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Abstract: Using polyethylenimine (PEI) as the aqueous reactive monomers, a positively charged
thin-film nanocomposite (TFN) nanofiltration (NF) membrane with enhanced performance was
developed by successfully incorporating graphene oxide (GO) into the active layer. The effects of GO
concentrations on the surface roughness, water contact angle, water flux, salt rejection, heavy metal
removals, antifouling property, and chlorine resistance of the TFN membranes were evaluated
in depth. The addition of 20 ppm GO facilitated the formation of thin, smooth, and hydrophilic
nanocomposite active layers. Thus, the TFN-PEI-GO-20 membrane showed the optimal water
flux of 70.3 L·m−2

·h−1 without a loss of salt rejection, which was 36.8% higher than the thin-film
composite (TFC) blank membrane. More importantly, owing to the positively charged surfaces,
both the TFC-PEI-blank and TFN-PEI-GO membranes exhibited excellent rejections toward various
heavy metal ions including Zn2+, Cd2+, Cu2+, Ni2+, and Pb2+. Additionally, compared with the
negatively charged polypiperazine amide NF membrane, both the TFC-PEI-blank and TFN-PEI-GO-20
membranes demonstrated superior antifouling performance toward the cationic surfactants and basic
protein due to their hydrophilic, smooth, and positively charged surface. Moreover, the TFN-PEI-GO
membranes presented the improved chlorine resistances with the increasing GO concentration.

Keywords: positively charged; nanofiltration; thin-film nanocomposite; graphene oxide;
polyethyleneimine; high performance

1. Introduction

Nowadays, many industries such as mining [1], metallurgy [2], electroplating [3], and microelectronic
manufacturing [4] discharge a large amount of industrial wastewater contaminated by heavy metals. It is
becoming a huge environmental and public risk due to the persistent and high toxicity of heavy metals to
human beings and the environment. Therefore, it is urgent to develop efficient and practical solutions to
remove heavy metals from industrial wastewater.
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In the past few decades, various methods have been applied to remove or reclaim heavy metals,
including chemical precipitation [5], ion exchange [6], adsorption [7], electrolysis [8], and membrane
separation. Among these methods, membrane separation is considered as the most promising
technique, owing to its high efficiency, environmental friendliness, small footprint, modular design,
and easy operation. The pressure-driven membrane separation processes for removing heavy metals
include ultrafiltration (UF) [9–12], nanofiltration (NF) [13–16], and reverse osmosis (RO) [17,18]. UF has
the advantages of the lower operation pressure, higher flux, and lower investment cost compared with
NF and RO. Nevertheless, the pore size of UF is too large to efficiently reject heavy metals. RO can
completely reject heavy metal ions, but it requires the high operation pressure accompanying the high
investment and energy costs. NF, with a nominal molecular weight cut-off (MWCO) of 200 to 1000 Da
and pore size between UF and RO, finds the niches that need high rejections of heavy metals under the
relatively low operational costs, which is very feasible to remove heavy metals from wastewater. It is
well known that both size exclusion and Donnan exclusion are important separation mechanisms for
NF process. That is to say, besides the surface pore size, the surface charge property of NF membrane
also plays a crucial role in rejecting heavy metal ions.

Currently, most of the commercially available NF membranes are polyamides (PA) thin-film
composite (TFC) membranes fabricated through interfacial polymerization (IP) between piperazine
(PIP) and trimesoyl chloride (TMC) [19–21]. The PA TFC membranes are negatively charged because
of the presence of abundant carboxyl groups derived from the hydrolysis of unreacted acyl chloride
groups. The negatively charged PA NF membranes would decrease the effectiveness in the rejection of
heavy metal ions due to the electrostatic attractions between the negatively charged surface and the
positively charged heavy metal ions. A facile approach to improve cation rejection is to construct the
positively charged NF membrane.

Polyethylenimine (PEI) is a known cationic polyelectrolyte with branched chain, containing
primary amine groups, secondary amine groups, and tertiary amine groups [22]. PEI has been
extensively studied to fabricate positively charged NF membranes because of its good hydrophilicity
and high contents of amine groups [23–25]. Recently, many methods have been utilized to prepare
PEI-based NF membranes, including IP [26–28], physical blending [29], layer-by-layer assembly [30,31],
and surface grafting [32]. However, the long-term stabilities of the NF membranes fabricated via
physical blending and layer-by-layer assembly are great challenges during the cross-flow membrane
separation process, and the surface grafting method is too complex to industrialize. Compared with
the other methods, the IP method is more attractive to construct the positively charged PEI-based
PA NF membranes. However, the conventional PEI-based PA NF membrane via IP process still
faces huge challenges for enhancing the permselectivity [33], antifouling ability [34], and chlorination
resistance [35].

To overcome these challenges, novel thin-film nanocomposite (TFN) NF membranes have been
extensively studied by incorporating various nanofillers into the active layer [36–38]. In recent years,
two-dimensional graphene oxide (GO) [39–42] or its derivatives [43–45] having the unique structures
and properties were successfully incorporated into the PIP-based PA NF membranes, which are
helpful to significantly improve membrane separation. Although many studies have been done on the
negatively charged PIP-based TFN NF membranes using GO nanofillers, little work has been done on
the positively charged PEI-based TFN NF membranes.

In this study, in order to construct the positively charged NF membrane with enhanced performance,
PEI and GO were used as the aqueous reactive monomers and the aqueous co-additives, respectively.
The effects of GO concentrations on the resultant positively charged NF membranes were investigated
in depth in terms of the surface roughness, water contact angle, water flux, salt rejection, heavy metal
removals, antifouling property, and chlorine resistance. This novel, positively charged NF membrane
demonstrated an exceptional removal of heavy metal ions with improved antifouling performance and
chlorine resistance.
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2. Experimental

2.1. Materials

Analytical grade piperazine (PIP, 99% purity), trimesoyl chloride (TMC, 98% purity), cetyl trimethyl
ammonium chloride (CTAC, 97% purity), dodecyl trimethylammonium chloride (DTAC, 99% purity),
PEI (Mw = 2000), and 4-dimethylaminopyridine (DMAP, 99% purity) were purchased from Shanghai
Macklin Biochemical Company, Shanghai, China. Triethylamine (TEA, 99% purity), n-hexane, ethanol,
sulfuric acid (H2SO4, 98% purity), hydrochloric acid (HCl, 37% purity), hydrogen peroxide (H2O2,
30% purity), sodium nitrate (NaNO3, 99.7% purity), sodium hypochlorite (NaClO, active chlorine
content > 5.2%), sodium sulfate (Na2SO4, 99% purity), magnesium sulfate (MgSO4, 99% purity),
sodium chloride (NaCl, 99.5% purity), magnesium chloride (MgCl2, 98% purity), copper chloride
(CuCl2), nickel chloride (NiCl2), zinc chloride (ZnCl2), cadmium chloride (CdCl2), and lead
nitrate (Pb(NO3)2) were purchased from Sinopharm Chemical Reagent Company, Shanghai, China.
Lysozyme was obtained from Dingguo Changsheng Company, Beijing, China.

2.2. Preparation and Characterization of GO

According to our previous report [43], GO nanosheets were prepared through the modified
Hummers method, and the resulting GO was further characterized by FT-IR (Bruker VERTXE 70,
Fällanden, Switzerland), TEM (JEOL JEM 1400, Tokyo, Japan), XRD (Bruker D8 Discover, Karlsruhe,
Germany), XPS (Physical Instruments Quantum 2000, Chanhassen, MN, USA), and Raman spectroscopy
(Thermo Renishaw, West Dundee IL, IL, USA).

2.3. Preparation of NF Membranes

Polysulfone (PSU) UF membrane was lab-made and used as the supporting layer in our previous
report [39]. The PSU support was fixed on a homemade polypropylene frame. GO was added into the
aqueous solution consisting of 1.0 wt% PEI, 2.0 wt% TEA, and 0.08 wt% DMAP, which was treated
by ultrasonic dispersion for 1 h. The obtained aqueous solution was poured on top of the PSU UF
membrane and drained off after 1 h. Subsequently, 0.2 w/v% TMC organic solution was further poured
on top of the PEI-saturated PSU support and removed after 4 min. Finally, the composite membrane
was heated at 60 ◦C for 20 min. The obtained TFN membranes with incorporating GO were named
TFN-PEI-GO-x, where x denotes the aqueous solution containing x ppm of GO in the aqueous solution.
The control PEI-based TFC membrane using PEI monomers without addition of GO was named
TFC-PEI-blank. The control PIP-based TFC membrane using PIP monomers without addition of GO
in our previous study [43] was named TFC-PIP-blank. The membrane ID and the corresponding IP
reaction conditions are listed in Table 1.

Table 1. Preparation conditions of composite NF membranes.

Membrane ID PEI(wt%) TMC(w/v%) TEA(wt%) DMAP(wt%) GO(ppm)

TFC-PEI-blank 1 0.2 2 0.08 0
TFN-PEI-GO-10 1 0.2 2 0.08 10
TFN-PEI-GO-20 1 0.2 2 0.08 20
TFN-PEI-GO-30 1 0.2 2 0.08 30
TFN-PEI-GO-40 1 0.2 2 0.08 40

2.4. Characterization of NF Membranes

The cross-sectional and surface morphologies of the fabricated membranes were observed by
SEM (LEO-1530, Jena, Germany). The surface roughness was recorded by atomic force microscopy
(AFM, MI5500, Agilent, Santa Clara, CA, USA). The chemical groups of the membrane surfaces were
characterized by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR,
Bruker Vertex 70, Fällanden, Switzerland). The chemical compositions of the membrane surfaces were
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characterized by XPS (Physical Instruments Quantum 2000, Chanhassen, MN, USA). The membrane
hydrophilicity was evaluated by a contact angle goniometer (Beijing HARKE SPCAX3, Beijing, China).

2.5. Performance of NF Membranes

The membrane separation performance was tested using a laboratory cross-flow membrane
separation device with 70 cm2 effective area (FlowMem-0021-HP, FMT, Xiamen, China). The tested
membranes were prepressured for 30 min under the transmembrane pressure of 0.5 MPa,
the temperature of 25 ◦C, and the tangential velocity of 1.8 m/s. The salt rejections were first evaluated
using four kinds of 2000 ppm salt solutions (Na2SO4, MgSO4, NaCl, and MgCl2). The removals of
heavy metal ions were further evaluated using five kinds of 500 ppm heavy metal salt solutions
(ZnCl2, CdCl2, CuCl2, NiCl2, and Pb(NO3)2). The salt rejections were measured under the full batch
mode (both the concentration and permeate stream were recycled into the feed tank) to keep the feed
concentration constant. The key parameters of the related ions are listed in Table 2.

Table 2. Key parameters of the related ions [46].

Ions Hydrated Radius (nm)

Na+ 0.358
Mg2+ 0.428
Cl− 0.332

SO4
2− 0.379

Zn2+ 0.430
Cd2+ 0.426
Cu2+ 0.419
Ni2+ 0.404
Pb2+ 0.401

NO3
− 0.335

The water flux and rejection were calculated by Equations (1) and (2), respectively:

J =
V

A∆t
(1)

where J is the water flux (L·m−2
·h−1, abbreviated as LMH), V is the volume of the permeate (L), A is

the effective area of the membrane (m2), and ∆t is the filtration time (h).

R(%) =

(
1−

Cp

Cc

)
× 100% (2)

where Cp and Cc refer to the solute concentration in the permeate and in the concentrate, respectively.
The salt concentration was calculated according to the standard curve between the concentration and
the conductivity measured by a conductivity meter (Mettler Toledo S3, Schweiz, Switzerland).

Two kinds of cationic surfactants (CTAC, DTAC) and the basic protein (lysozyme) were used as the
model foulants to evaluate the antifouling performance of the selected NF membranes. First, the pure
water flux was recorded for 60 min at 0.5 MPa. Then, the pure water was replaced with a 2000 ppm
solution containing the model foulant, and the flux of the pollutant solution was recorded for an
additional 60 min. After water washing, both the water filtration procedure and pollutants’ filtration
procedure were repeated.

After immersion in a 2000-ppm NaClO solution, the selected NF membranes were remeasured
in terms of water flux and salt rejection. The chlorine resistances were evaluated based on the flux
variation and the rejection variation.



Polymers 2020, 12, 2526 5 of 17

3. Results and Discussion

3.1. Membrane Morphologies

The surface and cross-section morphologies of the fabricated NF membranes were characterized
by SEM, as shown in Figure 1. While using the small molecular PIP as aqueous reactive monomers,
the TFC-PIP-blank membrane presented a dense surface with the typically discrete nodular
structures [43]. While using the macromolecular PEI as aqueous reactive monomers, both the
TFC-PEI (Figure 1(a1)) and TFN-PEI-GO membranes (Figure 1(b1,c1)) exhibited the dense and smooth
surfaces without nodular structures. Although PEI had a large number of reactive groups (primary
amine groups), its reactivity was still lower than PIP due to its large steric hindrance effect and low
diffusion rate.
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According to the cross-sectional SEM images (Figure 1(a2,b2,c2)), the thickness of the active layers
decreased with the increasing GO concentration. The addition of GO into aqueous solution slowed the
PEI diffusion toward the organic phase, resulting from the large steric hindrance of GO nanosheets
and the hydrogen bonding interaction between GO and PEI. Namely, the IP reactivity between PEI
and TMC was reduced by the introduced GO, which accordingly decreased the thickness of the active
layer. The thickness of the active layer slightly decreased from 256.8 nm (TFC-PEI-blank, Figure 1(a2))
to 223.3 nm (TFN-PEI-GO-40, Figure 1(c2)). In this study, we used two approaches to promote more
macromolecular PEI monomers to take part in the IP reaction. On the one hand, the impregnated time
of aqueous solution was extended to 1 h and the IP reaction time was extended to 4 min. On the other
hand, DMAP as an effective phase transfer catalyst was added into aqueous solutions to eliminate the
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steric hindrance of acyl transfer reaction and promote the IP reactions [47]. The introduction of DMAP
into the aqueous solution significantly increased the degree of the cross-linking reaction between
highly steric-hindered PEI and TMC [48]. As a result, both the TFC-PEI-blank and the TFN-PEI-GO
membranes showed the thicker active layer compared with the TFC-PIP-blank membrane [43].

The surface roughness of the fabricated NF membranes was further characterized by AFM. The key
parameters of surface roughness include the mean roughness (Ra), the root mean square of Z data (Rq),
and the mean difference between the five highest peaks and five lowest valleys (Rz). According to
Figure 2 and Table 3, the surface roughness of the TFN-PEI-GO membranes was dramatically smaller
than the TFC-PIP-blank and TFN-PIP membranes in our previous reports [43], which was consistent
with the SEM results. Meanwhile, the surface roughness of the TFN-PEI-GO membranes gradually
decreased with the increase of GO concentration, which was also ascribed to the reduced diffusion
rate of PEI inhibited by the steric hindrances and hydrogen bonding interactions from GO on PEI.
The retarded IP process led to the formation of a smoother active layer. In addition, it was found that
the introduction of GO resulted in the formation of the wrinkled and patterned surfaces, which was
probably caused by the reduced diffusion rate of PEI monomers. This result was similar to the
findings from Zhu’s research group [49]. However, they thought that the wrinkled and patterned
membrane surfaces derived from the wrinkled GO nanosheets with the appropriate lateral size as the
templates [49]. With the increase of the GO concentration, more and more wrinkled and patterned
structures appeared on membrane surfaces, which was expected to increase the effective filtration area
and, accordingly, improve membrane flux.
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Table 3. Roughness of the fabricated NF membranes.

Membrane ID
Roughness (nm)

Ra Rq Rz

TFC-PEI-blank 7.81 9.90 7.57
TFN-PEI-GO-20 6.99 9.12 14.6
TFN-PEI-GO-40 4.41 5.81 8.01

3.2. Membrane Surface Properties

The surface chemical groups of the fabricated NF membranes were characterized by ATR-FTIR.
According to Figure 3, the characteristic peaks at 1688 and 1394 cm−1 were assigned to the typical C=O
stretching vibrations of the amide-I band and the stretching vibration of C–N in the amide [43,50],
respectively. Meanwhile, the peaks at around 1222 cm−1 and 1320 cm−1 were assigned to the bending
vibration of N–H [51]. This indicated the successful formation of the polyamide active layers on the
PSU support. Additionally, the absorption peak intensities of the TFN-PEI-GO membranes were
slightly lower than that of the TFC-PEI-blank membrane, which was probably due to the embedded
GO nanosheets and the relatively thinner active layer.
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Figure 3. ATR-FTIR spectra of composite NF membranes.

XPS had higher detective sensitivity than ATR-FTIR, which was further employed to analyze
the chemical compositions of the membrane surfaces. As shown in Figure 4, the peaks at 284.5,
285.6, and 287.3 eV were assigned to C–C/C=C, C–O/C–N, and C=O functional groups [52], respectively,
which also suggested that the polyamide active layer was successfully generated after IP process.
Moreover, two new peaks at 286.7 and 288.3 eV attributed to C–O–C and O–C=O were found for the
TFN-PEI-GO-20 and TFN-PEI-GO-40 membranes. These epoxy and carboxyl groups derived from GO,
indicating the successful incorporation of GO into the active layer after the IP process.
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3.3. Water Flux and Salt Rejection 

The water fluxes and salt rejections of composite NF membranes were measured and are shown 
in Figure 6. Notably, there was a critical GO concentration for water flux. With the addition of 20 
ppm GO into aqueous solution, the TFN-PEI-GO-20 membrane exhibited the highest water flux of 
70.3 LMH, which was 36.8% higher than the TFC-PEI-blank membrane. However, the water flux 
turned to decrease when the GO concentration was beyond the critical concentration. It was 
speculated that the GO agglomeration at high concentration led to the increased membrane filtration 
resistance and the decreased flux. With the help of DMAP catalyst, the TFN-PEI-GO membranes 
demonstrated the relatively high and stable Na2SO4 rejections, above 91%, regardless of the variation 
of GO concentration. This suggested that the introduction of GO improved water flux without 
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The water contact angle (WCA) is commonly used to evaluate membrane hydrophilicity.
The relationship between the GO concentration and the WCA of the composite NF membranes
is depicted in Figure 5. With the increase of the GO concentration, the WCA of the TFN-PEI-GO
membranes gradually decreased. This indicated that the membrane hydrophilicity was enhanced with
the increase of GO concentration. GO nanosheets contain a large number of oxygen-containing groups
such as hydroxyl and carboxyl groups, which contributed to improving the membrane hydrophilicity.
When the GO concentration increased from 0 to 40 ppm, the WCA of the fabricated NF membranes
significantly decreased from 42.0◦ to 25.1◦.
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3.3. Water Flux and Salt Rejection

The water fluxes and salt rejections of composite NF membranes were measured and are shown in
Figure 6. Notably, there was a critical GO concentration for water flux. With the addition of 20 ppm GO
into aqueous solution, the TFN-PEI-GO-20 membrane exhibited the highest water flux of 70.3 LMH,
which was 36.8% higher than the TFC-PEI-blank membrane. However, the water flux turned to
decrease when the GO concentration was beyond the critical concentration. It was speculated that
the GO agglomeration at high concentration led to the increased membrane filtration resistance and
the decreased flux. With the help of DMAP catalyst, the TFN-PEI-GO membranes demonstrated the
relatively high and stable Na2SO4 rejections, above 91%, regardless of the variation of GO concentration.
This suggested that the introduction of GO improved water flux without sacrificing the salt rejection.
The increase of water flux benefitted from: (1) The introduction of GO generated a thinner active layer,
which correspondingly alleviated the membrane filtration resistance; (2) the introduction of GO led to
the formation of the wrinkled membrane surface, which increased the effective membrane filtration
area; (3) the hydrophilicity of the active layer was enhanced with embedding GO; and (4) GO provided
additional transmission channels with less mass transfer resistance to water molecules.
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In order to explore in depth the separation mechanisms of the positively charged PEI-based NF
membranes, the rejections of four kinds of salts were measured and are illustrated in Figure 7. The mass
concentration (500 ppm) of different salts was equal and relatively low in this study. Thus, th influence
of molar concentration variation on the salt rejection could be ignored for the dilute salt solutions.
Because macromolecular PEI is a cationic polyelectrolyte with branched chains, containing a large
number of primary amine groups, secondary amine groups, and tertiary amine groups, the fabricated
PEI-based NF membranes presented the positively charged surfaces. The order of salt rejections
was MgCl2 ≈ MgSO4 > Na2SO4 > NaCl, which matched very well with the characteristics of the
positively charged NF membrane [33]. This order was completely different from the negatively charged
PIP-based NF membranes. The salt rejections of the TFN-PEI-GO membranes were similar to those
of the TFC-PEI-blank membrane, suggesting that the loading of GO at a low concentration did not
change the characteristics of the TFN-PEI-GO membranes.
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It is well known that the NF separation mechanisms include the Donnan exclusion effect and the
size exclusion effect. Therefore, the positively charged TFN-PEI-GO membranes generated the stronger
electrostatic repulsion toward the divalent Mg2+ than the monovalent Na+. As a result, the rejection of
divalent Mg2+ was greater than that of monovalent Na+. For the salts having the same divalent Mg2+,
the positively charged TFN-PEI-GO membranes also produced the stronger electrostatic attraction
toward the divalent SO4

2− than the monovalent Cl−. The strong adsorption of SO4
2− significantly

weakened the positively charged properties of membrane surfaces. As a result, the rejection of MgSO4

was lower than that of MgCl2. However, for the salts having the same monovalent Na+, the Na2SO4

rejection was much higher than NaCl rejection because SO4
2− has a greater hydration radius than Cl−,

which indicated that the size exclusion effect was more dominant than the Donnan exclusion effect.

3.4. Removal of Heavy Metals

The TFC-PEI-blank, TFN-PEI-GO-20, and TFN-PEI-GO-40 were selected to investigate their
separation performance of removing heavy metals. According to Figure 8, the selected NF membranes
showed high rejections, above 91%, toward five kinds of heavy metal salts. The rejection of Pb(NO3)2

was 91% and the rejections of the other heavy metal salts ranged from 94% to 97%. This indicated
that the positively charged NF membranes fabricated from PEI monomers were helpful to enhance
the removals of heavy metals. Because both the TFC-PEI-blank membrane and the TFN-PEI-GO
membranes were positively charged, these membranes presented the same sequence for removing
heavy metals: ZnCl2 > CdCl2 ≈ CuCl2 > NiCl2 > Pb(NO3)2. This result was consistent with the
hydration radius sequence of various heavy metal ions, as listed in Table 2: Zn2+ > Cd2+ > Cu2+ >

Ni2+ > Pb2+. Five kinds of heavy metal ions belong to divalent cations. Thus, the rejections depended
on the hydration radius based on size exclusion effect. The larger hydration radius of heavy metal ion
contributed to the high rejection of heavy metal ion.
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The influences of different aqueous reactive monomers (PIP vs. PEI) on the copper removal of the
TFC NF membranes were further investigated. As shown in Figure 9, regardless of CuSO4 or CuCl2,
the Cu2+ rejection of the positively charged TFC-PEI-blank membrane was remarkably higher than that
of the negatively charged TFC-PIP-blank membrane. For the TFC-PEI-blank membrane, the rejections
of both CuSO4 and CuCl2 were above 94%, and the CuSO4 rejection was slightly lower than the CuCl2
rejection because the positively charged TFC-PEI-blank membrane generated the stronger electrostatic
attraction toward the divalent SO4

2− than the monovalent Cl−. This suggested that the Donnan exclusion
effect was predominant compared with the size exclusion effect. On the contrary, the negatively
charged TFC-PIP-blank membrane presented the stronger electrostatic repulsion toward the divalent
SO4

2− than the monovalent Cl−. Thus, both the Donnan exclusion and size exclusion preferred to
increase the CuSO4 rejection rather than the CuCl2 rejection for the TFC-PIP-blank membrane.
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3.5. Antifouling Performance

Two kinds of cationic surfactant (CTAC and DTAC) and lysozyme (LYZ) were used to evaluate the
antifouling performance of the fabricated NF membranes. According to Figure 10, regardless of CTAC,
DTAC, or LYZ, the normalized water fluxes of the TFC-PEI-blank and TFN-PEI-GO-20 membranes
were significantly higher than those of the TFC-PIP-blank membrane.
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After fouling by CTAC and water washing, the normalized water fluxes of the TFC-PEI-blank and
TFN-PEI-GO-20 membranes reached 91.1% and 89.7%, respectively. However, the normalized water
flux of the TFC-PIP-blank membrane was only 76%. After fouling by DTAC, the normalized water
fluxes of the TFC-PEI-blank and TFN-PEI-GO-20 membranes reached 85.9% and 85.3%, respectively.
However, the normalized water flux of TFC-PIP-blank was only 75.4%. LYZ is positively charged under
neutral testing conditions due to its isoelectric point of 10.7. After fouling by LYZ, the normalized water
fluxes of the TFC-PEI-blank and TFN-PEI-GO-20 membranes reached 85.0% and 83.1%, respectively,
while the normalized water flux of the TFC-PIP-blank membrane was only 62.8%. Therefore, for the
positively charged foulants, the above results indicated that the positively charged TFC-PEI-blank
and TFN-PEI-GO-20 membranes had superior antifouling performance over the negatively charged
TFC-PIP-blank membrane.

On the one hand, both the TFC-PEI-blank and TFN-PEI-GO-20 membranes possessed a more
hydrophilic and smoother surface than the TFC-PIP-blank membrane, which was helpful to reduce
membrane fouling. On the other hand, the positively charged TFC-PEI-blank and TFN-PEI-GO-20
membranes generated the stronger electrostatic repulsion toward the cationic surfactants and the
positively charged LYZ, which further alleviated the membrane fouling. On the contrary, the negatively
charged TFC-PIP-blank membrane had the strong electrostatic attraction toward the cationic surfactants
and the positively charged LYZ, which resulted in the severe membrane fouling.

Although the TFN-PEI-GO-20 membrane was more hydrophilic compared with the TFC-PEI-blank
membrane, the TFN-PEI-GO-20 membrane presented a slightly more severe membrane fouling than the
TFC-PEI-blank membrane. This was caused by the higher flux of the TFN-PEI-GO-20 membrane than
that of the TFC-PEI-blank membrane. It means that more foulants were adsorbed on the membrane
surface and the concentration polarization was intensified due to the high membrane flux, which would
aggravate membrane fouling.

3.6. Chlorine Resistance

In view of the degradation mechanism of the PA TFC membranes, the PEI-based PA membranes
are vulnerable to chlorine attack due to a large amount of end amine groups for N-chlorination [35].
Therefore, an important objective of the present study was to enhance the chlorine resistance of the
PEI-based PA membranes by incorporating GO nanosheets into the active layer.

The normalized water flux and the normalized Na2SO4 rejection were used to evaluate the
chlorine resistances of the fabricated NF membranes. As shown in Figure 11, the normalized water flux
significantly increased with the increasing chlorine exposure time, and the variation of the normalized
water flux was TFC-PEI-blank > TFN-PEI-GO-20 > TFN-PEI-GO-40. Meanwhile, the normalized
Na2SO4 rejection decreased with the increasing chlorine exposure time and displayed the opposite order:
TFC-PEI-blank < TFN-PEI-GO-20 < TFN-PEI-GO-40. These results indicated that the incorporation
of GO in the active layer contributed to improving the chlorine resistance of the PEI-based PA NF
membranes. On the one hand, the skeleton structure of GO could absorb chlorine radicals to form
O–Cl bonds, accordingly reducing the chlorine radical attack toward the PA layer [53]. On the other
hand, the embedded GO nanosheets provided additional protection for the underlying PA, ascribed to
their large specific surface area and the hydrogen bonding between GO and PA [54]. Thus, the chlorine
resistance of the PEI-based PA NF membrane increased with the increase of GO concentration.
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4. Conclusions

To construct the positively charged NF membrane with enhanced performance, the PEI-based
TFN NF membrane using PEI as the aqueous reactive monomers was fabricated by embedding
GO into the active layer via the IP process. After incorporating an appropriate amount of GO
into the PEI-based PA active layer, the optimal TFN-PEI-GO-20 membrane showed the maximal
water flux of 70.3 L·m−2

·h−1 without sacrificing salt rejection, which was 36.8% higher than the
TFC-PEI-blank membrane. Meanwhile, the positively charged TFC-PEI-blank and TFN-PEI-GO
membranes presented superior rejections for heavy metal ions (Zn2+, Cd2+, Cu2+, Ni2+, and Pb2+) due
to the synergistic effects of Donnan exclusion and size exclusion. Furthermore, both the TFC-PEI-blank
and TFN-PEI-GO-20 membranes exhibited excellent antifouling performance toward the cationic
surfactants and basic protein (LYZ), owing to the hydrophilic, smooth, and positively charged surface.
Finally, the TFN-PEI-GO membranes presented the enhanced chlorine resistances due to the extra
protection from GO. Therefore, the positively charged PEI-based TFN NF membrane embedded with
GO shows a promising potential for wastewater purification from heavy metal ions.
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