bleomycin 2019 [57]
Polycations F-PAMD PAI-1 siRNA down mice i.t. bleomycin 2019 [58]
Liposomes C12-200, mPEG-DMG MBD2 siRNA down mice i.t. bleomycin 2021 [59]
Liposomes C12-200, mPEG-DMG SART1 siRNA down mice i.t. bleomycin 2021 [60]
Liposomes C12-200, mPEG-DMG SRPX2 siRNA down mice i.t. bleomycin 2021 [61]
Polycations PEI-g-PEG-Mal RUNX1 or Gli1 siRNA down mice i.v. bleomycin 2021 [62]
Liposomes C12-200, mPEG-DMG ACP5 siRNA down mice i.t. bleomycin 2022 [63]
Polycations PFC nanoemulsions STAT3 siRNA down mice i.t. bleomycin 2022 [64]
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4.1. Lipid-Based Gene Vectors

Lipid-based vectors have been widely employed for the delivery of various therapeu-
tics, such as chemotherapeutics, peptides, and proteins [65]. Nowadays, the applications
of lipid-based vectors in gene therapy have been attractive, and previous studies have
demonstrated that airway administration or intravenous administration of lipid-based
vectors, of which the classical example is liposomes, can efficiently deliver nucleic acid to
the focus of lung diseases in mouse model [42,66].

Liposomes are lipid-based vesicular vectors with sizes ranging from 25 nm to several
microns, which are the only nanoparticles (NPs) approved by the FDA for inhalation [67].
To package the negative-charged nucleic acids, liposomes tend to be positively charged,
called cationic liposomes (Figure 4A), which are usually composed of cationic lipids, neutral
phospholipids, cholesterols, and polyethylene glycol (PEG). Cationic lipids, such as N-(1-
(2,3-dioleoyloxy)propyl) N,N,N-triethylammonium chloride (DOTMA), 2,3-dioleyloxy-N-
(2-(sperminecarboxamido)ethyl)-N,N-dimethyl-1-propanaminium (DOSPA), 1,2-dioleoyl-
3-trimethylammonium-propane (DOTAP), 1,2-dimyristyloxy-propyl-3-dimethylhydroxye-
thylammonium bromide (DMRIE), and 3β-(N-(N’,N’-dimethylethylenediamine)-carbamoyl)
cholesterol (DC-cholesterol) have hydrophobic tail groups and positively charged head
groups that can condense the negatively charged nucleic acids [68]. In addition, the
neutral phospholipids form a cell-membrane-like bilayer structure in which cholesterols
are inserted and in charge for regulating the fluidity of the membrane. Lastly, the surface
of this spherical lipoplex is used to be decorated with PEG in order to enhance the stability,
reduce the nonspecific uptake, and diminish the immunogenicity.
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To overexpress some specific genes, plasmid or mRNA can be encapsulated into
cationic liposomes. Epperly et al. [48] established a magnesium superoxide dismutase
(MnSOD) plasmid-loaded liposome composed of 1:1 DOTMA and DOPE, which can ef-
fectively improve the irradiation-induced pulmonary fibrosis and increase the survival
rate of PF-bearing mice by enhancing SOD2 expression. Another common application of
gene therapy is to silence the expression of target genes. Wang et al. [50] reported that
the prevention of secreted protein acidic and cysteine rich (SPARC) expression by SPARC-
specific siRNA encapsulated in DharmaFECT™ 1, which is a cationic lipid compound,
could downregulate collagen expression and subsequently attenuate fibrotic phenotype
of PF-bearing mice. Macrophages, which can be polarized to a typically activated phe-
notype (M1) or alternately activated phenotype (M2), also play an important role in the
pathogenesis of pulmonary fibrosis. Previous research has proved that M2 macrophages
can produce large quantities of TGF-β1 and platelet-derived growth factor (PDGF), which
would induce fibroblast proliferation and differentiation into myofibroblasts, leading to
pulmonary fibrosis [69]. A number of studies in our group used cationic liposomes as gene
vectors to transport gene therapeutics into the lung of mice with pulmonary fibrosis to
reprogram macrophages polarization in the focal area and improve pulmonary fibrosis.
Wang et al. [59] generated liposomes loaded with Mbd2 siRNA (Figure 5A). In vivo imaging
showed that liposomes injected through the airway continued to accumulate in the lung for
at least 7 days (Figure 5B, Left). Heart, liver, spleen, lung, kidney, and other organs were
collected 7 days after intratracheal administration with liposomes. Near-infrared fluores-
cence (NIRF) signal analysis showed that liposomes were detected only in the lungs, but
not in other organs (Figure 5B, Right). The confocal result (Figure 5C) indicated that most of
the liposomes (red) accumulated in the fibrotic area and were internalized by macrophages
(green). WT mice were injected with Mbd2 siRNA-loaded liposomes at day 14 and 18
after bleomycin-induced pulmonary fibrosis. Histopathological analysis indicated that
Mbd2 siRNA liposomes could significantly reduce BLM-induced lung injury and fibrosis
(Figure 5D). According to the RNA sequencing data, Pan et al. [60] selected Sart1 as the
target gene to regulate macrophage polarization. Both in vivo and in vitro studies demon-
strated favorable effects of the siRNA-loaded liposomes on attenuating M2 macrophage
polarization and improving the PF of BLM-induced mouse model. Interestingly, instead
of escaping from the phagocytosis of macrophages, the liposomes employed in the above
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two studies preferred to be more easily internalized by the macrophage. Attributed to
the bounden duty of macrophage is to phagocytize foreign substances, liposomes would
mainly accumulate in the macrophages, which makes this strategy quite suitable for the
treatment of pulmonary fibrosis by targeting macrophages. In addition, our previous
studies demonstrated that sushi-repeat-containing protein X-linked 2 (SRPX2) was overex-
pressed in the lungs of IPF patients and mice with pulmonary fibrosis. Further functionality
studies identified that SRPX2 was involved in a TGFβR1/SMAD3/SRPX2/AP1/SMAD7
positive feedback loop. Srpx2 siRNA-loaded liposomes were then employed to suppress
fibroblast-to-myofibroblast transition for the treatment of pulmonary fibrosis [61]. Our
latest study has proven that tartrate-resistant acid phosphatase 5 (ACP5) regulated by TGF
-β1 can dephosphorylate p-β-catenin serine 33 and threonine 41, inhibit the degradation
of β-catenin, and subsequently enhance β-catenin signaling in the nucleus, leading to the
differentiation, proliferation, and migration of fibroblasts and the promotion ofpulmonary
fibrosis. After intratracheal injection of Acp5 siRNA-loaded liposomes in BLM-treated mice,
an efficient uptake of liposomes was observed in the fibroblasts of lung lesions, along with
decreased levels of fibrotic markers [63].
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Figure 5. Mbd2 siRNA-loaded liposomes protected mice from BLM-induced pulmonary fibrosis [59].
(A) Schematic diagram of Mbd2 siRNA-loaded liposomes preparation. (B) Representative in vivo
images of the mouseintratracheally administrated with DiR-labeled liposomes (Left) and ex vivo
images of major organs from mice (Right). (C) Thebiodistribution of liposomes in lungs from
BLM-induced mice. (D) Representative results for H&E, Sirius red, and Masson staining indicated
intratracheal administration of Mbd2 siRNA–loaded liposomes provided protection for mice against
BLM induced pulmonary fibrosis.

Limitations of cationic lipids include low efficacy and cytotoxicity. Premature release
of nucleic acids by interactions with intracellular component and extracellular matrix,
clearance by immune cells, and uptake by nonspecific tissues all lead to low efficiency of
cationic liposomes. In addition to the ROS production and local inflammation induced
by positive charge, the properties, size, and ratio of liposomes to nucleic acids also affect
the cytotoxicity of liposomes [12]. These limitations should be taken into account when
using liposomes as genetic drug vectors. Neutral lipids, such as phospholipids disaturated



Pharmaceutics 2022, 14, 813 9 of 22

phosphatidylcholine (DSPC), dioleoyl phosphatidylethanolamine (DOPE), and membrane
component cholesterol, act as “helper lipids” to further increase the interaction between
liposomes and endosomal membrane, which can promote siRNA release [12]. Transfection
agents such as Lipofectin (DOTMA/DOPE) are based on cationic liposomes used for
siRNA transfection [70]. To reduce nonspecific uptake, liposomes are also designed to
target specific cells. Otsuka et al. [54] modified the liposome with vitamin A to target the
myofibroblast, leading to a specific silence of heat shock protein 47 (HSP47) in pulmonary
myofibroblasts, resulting in myofibroblast apoptosis and improving pulmonary fibrosis.

Some other lipid-based gene vectors, such as solid lipid nanoparticles (SLNs) and
exosomes, have also been applied in lung delivery. SLNs are generally spherical in the
submicron range and composed of solid lipids and surfactant [66]. Compared with lipo-
somes, SLNs exhibit better stability and lower toxicity, as well as controlled release of drugs,
but reduced encapsulation efficiency [71]. Sung et al. [72] produced SLNs formulated by
tricaprin (TC), DC-Chol, DOPE, and Tween 80 through the melt homogenization method
to load pp53–EGFP–plasmid DNA. The transfection efficiency of SLNs was proved to be
higher than that of Lipofectin. After the transfection of p53 plasmid mediated by SLNs
into the lung cancer cells (H1299 cells), an overexpression of P53 and restored apoptotic
pathway was observed. However, SLNs are not widely used in the therapy of pulmonary
diseases, which may be attributed to the fact that the airway administration route requires
SLNs to be aerosolized to dry powders, increasing the difficulty and cost of the preparation.
Recently, Wang et al. [73] made an aerosolizable siRNA-encapsulated SLNs comprised of
TNF-α siRNA, lecithin, cholesterol, and a lipid-polyethylene glycol conjugate prepared
by thin-film freeze-drying (TFFD). Subsequently, they assessed the transfection efficiency
of the dry powder in J774A1 cell line and diffusion efficiency in simulated mucus layer.
The particle size, polydispersity index, and Zeta potential of SLNs were retained after
TFFD and reconstruction. This provides a potential method for the application of SLNs in
pulmonary-drug delivery.

Exosomes (EXOs), as natural lipid delivery carriers, are endogenous extracellular
small vesicles with a diameter of 40–100 nm secreted by various cells and are composed
of endogenously synthesized lipid, protein and RNA [74,75]. Exosomes can be internal-
ized by fusing with target cells, activating target cell surface receptors or endocytosis [76].
Compared with liposomes, exosomes exhibit preferable targeted delivery ability as well
as little immune response [77]. Synthetic siRNA is usually encapsulated in exosomes by
electroporation [76]. However, the loading efficiency of electroporation is quite low [78].
Jeong et al. [79] used human cell-derived exosomes as delivery vehicles to load miRNA-497.
This artificially-reconstructed exosome can effectively suppress the neovascularization of
endothelial cells and the migration of tumor cells. As accumulating evidences suggested
that EXOs were involved in the pathogenesis of lung diseases, Zhang et al. [80] investi-
gated whether inhaled EXOs could be effective delivery vectors to regulate pulmonary
immune responses. Firstly, they identified that lung macrophages would efficiently take in
intratracheally-instilled serum-derived EXOs in vivo by labeling EXOs with PKH26. Next,
they constructed serum-derived EXOs containing Myd88 siRNA, a well-known adaptor
involved in innate immunity, and administrated LPS-treated mice with the exosome com-
plex by intratracheal injection. Downregulation of Myd88 and inflammatory cell counts in
BALF, as well as less cellular infiltration in lung tissue through H&E staining, indicated that
serum-derived EXOs could successfully deliver small RNA molecules to lung macrophages,
which might contribute to future gene therapy for lung diseases. Although EXOs have
not been reported as gene vectors for the treatment of pulmonary fibrosis yet, their en-
hanced biocompatibility, high cellular uptake, reduced toxicity, low immunogenicity, and
endosomal escape efficiency also make exosomes potential non-viral gene therapy vectors.

4.2. Polymer-Based Gene Vectors

Cationic polymers are widely used in gene therapy due to their extraordinary chemical
diversity and functionalization potential. Compared with liposomes, ease of synthesis
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and lower immunogenicity make polymer-based gene vectors attractive for nucleic acid
delivery [81].

Polycations, such as polyethylenimine (PEI), chitosan, and dendrimer, contain cationic
amine (N) groups that can interact electrostatically with anionic phosphate (P) groups of
nucleic acids to form polyplexes (Figure 6). The ratio of amino group to phosphorus group
(N/P) directly affects the surface potential, structure, and size of the particles. The multi-
cation and high molecular weight (MW) of cationic polymers can improve the transfection
efficiency, but the high positive charge may also cause cytotoxicity [82]. The improved
transfection efficiency can be explained as a large amount of positive charges within one
molecular can tightly condense negatively charged nucleic acid. Additionally, polymers
with abundant cations prefer to be efficiently internalized by cells through charge-mediated
interactions [82].Cationic polymers help gene therapy drugs escape from lysosomes through
the “proton sponge” effect. That is, the cationic polymers enter the target cell through
endocytosis to form endosomes, which fuse with the lysosomes. The unsaturated amino
group on the cationic polymers chelate the proton provided by the proton pump, resulting
in the retention of chloride ions and water molecules in the lysosome, causing the swelling
and rupture of the lysosomes, accelerating the release of gene therapy drugs from the
endosomes to the cytoplasm [83].
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PEI is the most commonly used polymer in gene delivery. PEI can attach to airway
epithelial cells and protects the transferred nucleic acid from nuclease degradation [84–86].
PEI polyplexes exhibit excellent endosome escaping ability and satisfactory transfection
efficiency due to their good gene condensation ability and high buffering capacity. Przy-
byszewska et al. [51] cloned the soluble receptor I for TNF-a (psTNFR-I) encoding gene
into the pcDNA3.1 plasmid to treat radiation-induced PF mice. Compared with naked
plasmid, the plasmid/PEI complexes dramatically promoted the incorporating efficacy of
psTNFR-I. Moreover, the in vivo studies demonstrated that the plasmid/PEI complexes
significantly reduced the pulmonary collagen deposition, alveolar wall thickness, and other
histological signs of fibrosis in the mice suffering irradiation-induced pulmonary fibrosis.
PEI with specific targeting function can be prepared by directly modifying the PEI main
chain with specific ligands. Ding et al. [57] modified PEI with a monocyclam-based CXCR4
antagonist and loaded siRNA to silence plasminogen activator inhibitor-1 (PAI-1), which
was a key modulator of ECM production during the pathogenesis of PF. Biodistribution of
PEI-C22/siRNA polyplexes was tested by whole-body fluorescent imaging and ex vivo
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analysis of fluorescence distribution in major organs after intratracheal administration.
Whole-body imaging showed that most of the signals were concentrated in the lung, and the
retention rate of fluorescence signals could reach to 42% even after 24 h. A suppression of
PAI-1 and collagen deposition were observed in the PF-bearing mice after the intratracheal
administration of PEI-C22/siPAI-1 polyplexes. Although above studies have corroborated
the potential of PEI to be used in the gene therapy of PF, PEI’s cytotoxicity caused by its
self-contained intense positive charge limits its application in clinical settings [68].

Poly (D, L-lactic-co-glycolic acid) (PLGA), a hydrophobic polymer, has attracted much
attention due to its slow release of the payload [87,88]. Modifying cationic polymers or
lipids with PLGA is reported to improve their transfection and intracellular transport
efficiency. Kolte et al. [89] identified composite nanoparticles of PLGA and PEI could
effectively deliver the pDNA to the lung. They prepared NPs with different weight ratios
(0–12.5% w/w) of PLGA/PEI and characterized size, morphology, surface charge, pDNA
loading, and in vitro release. The NPs with 10% w/w PEI exhibited the highest efficacy
but unacceptable cytotoxicity. PEG was applied to modify the nanoparticles to reduce
toxicity, improve the diffusion of the complexes through the mucus barrier, and prevent
the nonspecific uptake by pulmonary macrophages. After being combined with lactose
carrier particles, the nanoparticles were lyophilized to dry powder inhaler, serving as a
local delivery system of pDNA to lung tissue. In addition to PEGylations, fluorinations are
also chosen to modify polycations to achieve better intracellular transport and endosomal
escape [90]. Wang et al. [58] reported the fluorinated polymeric CXCR4 inhibitors (PAMD)
polyplexes as PAI-1 siRNA vectors were suitable for pulmonary delivery.

Chitosan is a natural cationic polysaccharide comprising (1→4) linked 2 amino-2-
deoxy-β-d-glucan, which possess favorable biodegradability, biocompatibility, and low
toxicity [91]. The excellent abilities of muco-adhesion and muco-penetration make chitosan
a potential lung delivery vector [92]. Chitosan can effectively bind with gene drugs, partially
protecting nucleic acid from nuclease degradation and facilitating the transport of gene
drugs from the cytoplasm to the nucleus by escaping endosome and lysosomal systems [93].
Chitosan can be used as a carrier alone or as a surface modification to improve the transport
efficiency of genetic drugs. Nielsen et al. [94] used chitosan as a carrier to transport EGFP
siRNA and modified the nanoparticles through a nebulizing catheter to convert them into
aerosols. After the nanoparticles were injected into the mouse airway through non-invasive
endotracheal insertion, the expression of EGFP was decreased in the bronchial epithelium.
Ihara et al. [95] prepared dry powdery EGFP siRNA–chitosan complexes. Intratracheal
injection of the complexes to EGFP transgenic mice led a decreased EGFP expression in the
bronchi, bronchioles, and alveolar walls. Gaspar et al. [93] modified SLNs with chitosan as
a surface charge modifier. This modification not only increased the interaction between
SLNs and negatively charged plasmids, but also enhanced the ability of these particles to
be endocytosed by the Calu-3 and A549 cells. Although chitosan has not been applied as
a gene vector for the treatment of pulmonary fibrosis, the inherent antifibrotic capability
of chitosan makes it quite conspicuous. Kim et al. reported that oral administration of
chitosan attenuated bleomycin-induced pulmonary fibrosis in rats by reducing TGF-β1
and IFN-γ levels [96], which makes chitosan a promising gene vector for the treatment of
pulmonary fibrosis.

Dendrimer is a unique type of hyperdendritic macromolecule with sizes ranging
from 1 to 20 nm, consisting of multi-layered monomer units radiating outwards from the
center, and each complete grafting cycle is called a generation [97]. Poly(amidoamine)
(PAMAM) dendrimers are the most commonly used dendrimers, attributed to their highly
monodispersed, hyperbranched structureand easily functionalized surface groups [98].
Bohr et al. [99] investigated the delivery efficiency of the generation 3 PAMAM dendrimer
to transport TNF-α siRNA into the lung. Compared with non-complexed siRNA, PAMAM
dendritic molecular-siRNA complex (dendriplexes) showed higher levels of cell uptake and
TNF-α silencing in the RAW264.7 macrophages. In mice with LPS-induced lung inflamma-
tion, the dendriplexes effectively inhibited TNF-α expression in bronchoalveolar lavage
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fluid and ameliorated acute lung inflammation in mice via pulmonary administration. As
reported, a dendrimer-based delivery system is also preferable to be transported to epithelia
cells by a portable oral inhalation device. Cont et al. [100] employed a four-generation
PAMAM to load siRNA. Then, the dendriplexes were dispersed in mannitol. With the assis-
tance of portable oral inhalation devices, siRNA–G4NH2 dendriplexes could be efficiently
transformed to aerosol, which was quite conducive to deep lung deposition, with respirable
fractions of up to 77%. During the process, the bioactivity of siRNA (gene silencing) re-
mained integrated even after the particle preparation processes or long-term exposures to
the propellant hydrofluoroalkane (HFA), which is necessary for reconstructing the gene
silencing function after delivery to deep lungs. Polymeric micelles are self-assembled
nanostructures (10 to 200 nm), consisting of amphiphilic copolymers, which possess good
biocompatibility, degradability, and easy modification [101]. However, polymer micelles
are usually unstable on the dynamics. To improve the stability of polymer micellar nano-
materials, specific sites of the copolymers can be cross-linked [102]. In addition, the low
loading efficiency and the unsatisfactory transmembrane ability also limit their clinical
applications [103]. Sung et al. [52] developed a noncovalently post-PEGylated micelle
composed of poly(dimethylamino)ethylmethacrylate (PDMAEMA) and its copolymer with
poly(α-methylether-ω-methacrylate-ethyleneglycol) [PMAPEG]. After encapsulating con-
nective tissue growth factor (CTGF) siRNA, the micelles exhibited excellent antifibrotic effects
including reduced collagen deposition, attenuated inflammatory cytokines production, as
well as less cytotoxicity compared with PEI. Another study was conducted to inhibit the
lung-resident mesenchymal stem cells differentiating to the myofibroblast during the patho-
genesis of pulmonary fibrosis. Ji et al. [62] established a target lung-resident mesenchymal
stem cells’ (LR-MSCs) micelle by modifying the copolymer PEG-PEI with an anti-stem-cell
antigen-1 antibody fragment (Fab′) (Figure 7A). After packaging dual siRNAs, siRUNX1,
and siGli1, the micelle was administrated to the BLM-induced mice via i.v. injection. The
in vivo biodistribution study demonstrated a specific accumulation of micelle in the lung
(Figure 7B–E). With the treatment of the micelle, PF-bearing mice exhibited an attenuated
disease phenotype and a prolonged overall survival.
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antigen-1 antibody fragment (Fab’) for pulmonary fibrosis therapy [62]. (A) Schematic diagram of
the siRNA-loaded polymeric micelles targeting lung mesenchymal stem cells. (B,C) Biodistribution
of the delivered micelles. (D) The biodistribution of intravenously administrated micelle–siRNA
and anti-Sca1 Fab′-conjugated Micelle-siRNA in organs and (E) images of the organs of a mouse
administrated with Fab′–Micelle–siRNA.
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4.3. Protein and Peptide-Based Gene Vectors

Protein-based gene vectors, especially those in human bodies, such as serum albumin,
transferrin, protamine, and histone, have good biocompatibility, biodegradability, and high
biosafety. Furthermore, they are easily modified by other ligands and combined with other
functional molecules. Intravenous injection of cationic vectors is limited by the binding
of a large number of negatively charged serum components, which may result in rapid
clearance of therapeutic agents from the bloodstream. Based on the transient retention of
macroaggregated albumin (MAA) in the lungs, Watanabe et al. [49] used MAA–PEI complex
to transfer human hepatocyte growth factor (hHGF) plasmid to alveolar septa in bleomycin-
induced lung fibrosis mice via intravenous administration. Significant decreases of TNF-α,
IL-6, and collagen synthesis were observed in the MAA–PEI complex treated mice. Han
et al. [104] obtained cationic bovine serum albumin (CBSA) by surface modification of BSA.
CBSA can protect siRNA from degradation and significantly enhance the stability of siRNA
in serum. More importantly, by optimizing the cationization degree on the surface of CBSA,
high siRNA transfer efficiency can be maintained under the premise of low toxicity of the
material. Additionally, its interaction with plasma protein in vivo can be controlled to form
micron-level complexes intercepted by pulmonary capillaries, leading to an accumulation
of CBSA/siRNA complex in the lung. Thus, CBSA can be selectively enriched in the
lungs, significantly improving the targeting and therapeutic efficiency of siRNA drugs
(Figure 8). Protamine is also a commonly used natural protein vector, which exhibits
efficient DNA binding ability and favorable nuclear localization ability [105]. Fukushige
et al. [106] developed hyaluronic acid-coated liposome-protamine-siRNA complexes for
pulmonary inhalation by spray lyophilization. A significant gene silencing effect in human
lung cancer cells was observed after the treatment of the complexes. CRISPR-Cas9 system is
a powerful technology that relies on the Cas9/sgRNA ribonucleoprotein complexes (RNPs)
to target and edit DNA [107]. Delivery of Cas9 RNPs requires electroporation or transfection
mediated by lipid- or polymer-vectors [107]. Kim et al. [108] established a multifunctional
Cas9 fusion protein (Cas9-LMWP) carrying both a nuclear localization sequence and a low
molecular weight protamine (LMWP). Cas9-LMWP enabled the direct self-assembly of a
Cas9:crRNA:tracrRNA ternary complex (ternary Cas9 RNP) and delivered the ternary Cas9
RNPs into the recipient cells. Like protamine, histones are natural nucleic acid-binding
proteins. The ability of histones to condense nucleic acids and their multiple nuclear
localization signals made them effective gene vectors [109]. However, studies on histones
as gene vectors in the treatment of lung diseases have not yet been found, which may be
due to the fact that the histone itself also plays an important role in the pathological process
of lung inflammation and fibrosis [110,111].

Peptides are short chains of amino acids composed of no more than 50 amino acid
residues, which can be used as gene vectors alone or as a functional component to partici-
pate in gene delivery system to achieve efficient gene transfection [112,113]. Cell-penetrating
peptides (CPPs) are short peptides that can penetrate biofilms and deliver a variety of
bioactive substances into cells. Covalent conjugation and non-covalent complexation are
two ways to deliver cargo molecules with peptides. They cross cell membranes through
endocytosis and energy-independent pathways (Figure 9), alongwith low cytotoxicity and
little immune response [114]. As carriers of negatively charged nucleic acids, positively
charged CPPs also protect the gene therapeutics from enzymatic degradation in the airway
mucus. Ding et al. [56] evaluated the anti-fibrosis capacity of silenced SPARC, CCR2, and
SMAD3 by loading siRNA with CADY peptide nanoparticles. The expression levels of
Sparc, Ccr2, and Smad3 in the treated group were significantly reduced by intraperitoneal
injection of nanoparticles into bleomycin-induced pulmonary fibrosis mice on days 10, 14,
and 18. Moreover, ameliorated fibrosis in lungs tissues was observed. Ishiguro et al. [115]
used calcium chloride to condense dimerized TAT peptide (dTAT) and plasmid angiotensin
II type 2 receptor (pAT2R) complexes (dTAT-pAT2R-Ca2+). Intratracheal aerosol spray or
intravenous injections of the complexes significantly alleviated the acute growth of the lung
carcinoma in mice models, which indicated a desirable ability of dTAT for DNA delivery.
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When used as surface modifiers, CPPs can be incorporated into liposome or polymer
systems via covalent binding or electrostatic interactions [116]. Jeong et al. [117] utilized
CPPs consisting of arginine with spacer arm to modify chitosan/siRNA nanoparticles and
modification with the peptides enhanced uptake of the nanoparticles by the mouse airway
epithelial cells. Fusogenic peptides promote the endosomal escape ofvectors by increasing
the interaction between vectors and endosomal membranes [118]. Glu-Ala-Leu-Ala (GALA)
and Lys-Ala-Leu-Ala (KALA) are pH-sensitive fusogenic peptides that undergo structural
changes upon pH changes to facilitate the endosomal release of the vectors. Kenji et al. [119]
reported the multifunctional envelope-type nano device (MEND) modified with a GALA
peptide (GALA/MEND) as a siRNA vector which effectively targeted the pulmonary
endothelium. This provides a good option for the future treatment of pulmonary fibrosis.
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4.4. Physical Properties of Non-Viral Gene Vectors

The therapeutic effect of non-viral gene pharmaceuticals is closely related to their
physical properties. The size, Zeta potential, and uniformity as well as colloidal stability of
the gene vector can be used to predict the efficacy of the agent in clinical settings [121,122].
Among these parameters, the particle size of nanoparticles is particularly important, es-
pecially in the case of pulmonary or parenteral drug delivery, which plays a key role in
the effective delivery of drug active ingredients [123]. Liposomes with large particle size
(>300 nm) lack vascular permeability and cannot pass through the intercellular space of
hepatic blood vessels and are easily swallowed by the reticuloendothelial system, leading
to a short half-life in vivo [124]. Liposomes with particle size less than 300 nm can escape
from the uptake of liver and spleen and thus increase the accumulation of gene therapeu-
tics in target sites [124]. In addition, the different degrees of fusion and aggregation of
carriers also affect the storage time of carriers [125]. The surface potential of nanoparticles
is another important physicochemical parameter because it determines the strength of the
interactions within the particles, the adsorption of counter-ions, and thus the stability of the
particles [125]. This parameter is usually expressed as the Zeta potential, which describes
the charge distribution of bare particles associated with the diffusion layer. The higher
the absolute value of Zeta potential is, the greater the charge on the surface of the gene
carrier is. With the increase in electrostatic repulsion caused by the double electric layer,
the vectors have to overcome huge amounts of energy to aggregate, improving the stability
of the vectors. Furthermore, the level of Zeta potential also indicates its ability to compress
nucleic acid. Generally speaking, the vectors featured with the high positive charge can
compress more nucleic acid. However, at the same time, the greater cell toxicity will be
accompanied. Therefore, the Zeta potential of the nanoparticles should be controlled in an
appropriate range [121]. In general, when the absolute value of Zeta potential is less than
30 mV, the charged particles are unstable and easy to aggregate. When the absolute value
of Zeta potential is greater than 30 mV, it has better electrostatic stability [125].

5. Conclusions and Prospects

Due to the lack of effective pharmaceutics, the mortality of PF is still stubbornly high.
Nowadays, the development of gene therapy brings new hope for the treatment of PF.
However, the transfection efficiency and the stability of naked nucleic acids are always
unsatisfactory, which impede their clinical applications. Thus, an appropriate gene carrier
is urgently needed for the gene therapy of PF.

Up to now, there are no commercial products or even clinical trials using non-viral
gene strategies to treat pulmonary fibrosis. In recent years, due to the rapid spread of
the COVID-19 epidemic, Pfizer BioNTech and Moderna have developed mRNA-based
lipid nanoparticles for COVID-19 vaccines, which have received emergency authorization
from the FDA and have achieved 95% and 94.1% efficacy against COVID-19, respec-
tively [126,127] (Table 2). These indicate the prospects of gene therapy with non-viral
vectors for pulmonary disease, inspiring us to move the concept of curing PF with non-viral
gene therapy from bench to bedside.

Table 2. Non-viral gene vectors for COVID-19 vaccines.

Nucleic Acid Generic Name Vector Composition Company Route Clinical Trial Status

mRNA BNT162b2 LNPs ALC-3015, ALC-0159, DPSC Pfizer BioNTech i.m. NCT04283461 Active
mRNA mRNA-1273 LNPs SM-102, PEG2000-DMG, DSPC Moderna i.m. NCT04470427 Active

With the in-depth understanding of the pathogenesis of pulmonary fibrosis and the
rapid development of materials science, non-viral vectors have emerged as promising
tools for the gene therapy of PF. Compared with viral vectors, non-viral vectors have
shown lower immunogenicity, higher loading efficiency, easier synthesis, and lower cost,
making them more appropriate for widespread clinical use. Due to the special physiological
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function and anatomical structure of the lung, the non-viral vectors can be administrated
through the airway, which is more convenient than systemic administration. Moreover,
inhalation administration of non-viral vectors exhibits better treatment compliance for
patients, attributed to the dramatically elevated accumulating amount of drugs in the lung
and minimized the side effects.

Although non-viral vectors accelerate the pace of gene therapy in PF treatment, there
are still some problems demanding prompt solutions. Compared to viral vectors, non-viral
vectors exhibited lower delivery efficiency, which is the main reason why few of these
vectors have been clinically developed to date. Up to now, only liposomes have been
approved as non-viral gene therapeutic carriers for clinical applications, while the safety
of the other materials remains to be understood. Another critical issue is that most of the
current studies are basically carried out on rodent models. Due to the huge differences in
airways between rodents and humans, the therapeutic strategies suitable for mice might
not be fit for the patients. Additionally, PF bearing animal models cannot completely
reproduce the pathologies and pathogenesis of IPF patients. Lastly, the majority of studies
are conducted in the early stage of PF, while pulmonary fibrosis, once detected, is usually
in the middle or late stages in clinic. Therefore, the PF models need to be optimized for the
evaluation of non-viral gene vectors. Nevertheless, the non-viral gene therapy remains the
most promising strategy for the treatment of PF by far, which deserves to be developed.
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Abbreviations

AAV, adeno-associated virus; ACP5,tartrate-resistant acid phosphatase 5; ALC-0159, (2- hexyldec-
anoate),2-[(polyethylene glycol)-2000]-N,N-ditetradecylacetamide; ALC-3015, (4-hydroxybutyl)azan-
ediyl)bis(hexane-6,1-diyl)bis; AR, amphiregulin; BLM, bleomycin; C12-200, 1,1‘-((2-(4-(2-((2-(bis(2-
hydroxydodecyl) amino) ethyl) (2-hydroxydodecyl) amino) ethyl) piperazin-1-yl) ethyl) azanediyl)
bis (dodecan-2-ol); CBSA, cationic bovine serum albumin; CCL2, C-C motif chemokine ligand
2; CPPs, cell-penetrating peptides; CTGF, connective tissue growth factor; DC-cholesterol, 3β-
(N-(N’,N’-dimethylethylenediamine)-carbamoyl) cholesterol; DC-6-14, (O,O’-ditetradecanoyl-N-(α-
trimethylammonioacetyl) diethanolamine chloride; DMRIE, 1,2-dimyristyloxy-propyl-3-dimethylh-
ydroxyethylammonium bromide; DODMA, 1,2-Dioleyloxy-3-(dimethylamino)propane; DOPE, di-
oleoyl phosphatidylethanolamine; DOSPA, 2,3-dioleyloxy-N-[2-(sperminecarboxamido)ethyl]-N,N-
dimethyl-1-propanaminium; DOTAP, 1,2-dioleoyl-3-trimethylammonium-propane; DOTMA, N-[1-
(2,3-dioleoyloxy)propyl] N,N,N-triethylammonium chloride; DSPC, disaturated phosphatidylcholine;
dTAT, dimerized TAT peptide; ECM, extracellular matrix; EXOs, Exosomes; Fab′, anti-stem-cell
antigen-1 antibody fragment; FGF, fibroblast growth factor; F-PAMD, fluorinated polymeric f CX-C
chemokine receptor type 4 (CXCR4) antagonist; GALA, Glu-Ala-Leu-Ala; Gli1, glioma-associated
oncogene homolog 1; HGF, hepatocyte growth factor; HSP47, heat shock protein 47; i.m., intramus-
cular; i.p., intraperitoneal; i.t., intratracheal; i.v., intravenous; IPF, Idiopathic pulmonary fibrosis;
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KALA, Lys-Ala-Leu-Ala; LMWP, low molecular weight protamine; LR-MSCs, lung-resident mes-
enchymal stem cells; MAA, macroaggregated albumin; MBD2, methyl-CpG-binding domain 2; MCC,
mucociliary clearance; MEND, multifunctional envelope-type nano device; miRNA, microRNA;
MMP3, matrix metallopeptidase 3; NLCs-PGE2, Nanostructured lipid carriers -prostaglandin E;
NPs, nanoparticles; PAI-1, plasminogen activator inhibitor-1; PAMAM, Poly(amidoamine); PAMD,
polymeric CXCR4 inhibitors; pAT2R, plasmid angiotensin II type 2 receptor; PDGF, platelet-derived
growth factor; PDMAEMA, poly(dimethylamino)ethylmethacrylate; PEG, polyethylene glycol; PEI,
polyethylenimine; PFC, perfluorocarbon; PLGA, poly (D, L-lactic-co-glycolic acid); PMAPEG, poly(α-
methylether-ω-methacrylate-ethyleneglycol); PDMAEMA, poly(dimethylamino) ethylmethacrylate;
psTNFR-I, soluble TNF-α receptor I; RNPs, ribonucleoprotein complexes; RUNX1, runt-related tran-
scription factor-1; SART1, Spliceosome associated factor 1; shRNA, mimics and short hairpin RNA;
siRNA, small interfering RNA; SLNs, solid lipid nanoparticles; SMAD3, SMAD family member 3;
SOD2, superoxide dismutase 2; SPARC, secreted protein acidic and cysteine rich; SRPX2, sushi-repeat-
containing protein, X-linked 2; STAT3, transcription 3; TC, tricaprin; TFFD, thin-film freeze-drying;
TGF-β, transforming growth factor-β; TNF-α, tumor necrosis factor-α.
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