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Abstract: Bearing vibration signals typically have nonlinear components due to their interaction
and coupling effects, friction, damping, and nonlinear stiffness. Bearing faults affect the signal
complexity at various scales. Hence, measuring signal complexity at different scales is helpful to
diagnosis of bearing faults. Numerous studies have investigated multiscale algorithms; nevertheless,
multiscale algorithms using the first moment lose important complexity data. Accordingly, gen-
eralized multiscale algorithms have been recently introduced. The present research examined the
use of refined composite generalized multiscale dispersion entropy (RCGMDispEn) based on the
second moment (variance) and third moment (skewness) along with refined composite multiscale
dispersion entropy (RCMDispEn) in bearing fault diagnosis. Moreover, multiclass FCM-ANFIS,
which is a combination of adaptive network-based fuzzy inference systems (ANFIS), was developed
to improve the efficiency of rotating machinery fault classification. According to the results, it is
recommended that generalized multiscale algorithms based on variance and skewness be examined
for diagnosis, along with multiscale algorithms, and be used to achieve an improvement in the results.
The simultaneous usage of the multiscale algorithm and generalized multiscale algorithms improved
the results in all three real datasets used in this study.

Keywords: dispersion entropy; fault diagnosis; refined composite generalized multiscale dispersion
entropy (RCGMDispEn); bearing; multiclass FCM-ANFIS

1. Introduction

Bearings are among the most important and useful rotating machinery components [1].
A lack of timely diagnosis and replacement of bearings can disrupt the functionality of
machinery. For instance, 40–50% of all electrical motor failures are associated with bearing
failure [2]. Prompt fault detection in bearings can reduce financial loss and health risks.

The vibration signals of bearings usually exhibit a nonlinear behavior due to the effects
of coupling and nonlinear interactions, friction, damping, and stiffness [3], and faults at
different signal scales impact signal complexity. Hence, measurements of signal complexity
at various scales can contribute to diagnosis and, thus, are commonly used.

Entropy is a measure of the disorder and predictability of the signal. It is one of
the most powerful concepts used to evaluate signal characteristics [4]. Several entropies
have been introduced to date, such as sample entropy (SampEn) and permutation entropy
(PerEn). We recently introduced dispersion entropy (DispEn) [5] and demonstrated its
advantage over PerEn and SampEn [5]. In addition to being fast, DispEn can provide a
better representation of dynamic signal changes. PerEn considers only the order of the
amplitudes with respect to each other, but DispEn takes into account the values of the
amplitudes. Unlike SampEn, DispEn is also defined in short series [6]. Moreover, DispEn is
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relatively insensitive to noise [3]. Rostaghi et al. investigated the potential applications of
DispEn in rotating machinery diagnosis and demonstrated its superiority over PerEn and
approximate entropy (ApEn) [3]. Liu et al. combined DispEn and wavelet packets to extract
the features used for bearing diagnosis [7]. They calculated the DispEn of each wavelet
packet. Li et al. computed the intrinsic mode function (IMF) components of the signals via
an improved complete ensemble empirical mode decomposition and used DispEn of the
first few IMF components for bearing diagnosis [8]. Zhenzhen et al. employed variational
mode decomposition (VMD) and DispEn for bearing diagnosis [9].

Disorder and complexity have different physical meanings [10,11]. Accordingly, con-
ventional entropies cannot represent complexity without using other algorithms. Therefore,
Costa et al. introduced the multiscale algorithm in 2002 to show complexity and analyze
non-stationary and nonlinear signals [12]. They utilized this algorithm for SampEn. Subse-
quently, this algorithm was used for various entropies and enhanced multiple times. Aziz
et al. introduced multiscale permutation entropy (MPerEn) [13]. Wu et al. introduced
refined composite multiscale entropy (RCMSampEn) [14], Humeau-Heurtier et al. refined
composite multiscale permutation entropy (RCMPerEn) [15], and Azami et al. refined
composite multiscale dispersion entropy (RCMDispEn) [16].

Wang et al. utilized MDE for feature extraction in bearing diagnosis [17]. Congzhi et al.
calculated the RCMDispEn of vibration signals and classified them using the support
vector machine (SVM) for bearing diagnosis [18]. Zhang et al. utilized RCMDispEn and an
improved SVM based on the whale optimization algorithm for fault detection of rolling
bearings [19]. Lou et al. employed the RCMDispEn and the deep belief network-extreme
learning machine optimized by the improved firework algorithm for rolling bearing sub-
health recognition [20].

Various techniques have been used along with RCMDispEn for bearing diagnosis.
These techniques include the fast ensemble empirical mode decomposition [21], adaptive
sparest narrow-band decomposition [22], improved empirical wavelet transform [23,24],
VMD [25], and improved VMD (IVMD) [26].

Costa et al. introduced generalized multiscale entropy (GMSE) in 2015 [27]. General-
ized algorithms use other statistical properties, such as variance, for coarse-graining. Costa
et al. specifically proposed and utilized the standard deviation (SD) and variance [27].
Wei et al. stated that, unlike the first moment, the second moment simultaneously separates
the high and low frequency contents during coarse-graining [28], and employed variance-
based generalized multiscale fuzzy entropy for diagnosis in rotating machinery [28]. Zheng
et al. utilized generalized composite multiscale permutation entropy-based variance and
the Laplacian score for bearing diagnosis [29]. Liu et al. detected bearing faults using
generalized composite multiscale amplitude-aware permutation entropy-based variance
and dual-tree complex wavelet packet transform [30].

Because of the advantages of DispEn-based algorithms over the SampEn-, FuzEn-, and
PerEn-based algorithms [6], the present paper investigates refined composite generalized
multiscale dispersion entropy (RCGMDispEn) based on variance and skewness with
RCMDispEn for bearing fault diagnosis. It is worth mentioning that generalized multiscale
dispersion entropy is proposed in this study for the first time to probe the properties
of time series related to higher moments (the second and third moments, i.e., variance
and skewness).

A combination of several classifiers was used to overcome the limitations of each
classifier and achieve higher efficiency [31–33]. In numerous studies, several classifiers
have been used with a classifier utilizing the results of the other classifiers for final classifi-
cation [32,34,35]. Belaout et al. combined several Sugeno ANFIS to construct an output
vector and introduced a multiclass ANFIS based on the winner-takes-all rule [36]. Similarly,
multiclass FCM-ANFIS was used in this study to classify different kinds of faults.

The rest of the paper is organized as follows. Section 2.1 reviews the theory of DispEn,
and Sections 2.2 and 2.3 introduce the calculation of GMDispEn and RCGMDispEn, respec-
tively. Section 3 introduces the theory behind combining ANFIS networks. In Section 4,
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RGMDispEn and GMDispEn methods are compared to MDispEn and RCMDispEn, respec-
tively, in terms of diagnosis capability in simulated bearing signals. Section 5 uses three
different datasets to demonstrate that simultaneously using RCGMDispEn and RCMDis-
pEn in practical applications can provide better efficiency than MDispEn and RCMDispEn.
Finally, Section 6 concludes the paper.

2. Generalized Refined Composite Multi-Scale Dispersion Entropy
2.1. Dispersion Entropy

The DispEn for the time series x = {x1, x2, x3, . . . , xN} with a length of N can be
calculated in six steps [5]:

Step 1. The signal is normalized between 0 and 1. The series y = {y1, y2, . . . , yN} is
obtained according to (1) from the normal cumulative distribution function (NCDF) of the
series x:

yi =
1

σ
√

2π

∫ xi

−∞
e
−(t−γ)2

2σ2 dt (1)

Here, σ and γ denote the SD and mean value of the time series x, respectively.
Step 2. Each member of the time series y is mapped to an integer between 1 and c

(Equation (2)):
zc

i = round(c.yi + 0.5) (2)

c is the class parameter and indicates the number of classes that can be members of
the time series zc. zc

i is the ith member of the classified series zc.
Step 3. All the template vectors zm,c

j (j = 1, 2, . . . , N− (m− 1)d) are created as follows:

zm,c
j =

{
zc

j , zc
j+d, . . . , zc

j+(m−1)d

}
(3)

where m and d, respectively, denote the embedding dimension and time delay. The
embedding dimension is the dimension of the state space used for reconstruction.

Step 4. Each series zm,c
j is mapped to a pattern πv0v1 ...vm−1 based on its values, while

the following holds:

zc
j = v0, zc

j+(1)d = v1, zc
j+(2)d = v2, . . . , zc

j+(m−1)d = vm−1 (4)

The number of possible dispersion patterns that can be attributed to each series zm,c
j is

equal to cm, because each zm,c
j has m members, and each of them can be an integer from 1

to c [5].
Step 5. For every cm dispersion patterns πv0v1 ...vm−1 , the relative frequency is obtained

using Equation (5); i.e., the number of dispersion patterns πv0v1 ...vm−1 that are attributed to
the series zm,c

j is divided by the total number of m-dimensional series created.

p(πv0v1 ...vm−1) =
Number

{
t
∣∣∣t ≤ N − (m− 1)d, zm,c

j has type πv0v1 ...vm−1

}
N − (m− 1)d

(5)

p(πv0v1 ...vm−1) is the probability of dispersion pattern πv0v1 ...vm−1 .
Step 6. DispEn with the embedding dimension m and number of classes c is calculated

according to Equation (6):

DispEn(x, m, c, d) = −∑ p(πv0v1 ...vm−1) ln p(πv0v1 ...vm−1) (6)

To calculate the normalized DispEn (NDispEn) according to Equation (7), DispEn is
divided by the largest possible DispEn.

NDispEn(x, m, c, d) =
DispEn(x, m, c, d)

ln(cm)
(7)
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When m or c is too large, the computation time is high, although it makes the DispEn
values more reliable [5]. In addition, if the embedding dimension m is too small, the
dynamic changes may not be detected in the signal, whereas large m may cause DispEn to
be unable to observe small variations [5]. Based on the abovementioned facts and previous
studies [3,5], the parameters m = 2 and c = 8 were used to calculate DispEn.

2.2. Generalized Multiscale Dispersion Entropy

Multiscale dispersion entropy (MDispEn) and generalized MDispEn (GMDispEn)
compute DispEn in several consecutive scales based on the first and other momenta.
The nth-moment-based generalized MDispEns are displayed as GMDispEnn. They are
implemented as follows:

The signal is coarse-grained up to where the time series yn,(τ), which is the time series
x with the scale τ and the nth moment, is constructed [19]:

For MDispEn, based on the first moment:

y1,(τ)
j =

1
τ

jτ

∑
i=(j−1)τ+1

xi, 1 ≤ j ≤ N
τ

(8)

For GMDispEn2, based on the second moment (variance):

y2,(τ)
j =

1
τ

jτ

∑
i=(j−1)τ+1

(xi − xj
)2, 1 ≤ j ≤ N

τ
(9)

For GMDispEn3, based on the third moment (skewness):

y3,(τ)
j =

1
τ

jτ

∑
i=(j−1)τ+1

(xi − xj
)3, 1 ≤ j ≤ N

τ
(10)

where xj =
1
τ

jτ
∑

i=(j−1)τ+1
xi.

The DispEn of the signal yn,(τ) is computed. Here, the mean and the SD of the main
signal are used for mapping based on the NCDF before coarse-graining. This approach
is similar to keeping r constant while calculating the multiscale entropy (MSE) such that
r = 0.15 × D (original signal) for all scales.

With a change in τ, often carried out by adding 1 to τ, Steps 1 and 2 are repeated until
the desired scale is reached.

For DispEn, the parameters must be set in such a way that the number of possible
dispersion patterns becomes smaller than the signal length (cm < L). Because the sig-
nal length for GMDispEn is reduced to

⌊
L

τmax

⌋
due to coarse-graining, cm <

⌊
L

τmax

⌋
is

recommended for GMDispEn.

2.3. Generalized Refined Composite Multi-Scale Dispersion Entropy

In the calculation of the RCMDispEn and the nth-moment-based RCGMDispEn
(RCGMDispEnn) with a scale factor of τ, τ different time series are constructed by coarse-
graining based on the first and higher momenta in order and with different starting points.
The relative frequency of the dispersion patterns is calculated from every τ time series.
The kth coarse-grained time series xn,(τ)

k =
{

xn,(τ)
k,1 , xn,(τ)

k,2 , . . .
}

from the series x is obtained

based on the nth moment and the scale τ as follows:

x1,(τ)
k,j =

1
τ

k+τ j−1

∑
i=k+τ(j−1)

xi, 1 ≤ j ≤ N
τ

, 1 ≤ k ≤ τ (11)
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x2,(τ)
k,j =

1
τ

k+τ j−1

∑
i=k+τ(j−1)

(xi − xk,j)
2, 1 ≤ j ≤ N

τ
, 1 ≤ k ≤ τ (12)

x3,(τ)
k,j =

1
τ

k+τ j−1

∑
i=k+τ(j−1)

(xi − xk,j)
3, 1 ≤ j ≤ N

τ
, 1 ≤ k ≤ τ (13)

where xk,j =
1
τ

jτ+k−1
∑

i=(j−1)τ+k
xi.

Hence, for every scale factor, RCGMDispEnn is defined as follows:

RCGMDispEnn(x, m, c, d, τ) = −∑ p(πv0v1 .... vm−1). ln(p(πv0v1 .... vm−1)) (14)

where p(πv0v1 .... vm−1) = 1
τ ∑τ

k=1 p(τ)k (πv0v1 .... vm−1). p(τ)k (πv0v1 .... vm−1) is the relative fre-

quency of the dispersion pattern πv0v1 .... vm−1 in the time series xn,(τ)
k .

In RCGMDispEn, τ coarse-grained time series with a length of
⌊

L
τmax

⌋
are considered.

Thus, the total number of samples calculated in RCGMDispEn is τ×
⌊

L
τmax

⌋
≈ L. Therefore,

RCGMDispEn with a length of cm < L produces reliable results. This special property is
significant in short-length signals.

It must be noted that the scale starts from 2 for calculating GMDispE2 and RCGMDispE2,
and from 3 for calculating GMDispE3 and RCGMDispE3 [37,38].

3. Multiclass Adaptive Neuro-Fuzzy Classifier
3.1. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS is a fuzzy model expressed in the form of a neural network [39]. It is character-
ized by a synergic collaboration between the fuzzy theory and neural networks. ANFIS
combines a treatment of the uncertainty and interpretability of fuzzy systems with the learn-
ing capability of neural networks [40,41]. It utilizes neural network learning algorithms to
estimate the parameters of the fuzzy model [42].

An ANFIS structure is composed of five layers with nodes in the same layer possessing
the same function family, as explained below:

First layer: In this layer, the membership degrees of each input with respect to the
membership functions are calculated. Various membership functions can be employed
here. Because the partial derivatives of the Gaussian function parameters are smooth, the
Gaussian function was used in this research:

µij(xsj) = exp

(
−
(
xsj − cij

)2

2σ2
ij

)
(15)

Here, µij represents the membership of the Gaussian function with respect to the ith

rule and jth feature, and xsj denotes the jth feature of the sth sample. The parameters cij and
σij respectively represent the center and width of the Gaussian function.

Second layer: In this layer, the fuzzy implication in each node is computed using the
input membership degrees. θic, which is the implication of the ith rule for the sample xc, is
obtained as follows:

θic =
N

∏
j=1

µij(xcj) (16)

Here, N denotes the number of input features xc.
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Third layer: In this layer, the ratio of the implication of the rule associated with every
node to the total rule implications is computed in every node. The normalized implication
of the ith node (θic) is determined as follows:

θic =
θic

∑M
i=1 θic

(17)

M equals the number of rules.
Fourth layer: The nodes in this layer are adaptive nodes. The weighted output of

each node in this layer ϕic is obtained by multiplying θic with a corresponding first-degree
polynomial ( fic):

ϕic = θic. fic (18)

The coefficients of the polynomial fic and the coefficients cij and σij corresponding to
the first layer are updated by the learning algorithms of the neural network.

Fifth layer: This layer contains a single fixed node that calculates the output fout:

fout(xc) =
M

∑
i=1

ϕic =
M

∑
i=1

θic. fic (19)

In this paper, fewer fuzzy rules were obtained by using fuzzy c-means (FCM), which
automatically constructs a fuzzy rule base for ANFIS. A combination of the least-squares
method and the backpropagation gradient descent method was used to adjust the member-
ship functions and other parameters.

3.2. Fuzzy C-Means

FCM is a clustering algorithm that assigns each data point to a cluster with a specific
degree of membership. Dunn introduced this algorithm [43] and Bezdek subsequently
improved it [44,45].

FCM employs the minimization of the objective function [45]:

Jm(u, c) =
D

∑
j=1

N

∑
i=1

µm
ij ‖xi − cj‖

2

(20)

where N and D represent the number of data points and clusters, respectively. Moreover,
xi denotes the ith data point, and cj is the center of the jth cluster. µij is the membership
degree of xi with respect to the jth cluster, and m represents the fuzziness parameter. ‖.‖
denotes the Euclidean distance.

The objective function is minimized via an iterative process of updating the fuzzy
membership degrees and the cluster centers [46]. The steps to implementing FCM are as
follows [45,47]:

1-The membership degrees of the clusters µij are randomly initialized.
2-The centers and membership degrees of the clusters are calculated as below:

cj =

D
∑

i=1
µm

ij xi

D
∑

i=1
µm

ij

(21)

3-The membership degrees of the clusters are updated as follows:

µij =
1

N
∑

k=1

( ‖xi−cj‖
‖xi−ck‖

) 2
m−1

(22)
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4-The objective function Jm is computed.
5-Steps 2 to 4 are repeated until a minimum threshold for the objective function or the

maximum number of iterations is reached.

3.3. Multiclass FCM-ANFIS

A combination of several classifiers is used to overcome the limitations of each classi-
fier and achieve higher efficiency [34]. Each Sugeno ANFIS may be considered a binary
classifier, and a set of them can be used in multiclass classification problems [36]. The
final inference can take place via the winner-takes-all rule [36]. Accordingly, multiclass
FCM-ANFIS was employed in this research. In this technique, every FCM-ANFIS exam-
ines the possibility of assigning a specific class to each input sample. Specifically, the kth

FCM-ANFIS examined the possibility of assigning the class k to the inputs, and the target
was considered to be 1 for the class k and zero for the rest of the classes. The final class is
the one whose FCM-ANFIS has the largest output:

max([output(FCM-ANFIS1), . . . , output(FCM-ANFISN)]) = output(FCM-ANFISk)⇒ Final output = Class k

Figure 1 displays the implementation of multiclass FCM-ANFIS.
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4. Analysis of a Simulated Bearing Signal

The vibration signal of ball bearing with an outer race fault was simulated as follows:

x(t) = xseries of impulses + xharmonic component + n(t) (23)

where xseries of impulses and xharmonic component represent the impulse series and the harmonic
series, respectively, and n(t) denotes the noise.

Based on previous studies [48,49], xseries of impulses was modeled using Equation (24):

xseries of impulses =
m

∑
k=1

n′

∑
n=1

Ae
−2ξπ fn(t− k

f f
−∑k

i=1 τk)
sin(2π fn

√
1− ξ2(t− k

f f
−

k

∑
i=1

τk)) (24)

fn represents the resonance frequencies of the bearing, which are significantly higher
than the fault frequency f f . τk represents a small random change in the interval between
two impulses. The ball slipping effect changes the period randomly to k

f f
− τk. Hence, for

every k, τk was considered to be a random number from a normal distribution with a zero
mean and standard deviation of στ = 0.005× 1

f f
.
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Two sinusoidal functions were employed for the harmonic part of Equation (23) [50,51]:

xharmonic component =
2

∑
m=1

Bm sin(2πm frt) (25)

In this simulation, the characteristic frequency of the fault and the damping factor
were assumed to be f f = 100 Hz and ξ = 0.03. Moreover, f1 = 2 KHz, f2 = 3.5 KHz
represent the resonance frequencies of the bearing, and A = 1 denotes the magnitude of
the impulse amplitude, which is a measure of the damage intensity. In addition, the rotor
frequency was considered to be fr = 30 Hz, and B1 = 0.2 and B2 = 0.12 represent the
amplitudes of the first and second harmonics of the rotor, respectively. The signal of a
healthy bearing was modeled by eliminating the fault impulses.

Fifty independent healthy and faulty bearing signals with a length of 2048 data points
and a sampling frequency of 40 kHz were simulated. Moreover, Gaussian noise was added
to them with the variance ratio of signal to noise of 0.257 [52]. Figure 2 shows an example
of these signals.
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MDispEn, GMDispEn2, GMDispEn3, RCMDispEn, RCGMDispEn2, and RCGMDispEn3,
were calculated for the simulated signals, with the results displayed in Figure 3. In this
figure, p-values smaller than 0.05 are identified with asterisks. According to Figure 3,
RCMDispEn, RCGMDispEn2, and RCGMDispEn3 possess higher fault distinguishing
capability than MDispEn, GMDispEn2, and GMDispEn3, respectively, and their results
have a smaller standard deviation. Distinguishing abilities of the bearing faults using the
generalized methods are also displayed.

Hedges’ g effect size [53] was used to evaluate the capability of these methods in
discriminating the faulty from healthy ball bearing signals. The results are shown in
Table 1. As can be seen, the GMDispEn2, GMDispEn3, RCGMDispEn2, and RCGMDispEn3
algorithms effectively show the differences between the healthy and the faulty conditions,
similar to MDispEn and RCMDispEn. RCMDispEn, RCGMDispEn2, and RCGMDispEn3
have larger size effects and better fault separation capability than MDispEn, GMDispEn2,
and GMDispEn3, respectively.
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Table 1. Hedges’ g effect size of MDispEn, RCMDispEn, GMDispEn2, RCGMDispEn2, GMDispEn3, and RCGMDispEn3 in
20 scales on 50 independent healthy and faulty bearing signals.

Scale Methods

MDispEn RCMDispEn GMDispEn2 RCGMDispEn2 GMDispEn3 RCGMDispEn3

1 0.6493 0.6493 - - - -

2 0.2235 0.4915 2.2364 2.2569 - -

3 1.1242 1.7345 5.0136 5.5878 3.2119 6.9364

4 1.1183 2.4674 10.8933 10.7749 7.9872 14.1039

5 1.0230 2.9302 16.6406 17.7200 6.6340 12.5567

6 1.0875 2.0787 15.7878 17.2561 4.6298 12.3608

7 0.9397 2.0842 11.0137 14.0667 5.9228 9.5684

8 1.0843 1.4531 1.8651 12.4676 4.3129 8.9234

9 0.2716 0.7559 10.4116 12.0355 3.8295 8.1357

10 0.0886 0.2386 9.0303 11.0007 3.4057 6.2796

11 0.3981 0.4373 8.7524 10.5785 2.7631 4.1878

12 0.6708 0.9714 7.4537 10.0266 2.0409 2.8769

13 1.4599 1.6187 7.3757 9.5024 1.8816 2.0764

14 0.9879 2.0674 6.8795 8.7588 0.5327 1.2610

15 1.9579 2.7560 6.7228 8.8263 0.3114 0.3482

16 1.7376 3.1014 6.3236 8.5332 0.0566 0.2229

17 3.2926 3.3136 6.1438 7.9683 0.3684 0.9012

18 1.9379 3.6472 4.9962 7.4363 1.1923 1.5027

19 3.2548 3.7864 4.4918 6.8664 1.8531 2.0079

20 2.7194 4.0228 4.2644 6.0740 0.7243 2.4493
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5. Analysis of the Experiments
5.1. Analysis of the Vibration Signals Acquired from the Case Western Reserve University Dataset

This section uses datasets from Case Western Reserve University (CWRU), US [54],
with a sampling frequency of 48 kHz. The experimental set-up includes a three-phase
induction motor, a torque transducer, and a dynamometer. The ball-bearing vibration
signals were collected using an accelerometer installed on the motor housing at the drive
end of the motor.

The signals consisted of 10 different fault conditions: healthy, ball fault, inner race
fault, and outer race fault with intensities of 0.021′′, 0.007′′, and 0.014′′. The shaft rotating
speeds were 1772, 1750, and 1730 rpm.

A detailed description of the data set is shown in Table 2. For each condition,
180 samples with a length of 2048 were separated from the dataset signals with no overlap
between any two samples.

Table 2. Description of bearing data set.

Bearing Condition Defect Size
(mm)

Label of
Classification

Normal 0 1

Rolling element Fault 0.1778 2

Rolling element Fault 0.3556 3

Rolling element Fault 0.5334 4

Inner race Fault 0.1778 5

Inner race Fault 0.3556 6

Inner race Fault 0.5334 7

Outer race Fault 0.1778 8

Outer race Fault 0.5334 9

Specifically, 72, 18, and 90 signals were used for training, validation, and testing,
respectively. MDispEn, GMDispEn2, GMDispEn3, RCMDispEn, RCGMDispEn2, and
RCGMDispEn3 were calculated for all the signals, and their values were used in 20 scales as
features for fault detection and classification. A binary vector was used as the target vector
for every bearing condition. This binary vector had a length of 10 because 10 conditions
were being studied. This research employed 10 FCM-ANFIS, each of which detected one
element in the target vector.

The faulty conditions classification using multiclass FCM-ANFIS was performed
20 times with different inputs. The results of classifying these features are displayed in
Figure 4 and Table 3. In this example, RCMDispEn, RCGMDispEn2, and RCGMDispEn3
performed better at classification than MDispEn, GMDispEn2, and GMDispEn3, respec-
tively. Moreover, the simultaneous use of RCMDispEn, RCGMDispEn2, and RCGMDispEn3
as the classifier inputs produced the most accurate classification. Table 4 represents the
confusion matrix of the best performance using these inputs.
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Figure 4. Classification accuracies of ball bearing fault diagnosis using ten different methods from the CWRU dataset.

Table 3. The classification results of ball bearing faults using ten different inputs from the CWRU dataset.

Accuracy (%)

Features Min Mean Max

MDispEn 88.7654 90.5679 91.7284

GMDispEn2 89.1358 90.1728 91.2346

GMDispEn3 91.8519 93.1605 94.3210

RCMDispEn 93.9506 95.1420 96.0494

RCGMDispEn2 91.6049 92.3457 93.4568

RCGMDispEn3 95.6790 96.4198 97.0370

RCMDispEn+ RCGMDispEn2 97.2840 98.1790 99.0123

RCMDispEn+ RCGMDispEn3 98.0247 98.2531 98.2716

RCGMDispEn2+ RCGMDispEn3 94.3210 95.8765 97.2840

RCMDispEn+RCGMDispEn2+ RCGMDispEn3 99.0123 99.1235 99.1358

Table 4. Confusion matrix of the testing set of the multiclass FCM-ANFIS using RCMDispEn, RCMDispEn, and RCMDispEn
as the input.

True Label

1 2 3 4 5 6 7 8 9 Sensitivity

Predicted Label

1 90 0 0 0 0 0 0 0 0 100

2 0 90 0 0 0 0 0 0 0 100

3 0 0 88 1 0 0 0 0 0 98.87

4 0 0 0 87 0 2 0 0 0 97.75

5 0 0 0 0 90 0 0 0 0 100

6 0 0 0 1 0 88 0 0 0 98.88

7 0 0 0 1 0 0 90 0 0 98.90

8 0 0 0 0 0 0 0 90 0 100

9 0 0 2 0 0 0 0 0 90 97.83

Precision 100 100 97.78 96.67 100 97.78 100 100 100 AC * = 99.13

* AC is the accuracy.
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5.2. Analysis of the Signals Acquired from the PHMAP 2021 Data Challenge Dataset

Part of the PHMAP 2021 data challenge dataset [55] was used in this section. The
studied equipment consists of an oil injection screw compressor, containing a 15 kW
and 3600 rpm motor and a 7200 rpm screw axis. This paper used data acquired using
an accelerometer installed on the motor with a sampling frequency of 10,544 samples
per second.

Three fault conditions were examined: (1) high Looseness of V-belt, (2) faulty bearing,
and (3) fault-free condition. Three hundred independent signal samples with a length of
1024 samples were separated for each fault condition.

MDispEn, RCMDispEn, GMDispEn2, RCGMDispEn2, GMDispEn3, and RCGMDispEn3
were calculated for all the signals, and their values were used in 20 scales as features
for fault detection and classification. For each condition, 120, 30, and 150 samples were
used for training, validation, and testing, respectively. These data were classified 20 times
using multiclass FCM-ANFIS. The results are displayed in Figure 5 and Table 5. As
can be seen, the highest accuracy was achieved by the combined use of RCMDispEn,
RCGMDispEn2, and RCGMDispEn3 as inputs. However, the mean accuracy of RCMDispEn
and RCGMDispEn2 as simultaneous inputs was greater than that of other inputs. These
results confirm the proposal of this paper regarding the use of generalized multiscale
entropies with multiscale entropies to improve the results. The best classification results
are displayed in Table 6.
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Table 5. Results of classifying fault conditions: (1) high looseness of V-belt, (2) faulty bearing, and (3) fault-free condition
using multiclass FCM-ANFIS with different inputs.

Accuracy (%)

Features Min Mean Max

RCMDispEn 93.3333 94.4667 96.8889

RCMDispEn + RCGMDispEn2 96.6667 97.3222 97.7778

RCMDispEn + RCGMDispEn3 92.2222 93.3778 97.1111

RCMDispEn + RCGMDispEn2 + RCGMDispEn3 95.5556 96.4889 98.8889

Table 6. Most accurate classification of three fault conditions: (1) high looseness of V-belt, (2) faulty bearing, and (3) fault-free
condition using RCMDispEn, RCMDispEn2, and RCMDispEn3 as inputs.

True Condition

Belt Looseness High Bearing Fault Normal Sensitivity (%)

Predicted
condition

Belt Looseness High 148 0 0 100

Bearing fault 0 150 3 98.04

Normal 2 0 147 98.66

Precision (%) 98.67 100 98 AC * = 98.89

* AC is the accuracy.

5.3. Analysis of Vibration Signals Acquired from the Paderborn University Dataset

The data used in this section were from the ball bearing data collected in the Mechani-
cal Engineering Construction and Drive Technology (KAt) Research data center, Paderborn
University, Germany [56,57].

The classification of the datasets used in the present work is presented in Table 7,
which represents three different fault conditions: (1) inner race damage, (2) outer race
damage, and (3) healthy. The vibration signals corresponding to different bearing fault
conditions under different operating conditions, shown in Table 8, were collected with a
sampling frequency of 64,000 Hz.

Table 7. Operating conditions.

No. Rotational Speed [rpm] Load Torque [Nm] Radial Force [N]

1 1500 0.7 1000

2 1500 0.1 1000

3 1500 0.7 400

Table 8. Datasets used for three different bearing fault conditions.

Type of Bearing

Healthy Outer Ring Damage Inner Ring Damage

Bearing Code

KI04 KA04 K001

KI14 KA15 K002

KI16 KA16 K003

KI18 KA22 K004

KI21 KA30 K005
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A signal with a length of 1024 was separated from the beginning of every measured
vibration signal, with 60 signals separated from each dataset, to obtain a total of 300 signals
for each fault condition.

MDispEn, RCMDispEn, GMDispEn2, RCGMDispEn2, GMDispEn3, and RCGMDispEn3
were calculated for all the signals, and their values were used in 20 scales as features
for fault detection and classification. For each condition, 120, 30, and 150 samples were
used for training, validation, and testing, respectively. These data were classified 20 times
using multiclass FCM-ANFIS. The results, displayed in Figure 6 and Table 9, confirm the
suggestion made by the present study. Specifically, the highest classification accuracy
corresponds to the features extracted by the combination of RCMDispEn, RCGMDispEn2,
and RCGMDispEn3. Moreover, the smallest classification accuracy corresponds to the
features extracted by RCMDispEn, RCGMDispEn2, and RCGMDispEn, separately.
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Table 9. Classification results of bearing fault conditions: (1) inner race damage, (2) outer race damage, and (3) healthy.

Accuracy (%)

Features Min Mean Max

RCMDispEn 97.5556 98.21111 98.6667

RCGMDispEn2 90.6667 91.34445 91.7778

RCGMDispEn3 86.6667 89.62222 92.2222

RCMDispEn + RCGMDispEn2 98.4444 99.07778 100

RCMDispEn + RCGMDispEn3 97.3333 97.6000 98.6667

RCMDispEn + RCGMDispEn2 + RCGMDispEn3 98.8889 99.27778 100

6. Conclusions

The present paper investigated the simultaneous use of refined composite MDE based
on different moments (i.e., first, second, and third moments, respectively, denote average,
variance, and skewness respectively) to probe properties of the signals related to higher
moments in bearing fault diagnosis. To this end, a bearing simulation example and three
real datasets were utilized. Furthermore, the bearing fault classification was performed
using multiclass FCM-ANFIS to examine the proposed technique. The results indicated that
our developed RCGMDispEn3 and RCGMDispEn2 are more capable in separating bearing
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fault conditions compared to GMDispEn3 and GMDispEn2. Moreover, the combined use
of RCGMDE, RCGMDE2, and RCGMDE3 produces better results than using one or two of
these approaches in bearing fault diagnosis. The authors suggest investigating the potential
of simultaneously using generalized multiscale and multiscale algorithms in other fields.
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Project administration, M.R.A.; Supervision, M.M.K.; Writing—original draft, M.R.; Writing—review
& editing, H.A. All authors have read and agreed to the published version of the manuscript.
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bearing-datacenter/.
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