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Abstract 

GIPC is a PDZ-domain containing adaptor protein that regulates the cell surface expression and endocytic trafficking of numerous 
transmembrane receptors and signaling complexes. Interactions with over 50 proteins have been reported to date including 
VEGFR, insulin-like growth factor-1 receptor (IGF-1R), GPCRs, and APPL, many of which have essential roles in neuronal and 
cardiovascular development. In cancer, a major subset of GIPC-binding receptors and cytoplasmic effectors have been shown to 
promote tumorigenesis or metastatic progression, while other subsets have demonstrated strong tumor-suppressive effects. Given that 
these diverse pathways are widespread in normal tissues and human malignancies, precisely how these opposing signals are integrated 
and regulated within the same tumor setting likely depend on the strength and duration of their interactions with GIPC. This review 

highlights the major pathways and divergent mechanisms of GIPC signaling in various cancers and provide a rationale for emerging 
GIPC-targeted cancer therapies. 
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Introduction 

PDZ domains represent one of the most common protein-protein
interaction domains present in all organisms from bacteria to human [1–5] .
GAIP interacting protein C-terminus, GIPC/GIPC1, also known as synectin
[6] , is a key member of this family [1] that functions as an essential trafficking
adaptor for membrane receptors, signaling effectors, and protein complexes-
altogether comprising more than 50 protein-protein interactions to date [7] .
As such, GIPC is considered a highly versatile molecule that controls vastly
diverse cellular and pathophysiological processes. 
Abbreviations: ECS, epidermal cancer stem; IGF-1R, insulin-like growth factor-1 receptor; 
ROS, reactive oxygen species; TGF- β, transforming growth factor- β. 
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In more recent years, GIPC has gained increasing attention for its roles in
ancer. It not only serves as an antigen in breast and ovarian cancer [8–10] but
as been strongly implicated in the progression of numerous malignancies
ncluding pancreatic [11 , 12] , colon [13 , 14] , skin [15] , epidermal cancer
tem (ECS) cell [17] , glioma [18] , lung [19] , and gastric cancers [20] by
otentiating tumor growth, invasion, metastasis, and cell survival. In contrast,
IPC is downregulated in cervical cancer [21] , primary kidney tumor [20] ,
rimary colorectal tumor [20] , and primary prostate cancer [20] and may
romote tumor suppressive effects in these settings. These opposing effects
ikely arise from varying signaling contexts, the type of PDZ ligand, and the
verall strength with which it binds in various cancer cells. 
In this review, we discuss the major functions of GIPC in different cancers

nd their cellular mechanisms by focusing on its ability to differentially
nteract with membrane receptors, signaling complexes and oncoproteins. We 
lso highlight the emerging roles of GIPC as a potential therapeutic target in
ancer therapy. 

ntracellular Signaling and Trafficking Functions 

f GIPC 

GIPC was initially identified as an interacting partner of the GTPase-
ctivating protein RGS-GAIP for G-protein coupled receptor subunit 
 αi [1] . Although the GIPC PDZ domain preferentially interacts with
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Figure 1. GIPC-dependent signaling complexes. GIPC interacts with various transmembrane receptors to promote their cell surface retention (e.g., T βRIII 
and endoglin) or internalization for enhanced endosomal signaling (e.g., IGF1R). GIPC also interacts with cytoplasmic signaling and trafficking proteins (e.g., 
Myo6). 
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the consensus class I PDZ binding motif, (S/T)X(A/V) at the extreme
C-terminus of PDZ ligand [1 , 22 , 23] , it also sometimes bind with class II
and class III PDZ binding motifs, �-X- �-COOH and D/E-X- �-COOH
(where X is any amino acid and � is hydrophobic), respectively [24 , 25] .
The GH1 domain within the N-terminal region mediates its dimerization
while the GH2 of the C-terminal region is capable of interacting with
retrograde protein myosin VI (MYO6) [26 , 27] . As a result, GIPC functions
as an adaptor for loading PDZ-binding proteins as cargo for the MYO6
motor protein to traffic various transmembrane proteins into endocytic
vesicles [20] . Indeed, GIPC proves necessary for proper recycling, endosomal
signaling and cell surface expression of transmembrane proteins such as RTKs
[28 , 29] , GPCR [30 , 31] , TGF βRIII [32] , endoglin [33] , insulin-like growth
factor-1 receptor (IGF-1R) [34] , LHCGR [35] , and VEGFR [36 , 37] . GIPC
also affects actin bundle stabilization, cell adhesion, cytokinesis and cell
migration through interaction with proteins like α-actinin-1 [24] , E-cadherin
[38] and integrins [5 , 27] . While the majority of PDZ ligands for GIPC are
transmembrane proteins, some are distinctly intracellular proteins like APPL
[28] and RGS 19 [1] while others are prominent viral oncoproteins (e.g.,
HBc [39] , E6 [21] , and Tax [23] ) ( Figure 1 ). Accordingly, dysregulation
of the GIPC activity, either through loss or overexpression, can disrupt
crosstalk with multiple growth factor and cell survival signaling networks
which ultimately help drive oncogenesis and tumor progression. 

GIPC-mediated Regulation of Signaling Pathways 

in Cancer 

Over the years there has been a steady rise in the number of GIPC targets
in different cancer contexts ( Figure 2 and Table 1 ). Here we discuss the 4
ajor pathways and their signaling components through which GIPC either 
romotes or suppresses tumorigenesis and disease progression. 

IPC-Neuropilins 

Among the many binding targets of GIPC in cancer, arguably the most 
tudied are the neuropilins (NRP1 and NRP2) [15 , 17 , 18 , 40 , 41] , which are
EGF coreceptors [42–44] generally expressed in the neuronal and vascular 
ystems but also found in a number of tumor cells [45 , 46] . Studies have
emonstrated the GIPC-NRP association as a major driver of glioma [18] , 
ancreatic cancer [40 , 41] , skin cancer [15] , and ECS cell (ECS) tumor [17] .
While NRP1 has been previously shown to promote glioma progression 

hrough increased cellular proliferation, invasion and migration, more 
ecent mechanistic evidence demonstrates that GIPC may positively 
egulate these effects through enhanced clathrin-vesicle trafficking and 
ecycling of this receptor, which drives the oncogenic KRAS-ERK signaling 
athway [18] . In ECS, GIPC binds to both NRP1/VEGFA and α6/ β4-
ntegrin via a GIPC homodimer. By forming this complex, GIPC 

acilitates NRP1/VEGFA/ α6/ β4-integrin signaling that triggers downstream 

I3K/PDK1, LATS1, YAP1, and �Np63 α-dependent ECS cell survival and 
umor formation [17] . In pancreatic ductal adenocarcinoma, both GIPC 

nd NRP1/NRP2 are frequently overexpressed and their knockdown has 
een shown to inhibit cell proliferation and migration while enhancing 
poptosis to suppress overall tumor growth [40] . However, the underlying 
echanism for the GIPC/NRP1-induced tumor promoting effects remain 
nresolved. Aside from these tumor-intrinsic properties, GIPC also supports 
he tumor microenvironment by influencing NRP1- α5 β1 integrin mediated 



Neoplasia Vol. 23, No. 2, 2021 Differential Roles of GIPC in Cancer T. Ahmed, K. Mythreye and N.Y. Lee 183 

Figure 2. GIPC as a critical node for signaling networks in cancer. GIPC interacts with membrane receptors and intracellular signaling proteins to differentially 
regulate tumor cell biology and vascularization. 
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fibronectin fibril assembly in myofibroblasts. Here GIPC scaffolds NRP1
with ABL1, a tyrosine kinase that mediates NRP1 signaling for α5 β1
activation, leading to fibronectin fibril assembly, matrix stiffness, and tumor
growth in rodent models [47] . 

Additionally, the GIPC-NRP interaction strongly supports the tumor
microenvironment through neovascularization. Indeed, while both NRPs and
GIPC are independently required to promote angiogenesis in developmental
and various tumor settings [36 , 46 , 48 , 49] , the GIPC/NRP1 interaction is
also specifically necessary for efficient VEGFR2 trafficking and recycling to
enhance the proangiogenic effects including endothelial migration during
sprouting [37 , 50 , 51] . Indeed, this vascular function has now been implicated
in the growth and metastasis of a vast majority of solid cancers [52–56] . Many
preclinical models have shown that targeting NRP1 and/or VEGF exerts
antitumor activity by reducing tumor angiogenesis, although the clinical
benefits including overall survival in various cancers are still under evaluation
[57–63] . Surprisingly, there have been no direct studies on the role of GIPC
in tumor angiogenesis or its involvement in NRP1/VEGFR2 signaling during

tumor vascularization. o
IPC-IGF-1R 

GIPC interaction with IGF-1R is another notable association strongly 
mplicated in the progression of prominent cancers including breast 
ancer [64] , pancreatic cancer [12] , and colorectal cancer [13] . IGF-
 signals through the IGF-1 receptor to promote growth and survival,
nd GIPC has been shown to positively regulate these cellular processes
hrough IGF-1R protein stabilization by inhibiting its proteasomal 
egradation [11 , 12 , 34] . Studies have shown that lipopeptides (e.g., CR1023
nd CR1166) which target the GIPC PDZ domain can significantly
educe tumor growth by blocking the GIPC-IGF-1R interaction and 
hus reducing IGF-1R expression in both breast cancer and pancreatic
ancer mouse models [65] . A similar result was observed in in vitro
tudies showing decreased cell proliferation and enhanced apoptosis 
ith reduced IGF-1R expression upon PDZ blocking peptide treatment 
11] . 

GIPC mediates IGF/1GF-1R-induced tumor growth through reactive 
xygen species (ROS) generation, which in turn, regulates phosphatases 
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Table 1 

GIPC mediated key signaling pathways in different cancers. 

Cancer Type GIPC Mediated Signaling Pathways Effects on Cancer Cell References 

Pancreatic Cancer GIPC-endoglin Increases cell proliferation and tumor growth [82] 

GIPC-IGF-1R Increases cell proliferation and tumor growth [11] 

GIPC-NRP1/NRP2 Increases cell proliferation, cell survival, 

migration and tumor growth 

[40] 

Breast Cancer GIPC-IGF-1/IGF-1R-ROS Increases cell proliferation and migration [64] 

GIPC/Akt-Mdm2-p53 Increases cell proliferation, cell survival and 

migration. 

[91] 

GIPC-MMP-9-Cdc42 Increases invasion [91] 

GIPC- TGF βRIII Inhibits cell migration and invasion [90] 

GIPC-MyoGEF Increases cell polarization and invasion [93] 

Colorectal Cancer GIPC-IGF-1-ROS-ZNF143 ROS generation and tumorigenesis [13] 

Skin Cancer GIPC-Syx-RhoA-p27 Increases cell proliferation [15] 

ECS Tumor GIPC-VEGF-A/NRP1/ α6/ β4-integrin; 

LATS1/YAP1/ �Np63 α

Increases cell invasion, migration, cell survival 

and tumor formation 

[17] 

Glioma Tumors GIPC/NRP1-APPL1, p130Cas, KRAS-ERK. Increases cell proliferation, invasion and cell 

survival 

[18] 

Cervical cancer 

(Associated with 

HPV-18 infection) 

GIPC-E6 of HPV 18 GIPC degradation increases cell proliferation [21] 

Melanoma GIPC-APPL-TRP1 Promotes melanogenesis in melanocytes [16] 
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involved in various cancer cell proliferation [64] . In colon cancer, GIPC
is believed to play a role in tumorigenesis and survival by inducing zinc
finger protein, ZNF143 expression as part of the IGF-1/IGF-1R-ROS
cascade [13] . Interestingly, in these cancer cell models, the role of GIPC
in IGF/IGF-1R-induced cell proliferation proved to be independent of the
canonical MAPK/ERK or PI3K/Akt pathways [13 , 64] . Therefore, the crucial
downstream mechanisms by which GIPC drives ROS generation and tumor
cell proliferation through the IGF/IGF-1R signaling system remain to be fully
elucidated. 

GIPC-LPA1/AKT Pathways 

Aside from its above-mentioned roles as a tumor promoter, GIPC can
also function as a powerful tumor suppressor often in the same cancer types
depending on its ligands. Lysophosphatidic acid 1 (LPA1) is a receptor
for LPA that has been shown to promote various carcinomas including
breast, prostate, colon, and pancreatic cancer by regulating cell motility,
chemotaxis, migration, and proliferation [66–69] . Here, GIPC can oppose
these functions by directly binding to the PDZ binding motif of LPA1 to
form an endocytic complex with APPL, which promotes LPA1 trafficking
to early endosome EEA1 [70] . This in turn results in the downregulation
of LPA1-induced Akt signaling from APPL endosome and thus inhibits the
cell proliferation and cell migration [70] . Accordingly, GIPC depletion has
been shown to delay LPA1 trafficking to EEA1 endosomes and thus maintains
the LPA1/APPL association in signaling endosomes to promote Akt signaling
towards higher cell proliferation and cell motility [70] . Consistent with the
above findings upon GIPC depletion, recent evidence further suggests that
disrupting this protein interaction with a point mutation in the LPA1 PDZ-
binding motif induces oncogenic transformation by elevating Akt mediated
cell proliferation [71] . 

Similar to LPA1, GIPC depletion has been reported to delay TrkA
trafficking from APPL signaling endosome to early endosome [28] , although
their functional outcomes can differ significantly. The delay in TrkA
trafficking has been shown to reduce Akt and Erk signaling [28] , whereas the
delay in LPA1 trafficking enhances the Akt signaling for cellular proliferation
[70] . This indicates that the GIPC-APPL/Akt signaling pathway can yield
highly divergent effects depending on its target proteins even within the
ame cancer cell type, suggesting that the overall strength and duration of 
he interaction between GIPC and its ligands serve as fundamentally crucial 
et elusive determinants of cancer progression. Further highlighting the 
omplexity of these GIPC-dependent signaling networks, GIPC has also been 
eported to bind directly to APPL to form a GIPC-APPL/Akt complex [16] .
ence, precisely how GIPC preferentially interacts with these trafficking 
omponents to modulate the oncogenic properties of Akt signaling remains 
o be fully elucidated. 

IPC Regulation of the TGF-beta pathways 

IPC-Endoglin 

Endoglin is a specialized TGF β co-receptor expressed in proliferating 
ndothelial cells of normal and tumor vessels [72–74] . GIPC binds 
o this coreceptor through the C-terminal PDZ-binding motif SMA, 
hich promotes endoglin cell surface retention and potentiates canonical 
mad1/5/8 signaling downstream to promote angiogenesis [33] . While 
ndoglin has received considerable attention as a vascular target in many solid 
ancers [73 , 75–77] , more recent findings in cell lines and patient samples
emonstrate that endoglin is also expressed in a subset of human breast [78] ,
ancreatic [79] , colorectal [80] , and prostate cancer cells [81] , which raises the
uestion of the precise role of GIPC in regulating the tumor-intrinsic versus 
ascular endoglin in the surrounding tumor vessels. Notably, in pancreatic 
ancer, Pal et al., has shown that the GIPC-endoglin interaction is necessary 
or cell proliferation as blocking this interaction via a peptide-based inhibitor 
P1032 inhibited in vivo tumor growth, and induced differentiation while 
lso sensitizing pancreatic cancer cells to the frontline chemotherapeutic drug 
emcitabine [82] . Furthermore, similar to the vascular system, inhibiting 
he GIPC-endoglin interaction also abrogated Smad 1/5/8 activation in 
ancreatic tumor cells [82] . 
Interestingly, the enhanced Smad 1/5/8 activation mediated by the GIPC- 

ndoglin complex serves to inhibit endothelial cell migration [33] , whereas 
IPC stimulates migration when it interacts with NRP1 [51] . This dynamic 
gain exemplifies the versatility of GIPC in differentially regulating cellular 
unctions depending on the PDZ ligand, although precisely how GIPC favors 
ne PDZ ligand over another, such as the case in endoglin versus NRP1,
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remains to be characterized. In any event, it is also notable that the GIPC-
endoglin interaction also regulates noncanonical signaling functions at least
in the vascular system. In one study, GIPC has been shown to scaffold PI3K to
endoglin at the plasma membrane to promote PI3K/Akt activation which acts
to stabilize endothelial capillary sprouts during developmental angiogenesis
[83] . While it is unclear whether GIPC functions in a similar manner towards
endoglin signaling in pancreatic cancer cells, targeting the endoglin/GIPC
complex may be an effective dual strategy to counter the tumorigenic and
angiogenic properties of endoglin in certain tumor types. 

GIPC-TGF βRIII 

TGF βRIII is another coreceptor of the transforming growth factor- β
(TGF- β) superfamily that shares structural homology with endoglin but
is much more widely expressed [84] . Previous studies have established
numerous roles for this receptor protein including tumor suppressive effects
in certain cancers in part by inhibiting tumor motility and invasion
in vitro [85–89] and angiogenesis, invasion and metastasis in vivo [86] .
As was observed for the GIPC-endoglin interaction in endothelial cells,
GIPC also directly interacts with TGF βRIII through the PDZ-binding
motif to facilitate TGF βRIII cell surface stability, expression and TGF β
responsiveness for Smad2/3 activation [32] , which potentiates the suppressive
effects of TGF βRIII on cell proliferation, migration and invasion in breast
cancer [90] . 

Loss of GIPC expression, as evidenced in HPV-18-associated cervical
cancer, appears to dampen the tumor suppressive effects of certain PDZ
ligands including TGF βRIII. Studies have shown that GIPC interacts
with E6 oncoprotein of HPV-18 which induces GIPC polyubiquitination
for proteasomal degradation [21] . As GIPC enhances TGF βRIII protein
stability and responsiveness to TGF β, E6-mediated GIPC degradation results
in higher proliferation due to decreased antiproliferative effects of TGF β
signaling [21] . This mechanism may apply similarly to many other cancers
including primary kidney tumors, primary prostate cancer and primary
colorectal tumor where GIPC gene expression is downregulated [20] and
therefore GIPC may exhibit as a tumor suppressor role in such cancers. 

Targeting GIPC in cancer 

As GIPC is highly expressed in a number of human malignancies,
inhibiting its activity can be an effective strategy for cancer therapy. Indeed,
multiple studies have already demonstrated in vivo and in vitro antitumor
activity by targeting GIPC, both through RNAi-mediated knockdown and
by peptide-based competitive inhibition of GIPC-PDZ specific interactions
[11 , 14 , 15 , 40 , 82 , 91,92] . GIPC depletion was shown to promote apoptosis
[14 , 40] , G2 cell-cycle arrest [14 , 40] , and autophagy [92] while impairing
cell proliferation [14 , 40 , 91] , motility [14] , invasion [40 , 91 , 93] and tumor
growth [11 , 40 , 91] , in breast cancer [14 , 91 , 93] , colorectal cancer [14] ,
and pancreatic cancer [11 , 40 , 92] . In some cases, GIPC silencing [92] and
inhibition of the GIPC-endoglin interaction [82] also influences therapeutic
efficacy as evidenced by the sensitization of pancreatic cancer cell lines to
chemotherapeutic drug gemcitabine. In particular, data shows that GIPC
depletion promotes this effect by causing exosome exocytosis of drug
resistance gene ATP-binding cassette sub-family G member 2 (ABCG2),
rendering it nonfunctional and thus sensitizing the cells to gemcitabine [92] .
In another study, Patra et al., developed a series of cell-permeable lipopeptides
that selectively block the PDZ domain of GIPC to elicit inhibitory effects
against pancreatic and breast cancers in both cellular and animal models [65] .
By mimicking the unique C-terminal PDZ-binding motif of GAIP, especially
the prevalent SEA motif, these lipopeptides appear to competitively block
the protein-protein interactions occurring between GIPC and PDZ ligand
proteins [65] . Among the peptides, CR1166 was found most efficient in
binding to the GIPC PDZ domain to disrupt the GIPC/IGF-1R association,
hich consequently inhibits IGF-1R activity, cell proliferation and tumor 
rowth [65] . Likewise, in skin cancer competitive inhibition of the GIPC/Syx
nteraction with a PDZ blocking peptide prevented RhoA activation which
otently inhibited cell proliferation [15] . 
RNAi-mediated knockdown is another potential approach of targeting 

IPC function. Although siRNA-mediated drugs have their own caveats like
oor stability and tissue penetration [94] , polymeric nanoparticle mediated
iRNA delivery is considered a remedy to overcome the aforementioned
bstacles [95–97] . As demonstrated by Borchardt et al., nanoparticle based
IPC-siRNA treatment can significantly reduce tumor volume in animal 
odels with minimal adverse effects [40] . 
However, like the vast majority of targeted therapies in human clinical

rials, both peptide-based and siRNA approaches must fully consider the
nanticipated off-target effects of abrogating the essential homeostatic actions 
f GIPC. Conversely, because GIPC can act as a tumor suppressor and
s downregulated in some cancers, alternative approaches should include 
dentifying and targeting the negative regulators of GIPC. Taken together,
hese findings suggest that GIPC can serve as a promising therapeutic target
n various human cancers but its expression pattern and dominant functional
oles in each tumor type must be carefully considered. 

onclusion 

GIPC is a versatile adaptor protein that regulates the functional trafficking
f RTKs, GPCRs, TGF β receptors, and integrins. The dynamic actions of
IPC is highlighted by its vastly diverse signaling network of molecular
artners, their interplay and biological consequences. Increasing evidence of 
ts dichotomous roles in cancer clearly warrants further investigation into
ot only more selective GIPC-targeted therapies but also understanding the
uantitative aspects of the strength and duration with which these ligands
ind to GIPC. A clear grasp of these molecular mechanisms will be crucial to
eciphering how these dynamic processes are altered in various cancers. 
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