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Abstract: Campylobacteriosis is the leading cause of human bacterial gastroenteritis, very often
associated with poultry consumption. Thermophilic Campylobacter (Campylobacter jejuni and
Campylobacter coli) isolates (n = 158) recovered from broiler neck skin and caecal contents in Ireland
over a one-year period, resistant to at least one of three clinically relevant antimicrobial classes, were
screened for resistance determinants. All ciprofloxacin-resistant isolates (n = 99) harboured the C257T
nucleotide mutation (conferring the Thr-86-Ile substitution) in conjunction with other synonymous and
nonsynonymous mutations, which may have epidemiological value. The A2075G nucleotide mutation
and amino acid substitutions in L4 and L22 were detected in all erythromycin-resistant isolates (n = 5).
The tetO gene was detected in 100% (n = 119) of tetracycline-resistant isolates and three of which were
found to harbour the mosaic tetracycline resistance gene tetO/32/O. Two streptomycin-resistant C. jejuni
isolates (isolated from the same flock) harboured ant(6)-Ib, located in a multidrug resistance genomic
island, containing aminoglycoside, streptothricin (satA) and tetracycline resistance genes (truncated
tetO and mosaic tetO/32/O). The ant(6)-Ie gene was identified in two streptomycin-resistant C. coli
isolates. This study highlights the widespread acquisition of antimicrobial resistance determinants
among chicken-associated Campylobacter isolates, through horizontal gene transfer or clonal expansion
of resistant lineages. The stability of such resistance determinants is compounded by the fluidity of
mobile genetic element.

Keywords: Campylobacter; antimicrobial resistance; ciprofloxacin; tetracycline; aminoglycosides;
macrolides

1. Introduction

Campylobacter is the most commonly reported foodborne bacterial pathogen causing human
gastroenteritis in the European Union (EU) and Ireland, most often associated with the broiler
reservoir [1]. Ireland was found to have a 98% prevalence of campylobacter-contaminated broiler
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carcasses in 2008 [2]. Frequent isolation of antimicrobial-resistant Campylobacter spp. of food animal
origin continues to limit the spectrum of clinically useful antimicrobials and is internationally recognised
as a major societal challenge. Veterinary antimicrobials used therapeutically and prophylactically are
often the same as, or belong to the same class as those used clinically [3].

Macrolides, fluoroquinolones and aminoglycosides are classified as critically important
antimicrobials, while tetracycline is considered a highly important antimicrobial [3]. Resistance to
(fluoro)quinolones and tetracyclines is highly prevalent in clinical and broiler-associated Campylobacter
spp. isolates, while resistance to erythromycin is typically low to moderate across Europe [4–6].
Macrolides are the first line antibiotic for the treatment of enteric gastroenteritis, while fluoroquinolones
and tetracyclines remain as alternatives [7–9]. Systemic infections are routinely treated with
aminoglycosides [9,10] and resistance to aminoglycosides is low in clinical and broiler isolates
across Europe [5]. Cross-resistance between aminoglycoside antimicrobials is incomplete and although
streptomycin is not used clinically to treat campylobacteriosis, resistance can be used as an indicator
for acquired aminoglycoside resistance genes.

In Gram negative bacteria, DNA gyrase is the primary target of fluoroquinolones [11]. DNA gyrase
is a heterotetrameric type IIA topoisomerase, consisting of two polypeptide subunits (GyrA and
GyrB, encoded by gyrA and gyrB, respectively), catalysing ATP-dependent negative supercoiling of
DNA to regulate replication, repair and gene expression [12–14]. Resistance to (fluoro)quinolones
among Campylobacter spp. is largely mediated by chromosomal mutations in the quinolone
resistance-determining region (QRDR) of gyrA, typically conferred by the C257T nucleotide mutation
(Thr-86-Ile) [15]. The QRDR is located near the Tyr-125 active site, involved in DNA-protein bridge
formation during DNA strand passage [15].

Macrolides act by binding to the 50S bacterial ribosomal subunit and inhibit translational
elongation, and interfere with protein synthesis and subsequent ribosomal subunit assembly [16,17].
Polymorphisms in the 23S ribosomal RNA (rRNA), mutations in 50S ribosomal proteins L4 and L22
(encoded by rplD and rplV, respectively) or the presence of the emerging ermB gene contribute to
macrolide resistance [8,18]. Beta-hairpin extensions from 50S ribosomal proteins L4 and L22 are
involved in the regulation of nascent peptide exit from the large ribosomal subunit [19,20]. Mutations
in L4 and L22, combined with the overexpression of antimicrobial efflux genes have been reported
to contribute to high-level macrolide resistance [21]. The ribosomal methylase encoded by ermB was
reported recently for the first time in thermophilic Campylobacter spp., located on a chromosomal
multidrug resistance genomic island (MDRGI) (likely originating from a Gram positive species) in
a high-level erythromycin-resistant Campylobacter coli (C. coli) isolate (ZTC113) of swine origin in
China [8,22]. ErmB dimethylates adenine at position 2074 of the 23S rRNA gene, reducing the binding
affinity of macrolides [23].

The intrinsic, chromosomally encoded resistance-nodulation-division (RND) CmeABC
(Campylobacter multidrug efflux) efflux pump in Campylobacter spp. contributes to baseline resistance
against structurally diverse antimicrobials [6,24–26]. The cmeABC operon encodes a tripartite multidrug
efflux pump that consists of an outer membrane channel protein (cmeC), an inner membrane efflux
transporter (cmeB) and a periplasmic fusion protein (cmeA) [27]. Repressor (cmeR) binding to an inverted
repeat (IR) (TGTAATAAATATTACA) in the intergenic region between cmeR and cmeA transcriptionally
represses the cmeABC operon [28,29]. Consequently, polymorphisms in the repressing site induce efflux
pump overexpression and enhanced resistance to antimicrobials, most notably, erythromycin [8,30].

Tetracycline resistance in Campylobacter spp. is largely conferred by a ribosomal protection protein
(RPP), TetO, capable of displacing tetracycline from its primary binding site on the 30S ribosomal
subunit [17,31]. Bacterial resistance to tetracycline is also associated with ATP-dependent efflux or
enzymatic inactivation of tetracycline [32–34]. Campylobacter tetO can be located chromosomally but is
often plasmid-mediated [31,33,35–39]. Tetracycline RPPs are widely distributed among bacterial genera
and it has been reported that the tetO gene exists in at least eleven bacterial genera, including four Gram
negative and seven Gram positive genera [33]. The conserved acquisition of tetO between members of
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different bacterial genera indicates that conjugative plasmids, transposons, or recombination events
contribute to the dissemination and maintenance of the tetO gene [37].

Although tetO acquisition is the most prevalent genetic event conferring tetracycline resistance
among Campylobacter spp., mosaic tet genes (specifically tetO/32/O) have also been reported within the
genus [34]. Mosaic tetracycline resistance genes are derived from the interclass (double-crossover)
recombination of two or more RPP-encoding gene (predominantly tetO, W, 32 [34,40–42] and tetM,
S [43]) to form functional chimera [34]. Mosaic tet genes are widespread among Gram positive and
Gram negative genera in human and animal isolates [41].

Aminoglycosides are broad spectrum antimicrobials and inhibit protein synthesis by binding
to 16S rRNA of the 30S ribosome [44,45]. Campylobacter spp. resistance to aminoglycosides is
mediated by reduced antimicrobial binding affinity for target sites due to enzymatic modification,
via acetylation, phosphorylation or adenylation of amino or hydroxyl groups of the aminocyclitol
nucleus or sugar moieties [44–46]. Although there are two main nomenclature systems used to identify
aminoglycoside modifying enzymes [47–49], we followed the system proposed by Shaw et al. (1993),
later extended to include an expanded panel of aminoglycoside 6-nucleotidyltransferases (also known
as adenyltransferases) [50,51]. The designation proposed by Shaw et al. (1993) is as follows: the type
of modification (nucleotidyltransferase/adenyltransferases (ANT)); the modification site (6’); a roman
numeral to denote unique resistance profiles (I), and a letter to represent unique protein sequences (b) [48].
Genes for ANT enzymes are found on transposons, plasmids or chromosome, often in associated with
other resistance genes and very often as part of the transposon-associated aminoglycoside-streptothricin
resistance gene cluster (ant(6)-I-sat4-aphA3), first isolated from Staphylococci [52,53]. ANT(6)-I encoding
genes are widely distributed among clinical and animal streptomycin-resistant thermophilic Campylobacter
spp. isolates [51].

Despite the high prevalence of Campylobacter in broilers on the island of Ireland, in the last twenty
years, only a few reports of the molecular mechanisms contributing to resistance exist for broiler [54–59],
clinical [54,56,59–61], domestic animal [62] or ruminant [56,63] isolates. We report the antimicrobial
resistance determinants circulating among 158 resistant Campylobacter jejuni (C. jejuni) and C. coli
isolates recovered from Irish broiler neck skin and caecal samples over a one-year period (2017–2018).

2. Results

2.1. Fluoroquinolone Resistance

Isolates resistant to ciprofloxacin/nalidixic acid were screened for mutations in the gyrA gene
and 100% of isolates (n = 99) harboured a C257T point mutation, which is the dominant mutation
conferring resistance among campylobacters. Resistant isolates were grouped into C. jejuni gyrA and
C. coli gyrA (arbitrarily named GTJs and GTCs, respectively) sequence types based on the presence
of synonymous and nonsynonymous mutations present in the portion of the gyrA gene sequenced
(Table 1). Ciprofloxacin-resistant C. jejuni isolates (n = 85) were grouped into three GTJs (GTJ-I, -II, and
-III). A large proportion (47.1%) carried the Thr-86-Ile substitution exclusively (GTJ1). Synonymous
mutations T72C, C243T, T357C, C360T, C471T, T483C, and C622T were exclusively associated with C.
jejuni and were present in both GTJ-II and GTJ-III. Nonsynonymous Ser-22-Gly (A64G) and Ala-206-Thr
(G616A) mutations were present in 35.3% and 17.7% of isolates of ciprofloxacin-resistant C. jejuni
isolates, respectively and were the basis of defining GTJ-II and GTJ-III, respectively. Both GTJ-II and
GTJ-III were associated with the Asn-203-Ser (A608G) substitution. All CIP-resistant C. coli isolates
tested (n = 14) harboured one nonsynonymous mutation only (Thr-86-Ile), but were grouped into
seven GTCs based on the presence of various synonymous mutations (Table 1).
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Table 1. GyrA sequence types (GTs) and associated polymorphisms distributed among 85 ciprofloxacin-resistant C. jejuni isolates (GTJs) and 14 ciprofloxacin-resistant
C. coli isolates (GTCs). Polymorphisms causing an amino acid substitution (nonsynonymous mutations) are highlighted in black.

GTJ n = (%)
Nucleotide Position (Base Indicated in Brackets) of Wild-type Strain C. jejuni NCTC 11168 gyrA (GenBank Accession Number: L04566.1 and AL111168.1)

64 (A) 72 (T) 243 (C) 257 (C) 357 (T) 360 (C) 471 (C) 483 (T) 608 (A) 616 (G) 622 (T)
GTJ-I 40 (47.1%) . . . T . . . . . . .
GTJ-II 30 (35.3%) G C T T C T T C G . T
GTJ-III 15 (17.7%) . C T T C T T C G A T

GTC n = (%)
Nucleotide Position (Base Indicated in Brackets) of Wild-type Strain C. coli NCTC 11366 gyrA (GenBank Accession Number: AF092101.1 and

NZ_UIGM01000003.1)

117 (T) 252 (C) 257 (C) 297 (C) 342 (T) 471 (T) 498 (G)
GTC-I 1 (7.1) . . T C . T .
GTC-II 7 (50) C . T C . T .
GTC-III 1 (7.1) C . T . . T .
GTC-IV 1 (7.1) . . T C . . .
GTC-V 2 (14.3) . T T C . T .
GTC-VI 1 (7.1) . . T C . . A
GTC-VII 1 (7.1) . . T C C T .
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No high-level moxifloxacin resistance was detected among the 99 (fluoro)quinolone-resistant
isolates tested and minimum inhibitory concentrations (MICs) ranged from 0.5–8 mg/L.

2.2. Erythromycin Resistance

Five erythromycin-resistant isolates were screened for mutations contributing to erythromycin
resistance. All five erythromycin-resistant isolates harboured the A2075G mutation in the 23S rRNA
gene. A T82C mutation (Ser-28-Pro substitution) in the rplD gene was detected in the five isolates,
and the partial sequences shared 100% homology with the rplD gene of erythromycin-sensitive C. coli
isolates (GenBank accession numbers: MH084640.1 and MH084639.1) [64]. Identical mutations were
also observed in the rplV sequence in all erythromycin-resistant isolates: double point mutation at
positions 308 and 309 (Ala-103-Val), A325G (Thr-109-Ala), a double point mutation at positions 332 and
333 (Ala-111-Glu), G340A (Ala-114-Thr) and C358A (Pro-120-Thr). Nonsynonymous mutations (T282A,
C294T, A306G, T321G) in rplV were also identified in all erythromycin-resistant isolates. Partial rplV
sequences in this study were homologous to a high-level erythromycin-resistant clinical C. coli isolate
rplV gene (GenBank accession number: GU384982.1) [28]. Similarly, all five erythromycin-resistant
isolates harboured a 9 base pair deletion (positions 45–54) and an insertion at position 45 (G) in
cmeR-cmeA intergenic region, upstream of the IR (positions 66-80), homologous to sequences derived
from erythromycin-resistant (GenBank accession number: FJ797673.1) and erythromycin-sensitive
(GenBank accession number: FJ797671.1) strains [24]. The ermB gene was not detected among the
erythromycin-resistant isolates tested.

2.3. Tetracycline Resistance

A portion of the tetO gene was detected in 100% of tetracycline-resistant isolates (n = 119).
Three isolates (CITCj625-18, CITCj727-18, and CITCc3448-18), accounting for 2.5% of the
tetracycline-resistant isolates, harboured the mosaic tetO/32/O type II gene, confirmed by PCR/partial
sequencing and genomic sequencing (Figure 1B). Isolates CITCj625-18 and CITCj727-18 carried
identical mosaic tetracycline genes, but differed from CITCCc3448-18 by Thr-118-Ile and Glu-176-Asp
substitutions and A684G and A789G point mutations. The mosaic tetracycline gene detected among
the Irish broilers isolates in this study was very similar to a Streptococcus suis (S. suis) (GenBank
accession number: KY994102.1) tetO/32/O gene (Table 2). Equally, the TetO/32/O sequences were
>99.5% identical to Campylobacter spp. (GenBank accession numbers: WP_052855148.1) and Clostridiales
(WP_117823345.1) TetO/32/O sequences.
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Figure 1. (A) Schematic of Campylobacter jejuni isolate CITCj625-18 multidrug resistance genomic island.
(B) Schematic of the mosaic tetO/32/O type II gene detected in CITCj625-18 and CITCj727-18. Figure
adapted from Warburton et al. (2016). White bars are tetO and central, checked bar is tet32 (297 bp).
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Table 2. Percentage identity (percentage cover in brackets) of mosaic tetracycline resistance gene
(tetO/32/O) type II in three tetracycline-resistant Campylobacter spp. isolates detected in this study and
Streptococcus suis tetO/32/O gene (GenBank accession number: KY994102.1).

Species/Strain
C. jejuni

CITCj625-18
tetO/32/O

C. jejuni
CITC727-18
tetO/32/O

C. coli
CITCc-3448-18

tetO/32/O

KY994102.1 S.
suistetO/32/O

C. jejuni CITCj625-18 tetO/32/O 100% (100%) 100% (100%) 99.78% (96%) 99.73% (96%)
C. jejuni CITC727-18 tetO/32/O 100% (100%) 100% (100%) 99.78% (96%) 99.73% (96%)
C. coli CITCc-3448-18 tetO/32/O 99.78% (100%) 99.78% (100%) 100% (100%) 99.95% (100%)

KY994102.1 S. suis tetO/32/O 99.73% (100%) 99.73% (100%) 99.95% (96%) 100% (100%)

2.4. Streptomycin Resistance

C. jejuni isolates CITCj625-18 and CITCj727-18 were found to harbour multiple resistance
genes, including a truncated tetO (873 bp, truncated at the 3’ end), mosaic tetO/32/O type II (1920
bp), aminoglycoside-6-nucleotidyltransferase (ant(6)-Ib)), and streptothricin acetyltransferase (satA).
These antimicrobial resistance genes were located circumjacent to proteins involved in replication
and recombination (Table 3, Figure 1A). The MDRGI contained 10 open reading frames in a region of
35.9% GC content, compared to the average genomic GC content of 30.5%. Genomic sequences of C.
jejuni isolates CITCj625-18 (first thin) (1,630,363 bp) and CITCj727-18 (final thin, isolated a week later)
(1,636,524 bp) were nearly identical with an average nucleotide identity (ANI) of 99.99% and 30.5% GC
content, indicating that the isolates had been circulating within and had been maintained by the flock.
The pair belonged to sequence type ST-45 clonal complex (ST-137) and harboured LOS locus class C.

Table 3. Description of CITCj625-18 (representative of CITCj727-18) multidrug resistance genomic island.

Locus Tag Gene
Annotation

InterProScan Protein
Family or Domain

GenBank Accession
Number of Closest

(% Identity/% Coverage)
Predicted Function

HBF06_00624
Holliday junction

ATP-dependent DNA
helicase, RuvB

IPR004605 WP_002856258.1
100/100

Holliday junction helicase
(strand exchange reactions in
homologous recombination)

HBF06_00625 Histidine
phosphotransferase IPR036641 MPA99107.1

100/90) Signal transduction

HBF06_00627 Autotransporter
adhesion, CapC IPR005546 EAK6247206.1 99.16/94 Protein secretion

HBF06_00628
Truncated tetracycline
resistance ribosomal

protection protein, TetO
IPR035650 AUA17601.1

99.59/82

Ribosomal protection protein
conferring tetracycline

resistance (TetO)

HBF06_00629
Aminoglycoside 6-

nucleotidyltransferase,
ANT(6)-Ib

IPR007530 WP_001255868.1
100/100

Adenylyltransferase activity
conferring resistance to

aminoglycosides

HBF06_00630 Replication protein,
RepB IPR002631 WP_052777339.1

100/100 Plasmid replication protein

HBF06_00631 DNA topoisomerase IPR000380 WP_139898553.1
99.52/100

Topoisomerisation and single
stranded breakage during

transcription, DNA replication
and recombination.

HBF06_00632 Streptothricin
acetyltransferase, SatA IPR008125 EOO12820.1

96.86/100
Acetylation of streptothricin

conferring resistance

HBF06_00633

Mosaic tetracycline
resistance ribosomal
protection protein,

TetO/32/O

IPR035650 WP_052855148.1
100/100

Ribosomal protection protein
conferring tetracycline

resistance

HBF06_00634 Plasmid replication
protein None detected EDP4862066.1

99.21/97 Plasmid replication

CITCc1631-18 and CITCc3448-18 belonged to ST-828 clonal complex (ST-6543 and ST-1096,
respectively) and harboured the ant(6)-Ie gene (900 bp), with almost identical sequences (99.89% identity).
ANT(6)-Ie in this study shared 99.66% amino acid identity with each other, where CITCc3448-18
harboured a nonsynonymous G820A mutation (Val-274-Ile) and was identical to a C. coli ANT(6)-Ie
protein (GenBank: WP_052786298.1). CITCc1631-18 and CITCc3448-18 ANT(6)-Ie shared between
29.7-36.1% identity to ANT(6)-Ia, ANT(6)-Ib, ANT(6)-Ic, and ANT(6)-Id amino acid sequences (GenBank:
AFJ97257.1, AFJ97264.1, AAR10415.1, and WP_001258597.1, respectively) [50,51,65].
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Aminoglycoside 3-N-acetyltransferase (AAC(3)) (261 amino acids) was also detected in both
CITCj625-18 and CITCj727-18, 44.3% identical to a aminoglycoside 3-N-acetyltransferase (AAC(3))
variant (239 amino acids) in both CITCc1631-18 and CITCc3448-18. However, these isolates were
gentamicin-susceptible, although this protein may confer resistance to other aminoglycoside antibiotics [66].
The C. coli variant was identical to AAC(3) genes reported in Campylobacter spp., 37.5% identical to AAC(3)-Ia
described in Serratia marcescens (GenBank accession number: Q7B9H0), and 19–32.25% similar to AAC(3)
orthologous, including types AAC(3)-Ib/Ic/Id/Ie/IIa/IIb/IIc/IId/IIe/IIf/IIIa/IIIb/IIIc/IVa/VIa/VIIIa/Ixa/Xa/XIa.
The AAC(3) variant in CITCj625-18 and CITCj727-18 was identical to Campylobacter AAC(3) variants and
was 19.3–25.84% similar to orthologues reported in other bacterial genera.

2.5. Overall Distribution of Antimicrobial Resistance

The antimicrobial resistance rates of this pool of broiler-associated thermophilic Campylobacter
spp. isolates (resistant to at least one antimicrobial; n = 158) have been detailed previously [67], and
are summarised below (Figure 2).
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3. Discussion

This study reports the antimicrobial resistance determinants circulating among Irish
broiler-associated Campylobacter isolates, collected throughout the Republic of Ireland, from the
three largest poultry processors, over a one-year period (2017–2018).

The Thr-86-Ile mutation is the predominant genetic alteration conferring (fluoro)quinolone
resistance among Campylobacter spp. [68], and was detected in all (fluoro)quinolone-resistant isolates
(n = 99) tested in the current study, similar to reports published worldwide [6,69–71]. Some studies
have not detected the Thr-86-Ile mutation universally in the QRDR of (fluoro)quinolone-resistant
Campylobacter spp. isolates [58,62,72], indicating that other factors are responsible for, or contribute to,
(fluoro)quinolone resistance.

Fluoroquinolone-resistant Campylobacter spp. are ecologically competitive and persistent even in
the absence of antimicrobial selective pressure [73–75]. Despite a distinct rise in ciprofloxacin resistance
among broiler Campylobacter isolates (3.1% to 28.9%) in Ireland between 1998 and 2000 [54,76], in 2017–8
resistance to ciprofloxacin remained stable (28.3%) [67]. Clonal expansion of resistant lineages has likely
contributed to the persistence of ciprofloxacin resistance in Ireland, considering that fluoroquinolones
typically account for less than 1% of all veterinary antimicrobials sold in Ireland [77–79].

C. jejuni isolates harbouring multiple amino acid substitutions in the gyrA QRDR (GTJ-II and
GTJ-III) (Table 1) had ciprofloxacin MICs ranging from 8–16 mg/L, except one GTJ-II isolate had an
MIC of 4 mg/L, while isolates harbouring the Thr-86-Ile mutation exclusively (GTJ-I) had MICs ranging
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from 4–16 mg/L. Similarly, Ekkapobyotin et al. (2008) observed varying ciprofloxacin/nalidixic acid
MICs in isolates harbouring identical GyrA amino acid substitutions [80]. Moreover, the Ser-22-Gly,
Asn-203-Ser and Ala-206-Thr mutations have been reported in fluoroquinolone-sensitive strains [81–83].
To confirm the apparent lack of involvement of these accessory gyrA mutations in the development of
fluoroquinolone resistance, the introduction of these mutations in fluoroquinolone-susceptible strains
could be investigated. Authors have previously reported that double mutations in gyrA (at amino acid
positions 86 and 90) were necessary to produce high level moxifloxacin resistance [84,85]. Moxifloxacin
is a potent fluoroquinolone with activity against fluoroquinolone-resistant campylobacters that harbour
a single mutation in gyrA [86]. In this study, no high-level resistance to moxifloxacin was observed
among the (fluoro)quinolone-resistant isolates. These data indicate that mutations outside the gyrA
QRDR have a negligible effect on (fluoro)quinolone resistance.

Variation in gyrA alleles within a population of Campylobacter isolates have been identified as
epidemiological markers and may serve as a supplementary approach to classical epidemiological
typing methods [81,83,87,88]. In our study, the GTs detected were species specific, although Ragimbeau
et al. (2014) reported the presence of a typical C. coli gyrA type in 0.23% (n = 1) of 430 C. jejuni
isolates tested, and 1.4% (n = 4) C. coli isolates harboured a typical C. jejuni gyrA type. The amino
acid substitutions present in each of the three GTJ (Table 1) lineages have been associated with
poultry Campylobacter isolates previously [89–91]. Only one nonsynonymous mutation (Thr-86-Ile)
was detected among the seven GTCs detected (Table 1), similar to previous studies reporting a single
nonsynonymous mutation (Thr-86-Ile substitution) present in (fluoro)quinolone-resistant C. coli QRDR
sequences [83,89,90]. It is likely that additional variants of Campylobacter spp. gyrA alleles exist, and
may reflect ecological evolution [83].

Identical mutations in the 23S rRNA, rplD, and rplV genes were detected in erythromycin-resistant
isolates (n = 5), while MICs ranged from 128 mg/L to ≥ 128 mg/L. Three of these isolates were collected
from the same flock in north-central Ireland while one isolate was collected from a farm approximately
10 km away, the following week. The fifth erythromycin-resistant isolate was recovered from a farm in
the mid-south-west of Ireland, two months previously, but all birds from these farms were processed
in the same processing plant.

The A2075G point mutation in the 23S rRNA gene remains the most prevalent genetic event
conferring macrolide resistance [8,92] and was detected in all erythromycin-resistant isolates in this
study. The 23S rRNA A2074G and A2074C mutations were not detected. Mutations in the rplV
gene, encoding the 50S ribosomal protein L22 were detected in the C-terminal region (amino acids
109–142) [18], including Thr-109-Ala, Ala-111-Glu, Ala-114-Thr, and Pro-120-Thr. Nonsynonymous
mutations (T282A and C294T) were also observed in the region encoding the highly conserved
β-hairpin loop at amino acids 78–98 [18]. Mutations in the RplD β-hairpin (spanning amino acid
positions 55–77 [18,93]) are often associated with bacterial macrolide resistance, and such mutations
were not observed among the Irish erythromycin-resistant isolates tested in this study. Moreover,
polymorphisms were detected outside the cmeR regulatory IR. The effects of mutations detected in
this study in rplD, rplV, and the intergenic region of cmeR-cmeA are unknown, but may contribute to
erythromycin resistance.

The ermB gene was not detected among the erythromycin-resistant isolates tested. Resistance
mediated by ermB in Campylobacter spp. is largely confined to China, which may reflect the extensive
use of antimicrobials in food producing animals in China [8]. Three reports of genetically distinct
ermB-positive C. coli isolates recovered from poultry exist in Europe [94–96] and an ermB-positive
isolate was detected for the first time in the United States in a C. jejuni isolate of clinical origin [97],
while the ermB gene was recently detected in 18.3% of 240 thermophilic Campylobacter spp. retail meat
associated-isolates in South Africa [98]. Mutations in C. jejuni 23S rRNA has been associated with a
fitness cost and reduced doubling times [99–101], although tolerance to low temperatures may facilitate
persistence in the environment and transmission of resistant strains through the food supply [100].
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All tetracycline-resistant isolates harboured a portion of the tetO gene, while three isolates
harboured the mosaic tetO/32/O type II gene were detected. Mosaic tetracycline resistance genes in
Campylobacter spp. are typically derived from tetO and tet32 sequences in the type II conformation,
with a shorter central tet32 segment [34], although there are limited reports of these resistance genes
circulating among Campylobacter spp. The first mosaic tetracycline RPP gene was detected in Megasphera
elsdenii, composed of a central tetW region flanked by two tetO regions [102]. However, the progenitors
of these mosaic genes are based only on the order in which they were discovered, and the current
classification system does not adequately reflect the variable nature of tetracycline RPPs [34,43].
The tetO primers [103] used in this study amplify a region at the beginning of the tetO gene and enable
the detection of mosaic tet genes with a central portion flanked by an initial tetO region until position
228. The tetO/32/O type II gene reported here was associated exclusively with an MIC of 64 µg/L.
However, 27 of 119 (22.7%) tetracycline-resistant Campylobacter spp. isolates tested had MICs of 64
µg/L or ≥ 64 µg/L, indicating that other factors contribute to enhanced tetracycline resistance. It should
be noted that in this study, all three isolates harbouring mosaic tetracycline genes were also co-resistant
to streptomycin, enabling co-selection and persistence of these antimicrobials. The burden of mosaic
tetracycline resistance genes within the genus should be considered as part of the approach to elucidate
developing and newly acquired antimicrobial resistance determinants within the genus.

All streptomycin resistant (n = 4) isolates had MICs of ≥ 16 mg/L. Streptomycin-resistant C. jejuni
isolates CITCj625-18 and CITCj727-18 (ST-137) harboured sialylated LOS locus class C, which has been
identified as a risk factor for post-infectious Guillain-Barré syndrome and increased severity of enteric
disease [104]. CITCj625 and CITCj727-18 belonged to ST-137 and members of the diverse C. jejuni ST-45
clonal complex [105,106]. ST-137 is frequently isolated from cases of enteric campylobacteriosis [105] and
broilers/avian [107–109], porcine [105], and bovine [110] hosts. The ST-137 genotype is widely dispersed
and represents an ecologically successful clone [106]. A study by Dearlove et al. (2016) reported that
ST-45 clonal complex was a generalist lineage capable of frequent transmission between hosts.

Genomic sequencing of tetracycline-/streptomycin-resistant C. jejuni isolates (CITCj625-18 and
CITCj727-18, isolated from the same flock, first and final thin) revealed identical genes in a multidrug
resistance genomic island (Table 3, Figure 1A). Both isolates harboured a truncated tetO gene and
a mosaic tetO/32/O type II gene, homologous that of Gram positive (GenBank accession number:
KY994102.1) and Campylobacter spp. (GenBank accession number: WP_002823161.1). The presence of
multiple tet genes (coding for similar or different mechanisms) in Gram negative isolates has also been
documented [33]. However, the truncated form detected in this study (CITCj625-18 and CITCj727-18)
is likely a remnant of a region of insertion or recombination. Truncated tetO genes have also been
reported in C. coli MDGRI containing aadE (ant(6)-Ib) and ermB [94,111]. Aminoglycoside (ant(6)-Ib
(867 bp)) and streptothricin resistance (satA) genes were also located within the multidrug resistance
island (Figure 1A). Streptothricin acetyltransferase A (satA) is frequently reported in Gram positive
bacilli [112] and shares less than 40% identity with the streptothricin acetyltransferase A (sat4) reported
in Campylobacter [52,111,113]. Plasmid replication proteins within the MDRGI suggest a plasmid as the
insertion vehicle of the resistance genes.

CITCc3448-18 belonged to ST-828 clonal complex (ST-1096). ST-1096 has been isolated from a case
of gastroenteritis in the United Kingdom (UK) in 2016 [114] and has also been previously reported in
C. coli of swine origin in Spain, America, and Grenada [51,115,116]. CITCc1631 was ST-6543 (ST-828
clonal complex), which has been associated with clinical and chicken-associated isolates [117]. There
are a total of fifteen depositions (all are UK associated) of C. coli ST-6543 on the PubMLST Campylobacter
database at the time of writing [114], including eleven clinical isolates (faeces), two chicken-associated
isolates, and two isolates with no source allocation.

Both streptomycin-resistant C. coli isolates (CITCc1631-18 and CITCc3448-18) harboured the
emerging ant(6)-Ie gene (900 bp), found widely disseminated among clinical and animal C. coli
isolates [51,65]. Unlike other Campylobacter ant(6) genes, ant(6)-Ie appears to be inherent to C. coli and
does not have a Gram positive ancestor [65]. The ant(6)-Ie gene was originally detected in a hypervariable



Antibiotics 2020, 9, 308 10 of 20

genomic region, unaccompanied by other resistance genes [65]. Similarly, the CITCc1631-18 and
CITCc3448-18 ant(6)-Ie genes were located chromosomally, and were not located near other resistance
determinants. Both streptomycin-resistant C. coli isolates were co-resistant to ciprofloxacin/nalidixic
acid (GTC-V) and tetracycline. C. coli isolate 1631-18 harboured tetO (1920 bp), while C. coli isolate
CITCc3448-18 also harboured the mosaic tetracycline resistance gene, tetO/32/O (1290 bp), highly
homologous with that detected in CITCj625-18 and CITCj727-18.

4. Materials and Methods

4.1. Bacterial Isolate Culture Conditions and Susceptibility Testing

A total of 350 thermophilic Campylobacter isolates (296 C. jejuni and 54 C. coli) were recovered
from free range and intensively-reared broiler carcasses (neck skin and caecal contents) using ISO
10272-2:2017 [2]. Isolates were collected between September 2017 and September 2018, from the three
largest poultry processing plants in the Republic of Ireland. The collection of isolates was speciated
using matrix-assisted laser desorption ionisation-time of flight (MALDI-TOF) mass spectrometry
(MS) (Bruker, Billerica, MA, United States). Isolates were previously tested [67] for their MIC to six
clinically relevant antimicrobials, namely ciprofloxacin, nalidixic acid, erythromycin, tetracycline,
gentamicin, and streptomycin according to ISO 20776:2006 and EC Decision 2013/652/EU [118,119].
Overall, 158 (140 C. jejuni and 18 C. coli) isolates tested were resistant to at least one antimicrobial and
were subsequently tested for resistance determinants.

4.2. DNA Extraction

Briefly, isolates were recovered from −80 ◦C on Columbia blood agar (Fannin Ltd, Dublin, Ireland)
and incubated for 24 h at 42 ◦C, under microaerobic conditions (5% O2, 10% CO2, 85% N2) and
subcultured. DNA was extracted using the PureLink Genomic DNA Mini Kit (Invitrogen, Carlsbad,
CA, USA), according to manufacturer’s instructions and DNA was standardised to 50–100 ng/µL.

4.3. Genotypic Characterisation of Antimicrobial Resistance—PCR Amplification and Sequencing

Primer sets, target genes and annealing temperatures are listed in Table 4. Primers to detect mosaic
tetracycline resistance genes (tetO/32/O and tetO/W/O) were designed on SnapGene2.3.2 software (from
Insightful Science; available at snapgene.com) and regions of primer complementarity were assessed
on Primer-BLAST [120].

PCRs were performed with 2.5 U of Amplitaq polymerase (Applied Biosystems, Foster City,
CA, USA), 1 × PCR buffer I and 2.5 mM magnesium chloride (Applied Biosystems), 0.2 mM of each
deoxyribonucleotide (Sigma Aldrich, St Louis, MO, USA), 0.2 pmol/µL of each primer, and 1 µL
(1–2 ng/µL) of DNA. Reaction conditions were denaturation at 94 ◦C for 2 min, 35 cycles of denaturation
at 94 ◦C for 30 s, annealing (Table 4) for 30 s and extension at 72 ◦C for 1 min followed by a final
extension at 72 ◦C for 5 min. PCR products were purified using the High Pure PCR Purification Kit
(Sigma Aldrich). Purified PCR products were Sanger sequenced (forward and reverse reads) (Table 4)
by Eurofins Genomics (Eurofins Genomics, Ebersberg, Germany). Consensus sequences were aligned
and assembled on SeqMan Pro (Lasergene) (DNAStar, Madison, WI, USA).
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Table 4. Primer sequences and target genes used for the detection of antimicrobial resistance determinants in resistant thermophilic Campylobacter spp. isolates and
sialylated lipooligosaccharide (LOS) locus classes A, B and C in streptomycin-resistant C. jejuni isolates.

Primer Type Sequence (5’ - 3’) Target Amplicon Size (bp) Annealing (◦C ) Reference

GZgyrA5
A + S

ATT TTT AGC AAA GAT TCT GAT QRDR region of gyrA 673 50 [15]
GZgyrA6 CCA TAA ATT ATT CCA CCT GT
TetO-FW

A
ACG GAR AGT TTA TTG TAT ACC

tetO 171 52 [103]
TetO-RV TGG CGT ATC TAT AAT GTT GAC

TetO/W/O-F
A

ATC CAG ACA GCA GTG ACA TC tetO/W/O 489 50 This study
TetO/W/O-R ATG ATA GAC CGG AAA CAG GG

TetO/32/O-i-F
A

GAT ACA ATG AAT TTG GAG CG tetO/32/O type I 545 48 This study
TetO/32/O-i-R AAT TGT CTT TTG CAC TCC C
TetO/32/O-ii-F

A
CGG GCA GGT TTT TAAG ATT G tetO/32/Oi type II 365 50 This study

TetO/32/O-ii-R CTG TAT CAG CAA TCT CTG CG
F2-campy-23S

A + S
AAT TGA TGG GGT TAG CAT TAG C

Domain V of 23S rRNA 316 55 [121]
R2-campy-23S CAA CAA TGG CTC ATA TAC AAC TTG

L4C-F
A + S

TTA TCC CTC TTT TGT AAT AGA TTC TAA rplD 614 48 [61]
L4C-R ATG AGT AAA GTA GTT GTT TTA AAT GAT
L22C-F

A + S
TTA GCT TTC CTT TTT CAC TGT TGC TTT rplV 425 48 [61]

L22C-R ATG AGT AAA GCA TTA ATT AAA TTC ATA AG
erm(B)-F

A
GGG CAT TTA ACG ACG AAA CTG G

ermB 421 52 [111]
erm(B)-R CTG TGG TAT GGC GGG TAA GT

CmecoliF3
A + S

AATGTTTTAGCCGATACT
cmeABC 428 45 [28]

CmecoliR4 AACACCGCTTACTTGAGG
cst-II-F

A
ATG AAA AAA GTT ATT ATT GCT GGA AAT G LOS locus class A/B 885/876 50 [122,123]

cst-II-R TTA TTT TCC TTT GAA ATA ATG CTT TAT
orf14c-F

A
CAA CTT TGC AAA ATG ATT TTA TCT ATC ATT

LOS locus class C 995 50 [123]
orf14c-R ATG CAA ATA CAA CAA AAC AAT TC

A, amplification; A + S, amplification and sequencing
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Ciprofloxacin-resistant isolates (n = 99) were screened for mutations in the QRDR of the gyrA
gene [15]. Products were purified and sequenced, as described above. Consensus sequences were aligned
to the gyrA of the reference C. jejuni (GenBank accession number: L04566.1 and AL111168.1) and C. coli
sequences (GenBank accession number: AF092101.1 and NZ_UIGM01000003.1) on SnapGene 2.3.2.

The primers used for the amplification and sequencing of domain V of 23S rRNA, rplD, and
rplV (encoding L4 and L22 ribosomal proteins, respectively) and the regulatory site of the cmeABC
operon in five erythromycin-resistant C. coli isolates are listed in Table 4. Partial multiple alignment
to reference C. coli type strain NCTC 11366 (ATCC 33559) 23S rRNA (GenBank accession number:
GQ167698.1), rplD (GenBank accession number: DQ639752.1 and UIGM01000003.1), rplV (GenBank
accession number: UIGM01000003.1) and cmeABC operon (GenBank accession number: FJ797670.1)
sequences was performed on SnapGene 2.3.2. Isolates were also screened for the presence of ermB,
according to Wang et al. (2014).

Tetracycline-resistant isolates (n = 119) were screened for the presence of tetO, according to Aminov
et al. (2001) and products were visualised on 2% agarose gel electrophoresis. The tetO amplicon of
a tetracycline-resistant C. jejuni isolate (CITCj382-18) from this study was purified and sequenced
(as described above) as a positive control. Consensus sequences were aligned to the C. jejuni tetO gene
(GenBank accession number: M18896.2).

Primers were designed to target tetO/W/O (Table 4) based on alignments between tetO (GenBank
accession number: M18896.2) and mosaic tetO/WO genes (GenBank accession numbers: EF065524.1 and
AY196921.1). Two tetO/32/O-targeting primers (Table 4) were designed based on regions of homology
between tetO (GenBank accession number: M18896.2) and tetO/32/O type I genes with a longer central
tet32 region (GenBank accession numbers: AJ295238.3 and JQ740052.1) and tetO/32/O type II genes with
a shorter central tet32 segment (GenBank accession numbers: KY994102.1, FP929050.1, AIOQ01000025.1,
NZ_AUJS01000017.1 and AABYPB010000033.1) [34].

Streptomycin-resistant isolates (n = 4) were screened for sialylated LOS locus class A/B and C
(Table 4) by PCR, using C. jejuni 81-176 (ATCC BAA2151) and C. jejuni NCTC 11168 (DSM 27585),
respectively, as positive controls.

4.4. Moxifloxacin Minimum Inhibitory Concentration Testing

All (fluoro)quinolone-resistant isolates (n = 99) were tested for moxifloxacin susceptibility. Briefly,
isolates were recovered from −80 ◦C on CBA (Fannin Ltd) for 24 h at 42 ◦C under microaerobic
conditions, and subcultured to CBA for 20 ± 2 h at 42 ◦C under microaerobic conditions. In microtiter
plates, 100 µL serial dilutions of moxifloxacin (Sigma Aldrich) were prepared in of Mueller Hinton broth
with lysed horse blood (Thermo Fisher Scientific, Waltham, MA, USA) ranging from 0.125–16 mg/L.
A 0.5 McFarland inoculum was prepared in 5 mL demineralised water (Thermo Fisher Scientific) and
100 µL was transferred to 11 mL of Mueller Hinton broth with lysed horse blood (Thermo Fisher
Scientific). Moxifloxacin serial dilutions were inoculated with 100 µL of cell suspension and incubated
for 20 ± 2 hat 42 ◦C under microaerobic conditions.

4.5. Genome Sequencing and Genomic Analysis

The genomes of four streptomycin-resistant isolates (C. jejuni isolates CITCj625-18 and CITCj727-18
and C. coli isolates CITCc1631-18 and CITCc3448-18) were sequenced. DNA was quantified in triplicate
with the Quant-iT dsDNA Assay Kit (Thermo Fisher Scientific). Genomic DNA libraries were prepared
using the Nextera-XT protocol (Illumina, San Diego, CA, USA), with changes including 2 ng of input
DNA and a minute PCR elongation time. DNA quantification and library preparation were performed
on a Hamilton Microlab STAR system. Pooled libraries were quantified using the Kapa Biosystems
library quantification kit on a Roche light cycler 96 qPCR machine. Libraries were sequenced on the
Illumina HiSeq using a 250 bp paired-end protocol. Reads were adapter trimmed using Trimmomatic
0.30 with a sliding window quality cut-off of Q15 [124]. De novo assembly was performed using
SPAdes version 3.7 [125] and assembly quality was assessed using QUAST [126].
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Genomes were annotated using Prokka 1.14.3 [127]. Similarity searches were performed using the
BLAST suit of programs [128] and InterProScan [129]. Multi locus sequence typing (MLST) patterns
was determined using PubMLST [114]. ANI was calculated using EzBioCloud [130].

4.6. Data Availability

This whole-genome project has been deposited at DDBJ/ENA/GenBank under the accession
number PRJNA612628. CITCj625-18, CITCj727-18, CITCc1631-18, and CITCc3448-18 genomes can be
accessed using SAMN14379027, SAMN14379028, SAMN14379029, and SAMN14379030. The partial
and complete gene sequences deposited in GenBank are listed in Table 5. Erythromycin-resistant
isolates harboured identical ribosomal mutations and CITCc1303-18 partial sequences were submitted.
One representative gyrA GT was submitted for each type.

Table 5. Accession numbers of partial sequences submitted to GenBank in this study.

Isolate Gene GenBank
Accession Number

Sequence
Length (bp)

C. coli (CITCc1303-18) 23S ribosomal RNA, partial sequence MT155934 262
C. coli (CITCc1303-18) 50S ribosomal protein L4 (rplD) gene, partial cds MT155935 519
C. coli (CITCc1303-18) 50S ribosomal protein L22 (rplV) gene, partial cds MT155936 319

C. jejuni( CITCj4193-17) gyrA (GTJ-I), partial cds MT176407 644
C. jejuni (CITCj999-18) gyrA (GTJ-II), partial cds MT176408 644
C. jejuni (CITCj193-18) gyrA (GTJ-III), partial cds MT176409 644

C. coli (CITCc3796-B-18) gyrA (GTC-I), partial cds MT176400 550
C. coli (CITCc3636-B-17 gyrA (GTC-II), partial cds MT176401 550
C. coli (CITCc3521-18) gyrA (GTC-III), partial cds MT176402 550
C. coli (CITCc3318-17) gyrA (GTC-IV), partial cds MT176403 550
C. coli (CITCc1631-18) gyrA (GTC-V), partial cds MT176404 550
C. coli (CITCc3790-18) gyrA (GTC-VI), partial cds MT176405 550
C. coli (CITCc1303-18) gyrA (GTC-VII), partial cds MT176406 550
C. jejuni (CITCj625-18) tetO/32/O type II, complete cds MT176410 1920
C. jejuni (CITcj727-18) tetO/32/O type II, complete cds MT176411 1920
C. coli (CITCc3448-18) tetO/32/O type II, complete cds MT176412 1920
C. jejuni (CITCj625-18) ant(6)-Ib, complete cds MT176413 867
C. jejuni (CITcj727-18) ant(6)-Ib, complete cds MT176414 867
C. coli (CITCc3448-18) ant(6)-Ie, complete cds MT176415 900
C. coli (CITCc1631-18) ant(6)-Ie, complete cds MT176416 550

5. Conclusions

Although non-poultry sources contribute to campylobacteriosis incidence, poultry are natural
thermophilic Campylobacter spp. hosts. The broiler industry serves as a reservoir for the dissemination
of resistant campylobacters. The enrichment and stability of Campylobacter spp. resistance determinants
is noteworthy but the natural competence and potential of recombination or acquisition of mobile
genetic elements contributes to the Campylobacter. Taken together, the data collected in this study
point to the diversity of resistance determinants circulating among Irish broilers, contributing to the
development of resistance to clinically relevant antimicrobials.
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