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Abstract: Power amplifiers applied in modern active electronically scanned array (AESA) radars and
5G radios should have similar features, especially in terms of phase distortion, which dramatically
affects the spectral regrowth and, moreover, they are difficult to be compensated by predistortion
algorithms. This paper presents a GaN-based power amplifier design with a reduced level of
transmittance distortions, varying in time, without significantly worsening other key features such
as output power, efficiency and gain. The test amplifier with GaN-on-Si high electron mobility
transistors (HEMT) NPT2018 from MACOM provides more than 17 W of output power at the 62%
PAE over a 1.0 GHz to 1.1 GHz frequency range. By applying a proposed design approach, it was
possible to decrease phase changes on test pulses from 0.5◦ to 0.2◦ and amplitude variation from
0.8 dB to 0.2 dB during the pulse width of 40 µs and 40% duty cycle.

Keywords: power amplifier; GaN 5G; high electron mobility transistors (HEMT); new radio;
RF front-end; AESA radars; transmittance; distortions; optimization

1. Introduction

Radar systems, mainly 3D Active Electronically Scanned Array (AESA), strongly supported by the
latest achievements in information technology, bring new challenges to the designers of transmit/receive
(T/R) modules, especially High-Power Amplifiers (HPAs) based on solid-state devices [1,2]. In addition,
there are currently rapid advances in high-speed wireless technology, such as 5G [3–9]. In particular,
the power amplifiers, as a key element of RF transmitters, directly and significantly affect the
operation quality of modern wireless communication systems and new generation radars [2,3,9].
The requirements concerning linearity and efficiency of HPAs are confronted with the needs of both
systems for higher output power and improved the efficiency of heat management. In case of AESA,
due to very complex beamforming techniques used, the strong emphasis is put on amplitude and
phase constancy of the amplifier’s transmittance during the RF pulse and pulse-to-pulse [10], as in
pulse the signal is increasingly more often modulated not only in frequency but also in amplitude
and phase [11]. The same is true for the 5G and Long-Term Evolution Advanced (LTE-A) network
systems which are using quadrature amplitude modulation (QAM) of higher orders and orthogonal
frequency division multiplexing (OFDM) methods [11–13]. Both QAM and OFDM are particularly
sensitive to transmittance changes generated mainly by output stages of base station transmitter power
amplifiers [8–13]. Currently, such amplifiers must be linearized to meet wireless transmission standards
defined e.g., by following parameters: in-band error vector magnitude (EVM), adjacent channel power
ratio (ACPR), or the shape of spectrum mask [14–16]. There are many techniques for the amplifier
linearity improvement such as e.g., analog feedforward, digital pre-distortion [6], dynamic biasing [7],
envelope tracking [10], or Chireix’s outphasing method [17]. However, only a few of them are suitable for
linearization of amplifiers operating with wideband spectrally efficient signals and high peak-to-average
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power ratio (PAPR) like LTE or 5G [5,9,18]. The common linearization technique applied in broadband
transmitters of contemporary wireless systems is the baseband digital pre-distortion technique (DPD)
preceded by the shaping of waveform crest factor (CF) [6]. All these methods have restrictions on
applicability and require additional external hardware and/or software implementation consuming
system resources. To reduce the system resource consumption, the nonlinearities of amplifiers should be
as small as possible. There is a new challenge facing amplifier’s designers in developing new amplifier
solutions for modern applications, like AESA, LTE, 5G as well as next-generation systems [2–4].
Our research just goes in this direction to examine amplifier transmittance changes as a function of
load and source impedance of a transistor. Since the transmittance changes are not only a symptom
of transistor nonlinearity but they are also a response to the temperature changes inside a transistor
due to the complexity of amplified signals. It is known that the thermal effects in the transistor active
layer are essentially responsible for the amplitude distortion while variations of internal time delays
inside the transistor are the main reason for a phase distortion during quick signal envelope changes
in time, e.g., in pulse [19]. Therefore, it is necessary to use large-signal electro-thermal models [20].
The paper presents the dependencies of changes in the transmittance phase and magnitude on the GaN
high electron mobility transistors (HEMT) load impedance. The design strategy based on the derived
relationships and numerical simulations are confirmed by sophisticated time-domain measurements.

Our goal was to develop a temperature-dependent HPA modeling technique under operating
conditions with signals of a variable envelope with built-in a function of transistor load impedance
optimization for minimal transmittance distortions. For this purpose, the typical power amplifier
structure was analyzed to find origins and relationships of changes in amplifier transmittance during
radar pulse as well as in the defined time window in case of broadband wireless communication
signals. The minimization of HPA transmittance changes will facilitate the use of correction methods
in baseband, such as DPD and radar calibration.

In the paper, the proposed method is particularly focused on GaN HEMTs but it can be generalized
to other types of transistors. There are few publications regarding GaN-on-Si HEMTs despite their
price is twice as low as GaN-on-SiC. Thus, for the purpose of this work GaN-on-Si HEMT was chosen
to examine its performance.

2. Power Amplifier Analysis

In order to identify sources of transmittance variations, the complete amplifier structure with
the GaN HEMT was measured and analyzed [21,22]. On this basis, the relationship between the
transistor load impedance and amplifier transmittance changes have been derived. We also want to
show what the changes in the transmittance phase and magnitude depend on. The amplifier model
schematic circuit to be analyzed is shown in Figure 1. For this purpose, it is sufficient that we use a
small-signal model. The model represented by the equivalent circuit shown in Figure 1 was described
by a set of parameters dependent on current and voltage values at the transistor operating points i.e.,
its parameters were extracted at the properly selected transistor operating conditions.
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It consists of a typical GaN HEMT transistor model with parameters determined at the average
drain current IDA corresponding to a saturated output power. Other transistor model components
invisible in Figure 1 are included in the source impedance Zs = Rs + jXs, (Xs > 0) and the load admittance
YL = GL + jBL. The source impedance is connected in series with the RF signal source modeled as an
ideal voltage source US. For clarity of our analysis, Miller theory is applied but there is a problem with
determining an internal voltage gain Kunit [23]. In general, the gain Kunit should be calculated with
account of all elements of the equivalent circuit shown in Figure 1. However, for low frequencies and
roughly estimation for higher frequencies the internal voltage gain Kunit can be simplified in the first
approximation to the following form:

Kuint =
UL

Ugsi
= −

gm

G′L
(1)

under the following assumption:

RS + Rin >
1

ω
[
Cgs +

(
1 + gm

G′L

)
Cgd

] or XS �
1

ω
[
Cgs +

(
1 + gm

G′L

)
Cgd

] , (2)

where:
G′L = GL +

1
Rds

. (3)

The simplified HEMT model schematic circuit takes the form as shown in Figure 2.
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The Miller theorem expresses only equivalents of Cgd; Cgs and Cds are parallel to these equivalents,
thus they can be added giving Cin and Cout. Hence the input and output equivalent Miller’s capacitances
are given as:

Cin = Cgs + Cdg

(
1 +

gm

G′L

)
(4)

Cout = Cds + Cdg

(
1 +

G′L
gm

)
. (5)

When the amplifier is operated close to saturated output power, the ratio G’L/gm is much smaller
than unity as given in Table 1. Under this assumption the Equation (5) can be simplified to the
following form:

Cout ≈ Cds + Cdg. (6)

Parameters of three L-band GaN HEMTs, provided by the manufacturer are given in Table 1.
They were calculated at the average drain current IDA for output power close to Psat and implemented
in Keysight software ADS.



Micromachines 2020, 11, 398 4 of 13

Table 1. Selected parameters for three different GaN HEMTs calculated at the average current for
corresponding to Psat.

Parameter NPTB0004A NPT2018 NPT2022

IDA 0.34 A 0.6 A 4 A
PSat 5 W 16 W 120 W
G′L 16 mS 14 ms 101 ms
gm 670 mS 584 ms 3.88 S

G′L/gm 0.024 0.025 0.026
Cgs 6.9 pF 7.8 pF 42.9 pF
Cgd 0.27 pF 0.291 pF 1.66 pF
Cds 0.62 pF 0.56 pF 9.9 pF
UDS 28 V 50 V 48 V

When the GaN HEMT is operated as the current source the output capacitance is almost constant
depending on the drain-to-source voltage UDS and RF signal amplitudes in a wide range [8]. For the
sake of clarity, it was assumed that all frequency harmonics are shorted as for ideal class A and AB [24].
To eliminate the imaginary part of output admittance in the transistor model the load susceptance BL
should be as follows:

BL = −ωCout, (7)

which leads to the amplifier model schematic diagram as shown in Figure 3.
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Applying the Kirchhoff voltage law to the model from Figure 3, the transmittance was derived.
The transmittance phase and magnitude are expressed by (8) and (9). These formulas reveal details of
the transmittance dependence on transistor parameters and parameters of the matching networks.

arg
(

UL

US

)
= arg

 j
gm

G′LωCin

1

RS + Rin + j
(
XS −

1
ωCin

)  (8)

∣∣∣∣∣VL

VS

∣∣∣∣∣ = gm

G′LωCin

1√
(RS + Rin)

2 +
(
XS −

1
ωCin

)2
. (9)

Equations (8) and (9) show that changes in the amplifier transmittance magnitude are influenced
by both transistor parameters as well as the structure and parameters of matching networks.

Obviously, the transistor parameters in Equations (8) and (9) depend on temperature [19,25,26].
This explains the impact of temperature on the transmittance changes during pulse transfer as well as
under the large amplitude variations of the signal with higher PAPR. In both cases, due to the high
signal amplitude, the dynamic power dissipated in the transistor also strongly varies in time. As a
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response the temperature inside the active layer of the transistor is changed which proves the first
thesis of this work.

Moreover, Equations (8) and (9) show that the transmittance phase increases monotonically with
the change of load conductance GL. Test results obtained in [27] confirm a validity of the relations
(8), (9). To increase the accuracy of transmittance model the output capacitance Cout was taken into
account. The phase and magnitude are given by (10) and (11) accordingly.

arg
(

VL

VS

)
= arg

 j
gm(

G′L + j(BL +ωCout)
)
ωCin

1

RS + Rin + j
(
XS −

1
ωCin

)  (10)

∣∣∣∣∣VL

VS

∣∣∣∣∣ = gm

ωCin


(
(RS + Rin)G′L −

(
XS −

1
ωCin

)
(BL +ωCout)

)2

+
(
(RS + Rin)(BL +ωCout) +

(
XS −

1
ωCin

)
G′L

)2


−

1
2

. (11)

The Equations (8)–(11) clearly show the dependence of the transmittance on the load impedance
ZL, which can be determined during the amplifier design.

In conclusion, using Equations (8) and (9) it is possible to facilitate initial steps of power amplifier
design for the minimal transmittance changes. Using (8)–(11) formulas we can estimate the level of
reduction of the transmittance changes by tuning ZS and ZL impedances. In our case, these values
are 0.254◦ and 0.4 dB, for phase and magnitude, respectively, and are consistent with the simulation
results which are 0.3◦ and 0.6 dB. Although this is a qualitative analysis, it is quite well in agreement
with quantitative simulations using advanced software.

3. Measurement Setup and Amplifier Modelling

As a part of the research, measurements of waveforms of power amplifiers were performed.
These measurements were performed using the Keysight DSAV334A Infiniium V-Series digital signal
analyzer (DSA) (Keysight, Santa Rosa, CA, USA) and Keysight N5172B EXG X-Series vector signal
generator with the option of generating training pulses. The purpose of such measurements was to
examine the amplitude and phase distortions caused by the amplifier. The test program assumed the
use of four pulse trains with a carrier frequency f0, which are illustrated in Figure 4.
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The measurement consisted of recording in the time domain, previously designed, four train
pulses, using DSA. To detect changes in the signal handled by the amplifier under test, the training
signal was recorded before and after passing through the amplifier, working with a power close to
P1dB region. For this reason, the signal from the generator was split into two paths using HP11667A
power divider (HP, Palo Alto, CA, USA). One of the paths was directly connected to DSA while the
second one was connected to the amplifier input. The output of the amplifier was connected to the
second DSA channel via the HP778D directional coupler. To protect the measurement instruments
in both paths proper attenuators were used (the impact of attenuation on the obtained results was
checked). The measurement setup is shown in Figure 5.
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The sample measurement results are shown in Figure 6. In the upper part of Figure 6 the input
waveform is presented, in the middle, the output waveform coming directly from the amplifier under
test and in the lower part the difference between these waveforms is calculated as a change of the
transmittance phase during the pulse duration.

Based on the measurements, derived formulas, and using the Envelope simulation technique
available in Keysight ADS software, we developed the power amplifier design method for minimization
of the transmittance changes. To develop an algorithm for determining optimum load impedance,
a test amplifier with 14W GaN HEMT NTP2018 from MACOM (Lowell, MA, USA) was designed using
the large-signal transistor model provided by MACOM. The test amplifier was designed according
to Cripps design methodology to achieve a trade-off between maximum output power and high
efficiency [24]. The MACOM model is closed, and enables only the temperature characteristics under
thermal steady-state conditions to be calculated. Therefore, for the purpose of this work, we developed
our own large-signal model based on the Angelov [28]. Our model includes an extensive thermal
part representing by 5-6 serially connected (Rthi, Cthi) parallel cells. The values of Angelov model
parameters were fitted to obtain simulations consistent with the original non-linear MACOM model.
The model thermal parameters were determined by fitting RC-ladder network to the thermal impedance
Zth(t) of the transistor with was measured by the modified DeltaUgs method [29,30]. To determine
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load impedances the load-pull method was applied in ADS Software. The high compliance of the
simulations and measurements of the amplifier was achieved.
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An appropriate use of the Envelope simulation [31] together with the large-signal electro-thermal
model allows for simulating and modeling of amplifier’s transmittance changes. The simulation
provides great opportunities to optimize the structure of the amplifiers and facilitates the process
of finding the optimal load impedance by viewing time waveforms. There are no studies in the
literature that combine the electro-thermal model with the envelope simulation to study changes
in the parameters of the transmitted signal. However, so far, a load impedance optimization of
microwave amplifiers has been performed only under quasi-static conditions using simulations in the
frequency domain. This made it impossible to analyze changes, in the signal during operation caused
by widely understood memory effects at the stage of amplifier design. Moreover, optimization of
amplifiers’ parameters (e.g., ACPR) generally was based on the appropriate selection of load impedance,
during load-pull measurements, in order to determine its value for which the optimized parameters
reach a satisfactory range [15,32–34]. This approach is unenforceable in case of transmittance changes
that are dynamic over time due to the phase measurement, requiring an accurate calibration of the
reference track with a phase shifter that has to be perfectly synchronized with the load-pull tuners.

4. Test Amplifier

To show the proposed design methodology, step by step, the test amplifier with GaN HEMT
NTP2018 was designed. The amplifier achieves more than 17 W of output power over a 1 GHz to
1.1 GHz frequency range, while MACOM in datasheet provides the information about 14 W. Assembly
drawing and photo of the fabricated amplifier is shown in Figures 7 and 8, respectively. The amplifier
was fabricated on Rogers RO4003C laminate (εr = 3.55, h = 0.020′’, T = 1oz.).
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Figure 8. Photography of the test PA with GaN HEMT NPT2018.

To generate a sequence of training pulses of a given power, as a stimulus an internally matched
simulation port was used. This enabled us to simulate the pulses transferred by the amplifier in the
time domain. The average pulse power PAVout(t) over a time interval ∆t was calculated according to
the following formula [35]:

PAVout(t) =
1

∆t

∫ ∆t

0
PDFP0(t)Pout(t)dt, (12)

where PDF denotes Probability density function (or the probability distribution function) of the output
power. The simulation ADS schematic is shown in Figure 9.

The simulation was performed for two pulses with a duration of 40 µs and a period of 100 µs at
the carrier frequency f = 1.05 GHz being the center frequency of the amplifier working band. In order
to simulate the amplifier operating with output power close to P1dB the excitation power was set to
25 dBm in pulse. The test amplifier was characterized by the measurement setup shown in Figure 5
with the same parameters as given above. GaN HEMT NPT 2018 was biased at the quiescent operating
point UDS = 50 V and IDQ = 75 mA. The simulation and measurement results of pulses at the amplifier
output for frequency f = 1.05 GHz are shown in Figure 10.
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pulse for carrier frequency f = 1.05 GHz.

The presented approach allows for simulating the amplitude and phase changes of the amplifier
transmittance during pulse in a wide range of transistor load impedance. It is the basis to develop an
algorithm for optimizing of the source and load impedances for minimal transmittance distortions.

To find the optimum impedance of ZLT, the Envelope simulation was used. It allows for modeling
the amplifiers with very different waveforms and observing the waveforms at the amplifier output
depending on the input power levels. With access to large-signal electro-thermal models and envelope
simulation, it is possible to calculate the phase and amplitude changes caused by the amplifier during
the pulse transfer. The range of phase and amplitude variations depends on the load impedance.
For the optimum impedance ZLT this range is the smallest. The impedance was adjusted using load-pull
tuners. The ADS schematic used for the load impedance optimization is shown in Figure 11.

The starting point for searching for impedance ZLT is the load impedance ZL which is a
compromise between maximum output power and maximum power-added efficiency (PAE) impedance.
The impedance search area is narrowed down to impedances that meet the following conditions:

Pout ≥ 0.7Poutmax

PAE ≥ 0.8PAEmax
(13)
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It is assumed in the optimization that all harmonics are shorted. The values of ZS and ZL source
and load impedances seen by transistor before and after optimization are shown in Table 2.

Table 2. Source and load impedances after and before optimization.

Original After Optimization

ZL
(
f0

)
[Ω] 26.4 + 26.6j 31.8 + 35.7j

ZS
(
f0

)
[Ω] 5.6 + 12.0j 5.2 + 17.5j

Assembly drawing of amplifier optimized for minimum transmittance changes is shown
in Figure 12.
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Figure 12. Assembly drawing of the PA with GaN HEMT NTP2018 optimized for minimum
transmittance changes, modifications of the matching networks in relation to the previous version of
the PA are marked in red.

Pulses shapes as visible result of transmittance variations after and before optimization are shown
in Figure 13.
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Transmittance variations before and after optimization with obtained output power and PAE of
the test amplifier are presented in Table 3.

Table 3. Transmittance changes before and after optimization.

∆arg(S21)[◦] ∆|S21|[dB] Pout[W] PAE[%]

Before
optimization 0.5 0.8 17 W 61

Optimization
applied 0.2 0.2 14 W 54

The simplified guideline for the proposed design method is presented in Figure 14.
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5. Conclusions

The paper presents the method to improve the amplifier transmittance flatness during pulse as
well as other time-varying parameters of amplified signals without deterioration of other significant
amplifier parameters such as output power, PAE and gain. The method comprises the Envelope
simulations and sophisticated measurement. We simulated the transmittance phase and amplitude in



Micromachines 2020, 11, 398 12 of 13

time, e.g., during the pulse. The results of such simulations were consistent with the measurement
results. The formulas for the amplifier transmittance were derived. These formulas enable the power
amplifiers with minimum transmittance phase changes to be easier designed. For the transparency of
this work, presented results relate to simple pulses, but the calculation can be done for a more complex
radio signal, like 5G. We are currently working on the application of the presented method to this
kind of signal. By applying new design approach, it was possible to improve phase changes on test
pulses from 0.5◦ to 0.2◦ and decrease amplitude variation from 0.8 dB to 0.2 dB during the pulse width
of 40µs and 40% duty cycle with the 17 W of output power and PAE more than 62%. Though we
used GaN-on-Si HEMT, the results are very promising, and we are currently testing and modeling
amplifiers with GaN-on-SiC HEMTs.
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