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Single-mutation fitness landscapes for an enzyme
on multiple substrates reveal specificity is globally
encoded
Emily E. Wrenbeck1, Laura R. Azouz1 & Timothy A. Whitehead1,2

Our lack of total understanding of the intricacies of how enzymes behave has constrained

our ability to robustly engineer substrate specificity. Furthermore, the mechanisms of

natural evolution leading to improved or novel substrate specificities are not wholly defined.

Here we generate near-comprehensive single-mutation fitness landscapes comprising

496.3% of all possible single nonsynonymous mutations for hydrolysis activity of an

amidase expressed in E. coli with three different substrates. For all three selections, we find

that the distribution of beneficial mutations can be described as exponential, supporting a

current hypothesis for adaptive molecular evolution. Beneficial mutations in one selection

have essentially no correlation with fitness for other selections and are dispersed throughout

the protein sequence and structure. Our results further demonstrate the dependence of local

fitness landscapes on substrate identity and provide an example of globally distributed

sequence-specificity determinants for an enzyme.
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U
nderstanding the sequence determinants to substrate
specificity for enzymes is a significant challenge in protein
science that impacts fields as diverse as evolutionary

biology and biocatalysis1,2. The dynamic relationship between
protein structure and function makes it difficult to predict
perturbations to the primary sequence that will improve or
alter activity for a given substrate2. More fundamental concerns
relate the nature of protein fitness landscapes to a biophysical
basis underlying molecular evolution and adaptation3,4. What is
the distribution of fitness effects (DFE) for mutations, and
do they correspond with existing theory of adaptation5–7?
Are the DFE of mutations correlated between substrates8? Are
specificity-modulating mutations correlated to bulk properties of
enzymes (for example, distance to active site)?

Over the past 20 years directed evolution experiments have
provided a number of insights to the above questions9–11.
For engineering enzyme specificity, it has been shown that a
rational mutagenesis approach—primarily focused on residues
lining a substrate binding pocket—provides greater payoffs than
random mutagenesis (that is, error-prone PCR)1,12,13. However, it
is no secret that distant (410 Å) mutations can have significant
effects on catalytic function13–20. For example, in a classic paper
Oue et al.20 evolved the specificity of an aspartate
aminotransferase to valine and found only one mutation in
direct contact with the substrate out of seventeen accumulated in
the final construct. However, the spatial distribution of
specificity-modulating substitutions is still unclear, as typical
experiments assay the effects of less than 100 mutations. Large
scale mutational studies, such as deep mutational scanning to
generate local fitness landscapes21,22, provide a more
comprehensive purview and can potentially be used to resolve
the above open questions23.

From the protein engineer’s perspective, the ability to predict
fitness effects would greatly improve the discovery rate of
beneficial mutations. In recent years, theoretical work on adaptive
molecular evolution has experienced a revolution with the
availability of new experimental tools. Recognizing the rare
nature of beneficial mutations, Gillespie24 borrowed extreme
value theory mathematics to predict that the DFEs for beneficial
mutations, drawn from the extreme tail of DFEs, would be of the
Gumbel or ‘typical’ type (exponential, gamma, Weibull, and
so on). Orr6 later proposed that beneficial mutations from a high
fitness parent should be roughly exponentially distributed. While
generally providing support for these theories, discerning the
parameterization of a mathematical model from experimental
data has yielded mixed conclusions as summarized by Orr25.

To explore the question of how enzymes encode specificity
and scrutinize adaptive molecular evolution theory, we evaluate
the sequence determinants to substrate specificity for an
enzyme by generating comprehensive single-mutation
fitness landscapes—the effects of all possible single point
mutations—on multiple substrates. As a model system we
use the aliphatic amide hydrolase encoded by amiE from
Pseudomonas aeruginosa26 because the structure is solved27,
amidases are an industrially-relevant class of enzymes28,29, and
amiE has activity against multiple substrates. In particular, amiE
maintains comparatively higher activity on acetamide and
propionamide compared with the bulkier isobutyramide. Thus,
our experimental system allows comparison of adaptation
between similar and structurally dissimilar substrates.

Results
Local fitness landscapes of amiE on multiple substrates. We
first developed growth selections for three short-chain
aliphatic amides: acetamide (ACT), propionamide (PR), and

isobutyramide (IB) (Fig. 1), such that only E. coli cells harbouring
a functional amiE gene product can grow when an amide is
provided as the sole nitrogen source in selective minimal growth
media30,31. Following passive diffusion into cells, amiE catalyses
hydrolysis of the amide to its corresponding carboxylic acid,
liberating ammonium (a bioavailable nitrogen source). To allow
variants supporting higher ammonium flux to become enriched
in the population relative to wild-type, we tuned amiE expression
levels by screening synthetic, insulated constitutive
promoters32,33 such that the specific growth rate in selection
media relative to that in defined minimal media (mS,wt/mM9,wt) is
0.4–0.6 (ref. 34). Promoter proK14 with the high translational
efficiency RBS from gene 10 of T7 bacteriophage (t7RBS) had a
suitable mS,wt/mM9,wt at 0.54±0.11 for IB selection media (plasmid
pEDA6_amiE, Fig. 2 and Supplementary Table 1). However, the
weakest promoter of the set, proK17, had a mS,wt/mM9,wt of
0.92±0.05 for ACT. To further decrease protein expression,
plasmids containing an altered RBS were tested. One construct
containing promoter proK17 and a knockdown RBS 3 (kRBS3)
sequence had a mS,wt/mM9,wt of 0.56±0.06 for ACT and
0.37±0.08 for PR (plasmid pEDA2_amiE, Fig. 2 and
Supplementary Table 1).

A significant concern with this growth selection is the
potential for cells containing a non-functional enzyme variant
to propagate in a population by acquiring ammonium that has
leaked into the extracellular medium. We assessed the risk
of such ‘cheating’ by competing wild-type amiE on the
ampicillin-resistant expression construct described above
(pEDA2_amiE) against a catalytic knockout, amiE_C166S, with
kanamycin-resistance on an otherwise identical expression
construct (pEDK2_amiE_C166S), in ACT selection medium
containing no antibiotics. E. coli cells harbouring either
pEDA2_amiE or pEDK2_amiE_C166S were mixed in equal
proportion and competed for 4.12 and 4.17 generations for
replicates 1 and 2, respectively. Cells from the pre- and
post-selection populations were dilution plated on ampicillin
and kanamycin containing plates, and the resulting colonies
counted to calculate the frequency of each member in the
pre- and post-selection populations. Using the fitness equations
laid out in Kowalsky et al.34, the average fitness metric for the
C166S mutant was � 2.40±0.9 (n¼ 2), close to the fitness metric
expected if no cheating occurred (� 2.46). Thus, we conclude
that non-functional variants minimally propagate under the
conditions of the selection.

Next, we used PFunkel mutagenesis35 to construct
comprehensive single-site saturation mutagenesis amiE libraries
and transformed them into E. coli MG1655 rphþ . We carried out
growth selections for each of the three substrates for
approximately eight generations, starting with an initial
population size of 46� 106 cells. Deep sequencing of the
pre- and post-selection populations was used to determine a
relative fitness metric (zi) for each amiE variant i, defined as34:

zi¼ log2

ms;i

ms;wt

 !
ð1Þ

The pre-selection populations were comprised of 451.8% single
nonsynonymous mutations and represented 496.3% of the 6,820
possible single nonsynonymous mutations for all libraries
(Supplementary Table 2, Supplementary Fig. 1). Given that
the read counts per variant in the pre-selection population
were log-normally distributed (Supplementary Fig. 1) and
underrepresented variants could show biased fitness metrics, we
calculated Pearson’s product moment correlation coefficients for
pre-selection read counts and fitness and found them to be to
0.047, 0.033 and � 0.064 for the ACT, PR and IB selections,
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respectively (Supplementary Fig. 2). This confirmed that resulting
fitness metrics were not biased by a wide distribution of
pre-selection read counts. Furthermore, we determined a lower
bound fitness metric for each selection that can be discriminated
based on depth of sequencing coverage (see Methods), such that
while below this value fitness effects can be described categorically
as ‘deleterious’, the quantitative effect cannot be reliably
predicted. The lower bounds were found to be � 1.3, � 0.8
and � 0.6 for the ACT, PR and IB selections, respectively. Heat
map representations of the local fitness landscapes for each
selection can be found in Supplementary Figs 3–5.

We tested the validity of using deep sequencing to reconstruct
fitness in multiple ways. First, we performed replicate growth
selections using the same pre-selection library. The resulting two
post-selection libraries were prepared for sequencing in parallel
attaching unique Illumina barcodes to each, and normalized
fitness metrics were calculated for each replicate. To assess
whether the selection results were reproducible we calculated the
Pearson product moment correlation coefficients of fitness
metrics between replicates and found them to be 0.661, 0.842

and 0.889 for the ACT, PR and IB selections, respectively
(Po2.2� 10� 308, n¼ 6,627, 6,630 and 6,569). When we
excluded variants with fitness metrics below the lower bounds
the correlation coefficients improved to 0.932, 0.949 and 0.943 for
the ACT, PR and IB selections, respectively (Po2.2� 10� 308,
n¼ 3,834, 2,954, 4,977, Fig. 3a and Supplementary Fig. 6).

Second, we compared relative isogenic growth rates (mS,i/mS,wt)
to deep sequencing-calculated growth rates for a set of mutations
(Fig. 3b, Supplementary Table 3). Deep-sequencing derived
fitness corresponded to increased growth rates for 16/17
beneficial mutations, near wild-type growth rates for 2/2 neutral
mutations, and no growth for 1/1 deleterious mutation tested. To
confirm that improved growth rates were a result of increased
flux through amiE, we performed lysate activity assays for a
subset of these variants and found that all samples save one
improved flux relative to wild-type (Supplementary Table 3).

The DFE of amiE. The DFE, both at the organismal and protein
level, demarcates evolution5,7,36. Specifically, the DFE for a
protein is related to its evolvability: the number and type of
available beneficial mutations for a new function compared with
effects on existing functions is illustrative of how natural proteins
evolve. While theoretical and experimental work has advanced
our understanding of the available pathways for adaptive
molecular evolution4,6,37–44, the exact form of the distribution,
which determines these pathways, is still a subject of debate.
Figure 4a shows the DFE for the three selections. For each,
nonsense mutations had a median fitness metric below the
detection limit of the deep sequencing method. Nonsense
mutations with increased fitness metrics (z40.15) cluster in the
last 19 residues of the C terminus, a relatively unstructured region
likely to have no influence on catalytic activity, suggesting that
translation of these residues plus the C-terminal His6-tag used for
purification is deleterious to fitness.

Missense mutations were on average deleterious for the ACT
and PR selections, with 75.8% and 74.2% of variants yielding at
least 20% reduction in growth rate relative to wild-type,
respectively. By contrast, only 45.4% fell below this threshold
for the IB selection. Remarkably, 21.5% (n¼ 1,394) of missense
mutations had above wild-type fitness metrics for the IB selection,
with 483 (7.5%) variants having at least 10% increased growth
rate (z40.15). There were appreciably less enhanced variants
found in the ACT and PR selections, with 4.7% and 5.1% (n¼ 306
and 328) having fitness metrics above wild-type, respectively.

Modern theories of adaptive molecular evolution predict the
DFE for beneficial mutations is scale-free and exponentially
distributed6,24. However, the available experimental data is
conflicted25, and most studies have low statistical power due to
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the rare nature of beneficial mutations. While synthetically
constructed, our competitive growth selection results yield fitness
metrics for a large effective population size, and the hundreds of
beneficial mutations observed provides high statistical power for

model fitting. Predictions of beneficial DFE are derived from
extreme value theory that describes many distributions falling
under the umbrella of the generalized Pareto distribution
(GPD)24. GPD includes three domains of attraction defined by
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their shape parameter (k): Gumbel (k¼ 0), Fréchet (k40) and
Weibull (ko0). We first performed bootstrap goodness of fit tests
to a GPD and concluded a failure to reject the null hypothesis
that the data sets belonged to a GPD (Po0.066) and estimated
k to be � 0.292, � 0.309 and � 0.195 for the ACT, PR and IB
data sets, respectively. This finding indicates that the tail
behaviour for the observed beneficial DFE for amiE is slightly
truncated, yet our results are consistent with the predictions of
Orr that if departures from the Gumbel domain are observed they
will be minimal (� 1/2oko1/2) (ref. 6).

We next conducted log-likelihood ratio tests for fitted
exponential distributions (null hypothesis) against fitted gamma
and Weibull distributions (alternative hypotheses, see Methods)
for the DFE of beneficial mutations (Fig. 4b). These alternative
models were chosen as previous empirical studies have observed
tail behaviour indicative of these such distributions40,45,46.
We concluded a failure to reject the null hypothesis for the IB
data set, yet found that the ACT data set best fit a Weibull
distribution (P¼ 0.05) and that gamma and Weibull were both
better fits for the PR data set (P¼ 0.023 and 0.039, respectively,
Table 1). Interestingly, one-sample Anderson-Darling tests for
goodness-of-fit to each distribution indicated a failure to reject
the null hypothesis that the data fit any of the distributions
(Table 1). To assess the null hypothesis that the three data sets
came from a single, statistically indistinguishable distribution, we
performed a k-sample Anderson-Darling test and concluded they
were not from a single distribution (P¼ 0.0124). Thus, all data
sets can be described as exponentially distributed, though the
ACT and PR data sets best fit the higher parameter models.

Beneficial mutations result mainly from protein effects.
We addressed whether effects at the mRNA level could explain
beneficial mutations, as variants can achieve higher fitness by
increasing total active amiE concentration through improvements
to the rate of transcription, the degradation rate of mRNA, and
the efficiency of translation. The fitness metrics of synonymous
codons for beneficial mutations (z40.15) showed low variance in
most cases except near the N terminus (Supplementary Fig. 7).
A recent mRNA model47 could explain up to 5% of the variance
in the first 15 residues but only 0.2% of the variance over the
entire sequence length (Supplementary Table 4). We conclude

that the observed fitness effects are mainly the result of changes at
the protein level, not at the mRNA level.

Comparison of DFE between selections. Promiscuous activity of
enzymes is believed to be the driving force of evolution towards
new activities3. Our fitness maps allow us to address the question
of how mutations impact fitness in multiple substrate
backgrounds. At the outset of this work, we anticipated that the
majority of ‘hits’ or beneficial mutations would be shared across
selections. This null hypothesis is grounded in the biophysical
argument that most beneficial mutations would improve protein
expression, not activity, and these would be beneficial regardless
of the substrate selected on. Additionally, we anticipated that the
pool of mutations available for improving activity for a single
substrate would predominately localize to the vicinity of the
active site, thus rendering few specificity-altering mutations.
Consequences of this prediction are that there should be
significant correlation of fitness between different amides, with
specificity-determining mutations encoded locally near the active
site.

We first assessed whether there was a significant correlation of
fitness between different amides (Fig. 5a). Correlation for the
ACT and PR selections (r¼ 0.827, Po2.2� 10� 308) was notably
higher than that for the IB and ACT (r¼ 0.317, P¼ 8.6� 10� 85)
or IB and PR selections (r¼ 0.367, P¼ 6.7� 10� 95). Principal
component analysis revealed that a single principal component
could explain 96.8% and 87.8% of the variance of the ACT and
PR data sets, respectively, while two principal components are
sufficient to explain over 99% of the variance for the IB data set
(Fig. 5b, Supplementary Fig. 8). These results are inconsistent
with our null hypothesis, pointing towards global alterations in
the protein structure to adapt to different substrates.

Restricting our correlative analysis to only beneficial mutations
(z40.15) revealed that fitness-enhancing mutations for ACT
were, on average, likely to be beneficial for PR (mean z¼ 0.236).
By contrast, beneficial mutations for IB were likely to be
deleterious in both the ACT and PR selections (mean
z¼ � 0.480 and � 0.319). This result is consistent with the
findings of Stiffler et al.38 that beneficial mutations for a new
or less evolved function are likely to be deleterious for existing
functions when the selections pressures are high. Furthermore,
IB-beneficial variants showed essentially no correlation for fitness
in the ACT and PR selections (r¼ 0.0617 and 0.164, respectively).
This finding indicates that, at least for amiE, predicting hits based
on known fitness effects for a given substrate cannot be
accomplished through correlative analysis.

We next analysed the relationship between beneficial (z40.15)
and specificity-determining (z40.15 for one amide and zo0 for
the other two substrates) mutations and their distance to the
catalytic active site. Distance was measured by the minimum
distance from the alpha-carbon of positions with beneficial
mutations to any active site atom (six identical active sites in
the functional homohexamer). The mutations were placed in 3 Å
bins that were normalized to total available mutations in each
distance shell. For beneficial mutations, we found that most
were 415 Å from the active site for the ACT and PR variants,
while the IB variants were mostly 9–21 Å away (Fig. 6a).
Strikingly, we found very few specificity-determining mutations
for the ACT and PR selections (n¼ 6 and 14, respectively), with
variants distanced by 6–15 Å for ACT and 414 Å for PR
(Fig. 6b). By contrast, we found 395 specificity-determining
mutations for IB, which were distributed similarly to the set of all
IB-beneficial mutations. Thus, beneficial and specificity-determi-
nant positions are globally dispersed throughout the primary
sequence and structure of amiE.

Table 1 | Model fitting results for distribution of beneficial
mutations.

ACT PR IB

Exponential rate 8.72 6.67 7.26
A-D test P value 0.527 0.338 0.635
LL 365.9 303.2 1382.6

Gamma shape 1.14 1.17 1.03
rate 9.90 7.81 7.46
A-D test P value 0.834 0.459 0.723
LL 367.4 305.8 1382.9

Weibull shape 1.094 1.094 1.012
scale 0.119 0.155 0.138
A-D test P value 0.851 0.451 0.712
LL 367.8 305.3 1382.8

Log-likelihood ratio tests
H0 HA

Exponential Gamma 3.11 5.14 0.62
P value 0.078 0.023 0.43

Exponential Weibull 3.8 4.3 0.31
P value 0.050 0.039 0.58
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Biophysical characterization of beneficial mutations.
To understand the biophysical basis underlying beneficial
mutations, we expressed, purified, and characterized a set of
11 variants chosen in part on their ability to predict larger sets
of beneficial variants (Table 2, Supplementary Fig. 9).
For example, globally beneficial mutation S9A was chosen
because it could potentially explain other N-terminal beneficial
mutations. For all variants save one (see Methods), apparent
melting temperatures (Tm,app) were within 7 �C of the wild-type
Tm,app of 67.7±0.1 �C, indicating that differences in thermal
stability are unlikely to explain in vivo beneficial fitness effects.

To evaluate commonalities between beneficial mutations, we
sorted variants into seven possible bins for beneficial fitness
metrics (z40.15 for given selection(s) and zo0.15 in other
selection(s), Fig. 5c). Twenty-one of 26 beneficial mutations
common to all three selections were found at extreme N- or
C-terminal residues. Of the remaining five, we characterized
R89E, a surface mutation located over 20 Å away from the active
site that yielded an increase in relative kcat/Km of 1.96±0.59 and
1.42±0.42 for PR and IB substrates, respectively (Fig. 6c).
Alternatively, shared N-terminal mutation S9A had slightly
reduced relative kcat/Km. Thus, even for a highly stable protein
like amiE, we found few mutations like R89E that can generally
increase kcat or KM and increase fitness.

Beneficial mutations shared in two of the three selections were
scarce. In all, 18/29 mutations shared between ACT and PR

cluster at the extreme N- or C- termini. The 17 PRþ IB-specific
mutations cluster at Q273, a 2nd shell residue that buttresses
W138 at the active site and at M202 located 14 Å to the active site.
Variant M202H showed over 2.5-fold increase in relative kcat/Km

for IB and PR, but Q273A did not show increased catalytic
efficiency in vitro. We speculate the conditions required by the
enzyme assay for sensitive ammonia detection prohibited the
recapitulation of in vivo kinetics.

Four ACT-specific mutations encoded smaller substitutions
(A/C/S/V) at position L119, a residue that supplies hydrophobic
packing behind the catalytic nucleophile C166 10 Å from the
active site (Fig. 6c). L119A showed a 2.2±0.1–fold increase in kcat

relative to wild-type with a compensatory increase in KM.
In stark contrast to ACT, there were 435 IB-specific and 395

specificity-determining mutations for IB distributed throughout
the protein structure (Fig. 6d). Substitution W138A/G decreases
van der Waals area in the vicinity of the amide transition state,
allowing accommodation of the bulky isobutyrl group.
However, most specificity-altering mutations were located
far from the active site. Hot spots of positions where five or
more specificity-determining mutations confer increased fitness
occur at the N- and C-terminus (residues H3, S7, T323, R324,
T327, V329 and C332-V334), as well as P50, C139, I174, A196,
K197, V201, M202, W209, N212, F223, S228, G247-E249, G252,
Q271, Q273-H275 and Y284. Interestingly, hot spot positions 197
through 212 are located on an alpha helix located at least 12 Å
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from the active site that contacts the dimeric interface. As these
mutations do not benefit all substrates, we hypothesize that
mutations at these positions cause rigid body motion of the helix
to yield subtle geometric rearrangement, if not large-scale
disruption, of the active site that favours IB catalysis. We tested
V201M/T for activity on IB and, contrary to expectations, found a
decrease in relative kcat/Km. We speculate that the mismatch
between expected and measured catalytic efficiency results from
hexamer dissociation caused by the low enzyme concentration
required by the activity assay, as the lysate assays showed an
increase in velocity for the V201T mutant.

Discussion
In this contribution, we generated single-mutation protein fitness
landscapes for an amidase on three different substrates. In
contrast to studying protein–protein interactions, the application
of deep mutational scanning to enzymes has been limited by the
difficulty in developing generalizable high-throughput functional
assays, as the nature of enzyme function is highly diverse.
Regardless, exhaustive mutational studies permit a glimpse into
how natural enzymes evolve for new functions. Our results
show that, at least for amiE, mutations which are beneficial for
only one substrate are (1) not confined to vicinity of the active site
and (2) cannot be predicted based on known fitness for another
substrate.

In terms of predicting fitness, we conclude that single-mutation
fitness landscapes are highly substrate dependent, which is
consistent with previous works8,38,48,49. However, this work
provides a unique perspective of comparing two structurally
similar substrates, ACT and PR, to the dissimilar IB substrate.
Not surprisingly, we found the IB single-mutation fitness
landscapes to be the most divergent, signalling that at the
biophysical level the requirement to accommodate the larger IB
substrate significantly alters the mutational landscape. The
percentage of beneficial mutations observed is consistent with
previous deep mutational scanning experiments on
enzymes8,37,38,50. These rates are significantly larger than
that predicted for the natural adaptation of organisms51

because in deep mutational scanning experiments a strong
selection is imposed upon a gene that is, by experimental
design, intended to influence only a single phenotypic trait4. This
intention to mitigate pleiotropy is especially true with bulk
growth competition experiments, and it should be noted that
randomly drifting populations contain genes that do not ascribe
to such constraints.

Our results strengthen the theoretical case that fitness for
beneficial mutations is approximately exponentially distributed
even though the percentage of beneficial mutations differs
substantially between substrates. We note that this exponential
distribution holds even for the IB selection which presumably
causes large-scale rearrangements of the active site to allow better
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access to the branched chain IB. Other studies have explored the
mechanics of multiple steps and epistasis39,42,43,52,53. In this
work, we considered only single steps in the local fitness
landscape. Thus, the generality of our observations for multiple
steps remain to be seen.

For the design and engineering of substrate promiscuous or
specific biocatalysts, knowledge of the sequence and spatial
distribution of ‘hits’ is imperative. Our findings indicate that, at
least for amiE, most substrate-determining mutations for new
functions, in this case IB, localize approximately 9–24 Å from the
active site. Altogether, these results have strong implications for
design and engineering of substrate promiscuous biocatalysts
because it suggests current strategies of iterative site saturation
mutagenesis near the active site are sub-optimal1. Additionally,
computational design algorithms focused solely on the modifying
1st and 2nd shell mutations around the active site need to be
revisited.

Methods
Reagents. All chemicals were purchased from Sigma-Aldrich unless specified
otherwise. All primers and mutagenic oligonucleotides were designed using the
Agilent QuikChange Primer Design Program (www.agilent.com) and were ordered
from Integrated DNA Technologies. PR and IB solids were recrystallized from
ethyl acetate and water, respectively.

Plasmid construction. pEDA6_amiE was renamed from pJK_proK14_amiE as
described in Bienick et al.33. pEDA2_amiE was constructed by Kunkel
mutagenesis54 of pJK_proK17_amiE from Bienick et al.33 to introduce a
knockdown ribosome binding sequence (primer kRBS3). Protein expression

constructs were made by subcloning the amiE gene from pEDA2_amiE into the
pET-29b(þ ) (Novagen) backbone at the NdeI and XhoI restriction sites following
standard protocols. amiE point mutants were created using Kunkel mutagenesis54.
Primer sequences used in this work are listed in Supplementary Table 5.

Construction of mutagenesis libraries. Eight comprehensive single-site
saturation mutagenesis libraries of amiE were constructed (residues 1–85, 86–170,
171–255 and 256–341 on plasmids pEDA2_amiE and pEDA6_amiE) using
PFunkel mutagenesis35 with modifications as noted34. Library cell stocks of the
selection strain, E. coli MG1655 rphþ [F- l-] (Coli Genetic Stock Center, #7925),
were made essentially as described in Klesmith et al.50.

Growth selections. Starter cultures for growth selection were prepared as in
Klesmith et al.50, except 1X M9 minimal media lacking ammonium chloride
(M9 N� ) was used to wash cell pellets before inoculation of selection media. Three
millilitre of selection media (M9 N� þ 10 mM ACT, M9 N� þ 15 mM PR and
M9 N� þ 10 mM IB for ACT, PR and IB selections, respectively) was inoculated
to an initial OD600 of 0.02 at a volume of 3 ml (46� 106 cells). To ensure
exponential growth during the entire selection experiment, after approximately
four generations the cells were harvested, washed with M9 N� , and a fresh 3 ml
culture with selection media was inoculated to the same initial OD600 of 0.02
(to maintain the same initial population size). Growth selections were carried out
and samples preserved for sequencing as described in Klesmith et al.50. Replicates
were performed using the same pre-selection population. Based on the high
correlation between replicates and the fact that a major source of error in deep
sequencing measurements are counting errors (Poisson noise)34, the fitness metrics
used in subsequent analysis were computed by combining reads from the two
replicates and repeating the analysis.

Sequencing. Libraries were amplified, barcoded, cleaned and quantified following
Method B as described in Kowalsky et al.34. Gene amplification primers are listed
in Supplementary Table 5. Pre- and post-selection samples were pooled and

Table 2 | Wild-type and variant amiE biophysical data.

Variant ACT f PR f IB f Km(mM)/Km,wt (mM) kcat (s� 1) /kcat,wt (s� 1) kcat/Km (M� 1 s� 1) /kcat,wt/Km,wt (M� 1 s� 1) Tm,app (�C)

Wild-type 0.00 0.00 0.00 4.7±0.5
52.7±8.3

297.2±54.8

59.0±2.0
144.7±9.9

13.3±1.1

67.7±0.1

S9A 0.33 0.41 0.36 2.3±0.6
4.4±1.1
0.5±0.1

0.6±0.1
1.6±0.2
0.4±0.0

0.28±0.1
0.36±0.13
0.76±0.27

63.1±0.1

A28R 0.27 0.10 0.11 nd nd nd 67.7±0.1

R89E 0.30 0.34 0.15 nd
0.7±0.1
0.8±0.2

nd
1.4±0.1
1.1±0.1

nd
1.96±0.59
1.42±0.42

66.7±0.1

L119A 0.30 �0.80 �0.60 2.8±0.4
Not active
2.5±0.6

2.2±0.1
Not active
1.3±0.2

0.8±0.16
Not active
0.52±0.18

67.4±0.2

I165C 0.25 �0.27 �0.32 2.6±0.4
0.7±0.2
0.7±0.2

1.7±0.1
0.6±0.1
0.8±0.1

0.66±0.14
0.79±0.24
1.22±0.65

65.7±0.1

V201M 0.37 0.12 0.22 10.2±2.0
0.8±0.4
4.6 ±1.3

1.1±0.1
0.1±0.0
0.8±0.1

0.11±0.03
0.13±0.10
0.18±0.08

61.2±0.1

V201T 0.20 0.34 0.25 1.6±0.3
nd

3.8±0.8

1.0±0.1
nd

1.4±0.1

0.65±0.16
nd

0.37±0.11

64.9±0.2

M202H �0.08 0.16 0.43 0.9±0.1
0.7±0.1
0.4±0.1

1.3±0.0
1.8±0.1
1.4±0.1

1.4±0.23
2.55±0.72
3.08±1.05

63.0±0.1

M203W � 1.30 �0.80 0.43 nd nd nd nd

A234M 0.33 0.15 0.21 2.8±0.4
0.5±0.2
3.6±0.9

1.0±0.0
0.3±0.0
0.8±0.1

0.35±0.07
0.58±0.32
0.23±0.08

64.4±0.1

Q273A �0.71 0.31 0.23 4.9±2.0
2.3±0.6
0.6±0.2

0.2±0.0
0.5±0.1
0.4±0.0

0.05±0.03
0.20±0.08
0.71±0.28

69.7±1.1
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sequenced with 300 bp PE reads on an Illumina MiSeq available at the Michigan
State University sequencing core. Deep sequencing data was analysed using Enrich
software55 with modifications as noted in Kowalsky et al.34 and scripts freely
available at Github (https://github.com/JKlesmith/Deep_Sequencing_Analysis).

Normalized fitness metrics for each variant, zi, were determined according to
the ‘Normalization for Growth Rate Selections’ section as outlined in Kowalsky
et al.34. Briefly, deep sequencing was used to count each library member in the
pre- and post-selection populations. For each single nonsynonymous mutation and
wild-type an enrichment ratio was calculated by:

ei¼ log2
ffi

foi

� �
ð2Þ

Where ffi and foi represent the frequency of member i in the final
(post-selection) and initial (pre-selection) populations. Normalized fitness
metrics were calculated using the following equation:

zi¼ log2

ei
gp
þ 1

eWT
gp
þ 1

 !
ð3Þ

Where ei is enrichment ratio for variant i, gp is the number of population
doublings, and eWT is the enrichment ratio for wild-type.

Beneficial mutations and lower bounds for fitness metrics. A beneficial
mutation was defined as having at least 10% increase in growth rate (z40.15)
relative to wild-type. Weighted means for synonymous codon fitness metrics,
where the weights were read counts (depth of coverage) for each mutation, were
calculated to be 0.03±0.09, � 0.02±0.11 and � 0.01±0.07 for the ACT, PR and
IB data sets, respectively. A fitness metric of 0.15 was found to be in 490%
percentile for all three data sets.

To determine lower-bound fitness metrics for each selection, we first
determined the half-median of read counts of the pre-selection library for
each selection (63, 49 and 31 for the ACT, PR and IB selections, respectively).
This number was normalized by the ratio of post- to pre-selection read counts
(2.97, 1.86, and 2.04 for ACT, PR and IB selections, respectively). Next, a
lower-bound enrichment ratio (eLB) based on 10 read counts in the post-selection
population was calculated:

eLB¼ log2

10
fLB

� �
ð3Þ

Where fLB represents the normalized half-median pre-selection reads. The
lower-bound fitness metrics, zLB, was then calculated using eight population
doublings (gp) and the wild-type enrichment ratio (eWT):

zLB¼ log2

eLB
gp
þ 1

eWT
gp
þ 1

 !
ð4Þ

Distribution fitting of beneficial DFE. Distribution fitting analysis was conducted
using R statistical software56. Bootstrap goodness of fit and parameter estimation
for the GPD were done using the package gPdtest57. Model parameters were
approximated and log likelihood values were determined using maximum
likelihood estimation with package fitdistrplus58. Anderson-Darling tests were
performed using the package kSamples59. Log-likelihood (LL) ratios were
calculated as 2*[(LL HA)–(LL H0)], where H0¼ null hypothesis and
HA¼ alternative hypothesis. P values were computed from a chi-squared
distribution with one degree of freedom.

Protein characterization. Wild-type and variant amiE protein was expressed
using Studier auto-induction60 and purified according to Klesmith et al.50. The
eluate was buffer exchanged into PBS buffer, pH 7.5 using GE disposable PD-10
desalting columns (GE Healthcare). Purified protein was stored in PBS at 4 �C.
Wild-type and variant amiE melting temperatures were measured using a SYPRO
Orange thermal-shift assay61,62 as described in Klesmith et al.50, but in PBS buffer,
pH 7.5. Catalytic parameters (Km and kcat) were assayed at 37 �C in PBS buffer, pH
7.5 using a phenol and hypochlorite ammonia detection assay63. PCR plates
containing 100ml of seven different concentrations of amide (highest
concentrations were 40, 150 and 800 mM for ACT, PR and IB activity assays,
respectively, with 1:2 serial dilutions for remaining substrate concentrations) in
PBS were incubated on a thermocyler block (Eppendorf) with the lid open at 37 �C
for 5 min. To begin the assay, 20 ml of 0.02 mM (ACT and PR assays) or 0.2 mM
(IB assays) enzyme was added. At discrete time points, 100 ml of the reaction was
removed and quenched by depositing into a clear 96-well plate containing 50 ml
phenol nitroprusside solution held on ice. At the end of the last time point, 50 ml
alkaline hypochlorite solution was added to all wells and the plate was covered and
incubated in a metal bead heat bath for 10 min at 35 �C. The plate was then
transferred to a Synergy H1 spectrophotometer (BioTek) held at 35 �C and A625

was measured every minute for 15 min. Non-linear regression was performed using
GraphPad Prism version 6 for Mac OS X, GraphPad Software, La Jolla California
USA, www.graphpad.com. All measurements were performed at least in duplicate.
The IB-specific variant M203W shows increased fitness in the deep-sequencing

selection but decreased lysate activity compared with wild-type. M203W
immediately precipitated out when we tried to purify this enzyme. Thus, for this
case, lysate activity would not be representative of in vivo conditions. For PR
variants, the coefficient of variation for wild-type was prohibitively high to calculate
statistically significant ratios; note the variance of the other wild-types
measurements.

Isogenic growth and lysate flux assays. Starter cultures were prepared by
inoculating 2 ml of M9 minimal media þ carbenicillin (50 mg ml� 1) with
scrapings of MG1655 rphþ cell stocks harbouring pEDA2_amiE or pEDA6_amiE
variant plasmids and grown overnight at 37 �C with 250 r.p.m. shaking. In the
morning, cells were pelleted, washed twice with M9 N� , and resuspended in 1 ml
M9 N� . 3 ml of selection media þ carbenicillin (50 mg ml� 1) in Hungate tubes
was inoculated to a final OD600 of 0.02. Cultures were grown at 37 �C with shaking
at 250 r.p.m. For growth assays, OD600 was measured every 30–45 min until a final
OD600 of B0.5 was reached. All growth rate measurements represent at least four
biological replicates collected on at least two separate dates. Lysate flux assays were
adapted from Bienick et al.33. Two millilitre of exponential phase culture (OD600 of
approximately 0.15–0.3) was spun down at 15,000g for 5 min. Cell pellets were
washed twice and resuspended with 1 ml PBS, pH 7.5. Cells were lysed as described
in Bienick et al.33. In all, 0.5–0.9 ml of lysate was used in a 1 ml total volume assay
containing 10, 15 or 10 mM ACT, PR or IB, respectively. The assay was conducted
at 37 �C. Every 5 min, 100 ml of the assay volume was removed and added to a
96-well plate containing 50 ml pre-chilled phenol nitroprusside. At the end of the
last time point, 50 ml of alkaline hypochlorite was added to all wells. Absorbance at
625 nm was measured as in Bienick et al.33.

Data availability. Full data sets including normalized fitness metrics, pre- and
post-selection read counts, and raw log base two enrichment scores for each variant
can be found in Supplementary Data 1-3 for the ACT, PR and IB selections,
respectively, and can be obtained from Figshare (https://dx.doi.org/10.6084/
m9.figshare.3505901.v2). Raw sequencing reads for this work have been deposited
in the SRA (SAMN06237792-SAMN06237827).
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