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Abstract

Chronic obstructive pulmonary disease (COPD) is currently the third leading cause of death

globally and is characterized by airflow limitation that is progressive and not fully reversible.

Cigarette smoking is the major cause of COPD. Fifty percent of deaths in the COPD popula-

tion are due to a cardiovascular event and it is now recognised that COPD is a risk factor for

stroke. Whether COPD increases stroke severity has not been explored. The aim of this

study was to investigate whether functional and histological endpoints of stroke outcomes in

mice after transient middle cerebral artery occlusion (tMCAo) were more severe in mice

exposed to cigarette smoke (CS). 7-week-old male C57BL/6 mice were exposed to room air

or CS generated from 9 cigarettes/day, 5 days/week for 2, 8 and 12 weeks. Following air or

CS exposure, mice underwent tMCAO surgery with an ischaemic period of 30–40 min or

sham surgery. Mice were euthanised 24 h following the induction of ischaemia and bronch-

oalveolar lavage fluid (BALF), lungs and brains collected. Mice exposed to CS for 2 weeks

and subjected to a stroke had similar BALF macrophages to air-exposed and stroke mice.

However, CS plus stroke mice had significantly more BALF total cells, neutrophils and lym-

phocytes than air plus stroke mice. Mice exposed to CS for 8 and 12 weeks had significantly

greater BALF total cells, macrophages, neutrophils and lymphocytes than air-exposed

mice, but stroke did not affect CS-induced BALF cellularity. Prior CS exposure did not

worsen stroke-induced neurological deficit scores, reduced foregrip strength, infarct and

oedema volumes. Collectively, we found that although CS exposure caused significant

BALF inflammation, it did not worsen acute post-stroke outcomes in mice. This data sug-

gests that while patients with COPD are at increased risk of stroke, it may not translate to

COPD patients having more severe stroke outcomes.

Introduction

Chronic obstructive pulmonary disease (COPD) is currently the third leading cause of death

globally [1, 2]. Cigarette smoking is the major cause of COPD and accounts for more than 95%

of cases in industrialized countries [3], but other environmental pollutants are important

causes particularly in developing countries [4]. COPD is characterized by an airway limitation
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that is usually progressive and not fully reversible [5], and is associated with a chronic and

abnormal inflammatory response in the airways in response to noxious gases and particles [1].

COPD encompasses chronic obstructive bronchiolitis with fibrosis and obstruction of small

airways, and emphysema with enlargement of airspaces and destruction of lung parenchyma,

loss of lung elasticity, and closure of small airways. Most patients with COPD have all three

pathological conditions (chronic obstructive bronchiolitis, emphysema and mucus plugging),

but the relative extent of emphysema and obstructive bronchiolitis within individual patients.

Several inflammatory cell types are involved in the pathophysiology of COPD, including

macrophages, neutrophils and T-cells [6, 7]. These inflammatory cells have an impaired

phagocytic function, resulting in impairment in clearance of apoptotic cells, contributing to

the chronic inflammatory state in the lungs and leading to an ongoing cycle of damage and

remodelling in the airways and lung tissue [8, 9]. In addition to local inflammation in the

lungs, COPD is associated with chronic systemic inflammation and oxidative stress [10–14].

This state of chronic systemic inflammation is believed to be involved in the development of

comorbidities of COPD [15, 16].

Much of the disease burden of COPD is associated with the management of comorbidities,

rather than the airway limitation itself. It is estimated that between 30–50% of deaths in the

COPD population are due to cardiovascular events including myocardial infarction [17–19].

In addition to this, COPD is increasingly being recognized as a risk factor for stroke [20].

Recent studies show that the risk of stroke is 20% greater in COPD patients compared to the

general population, and this risk is estimated to be 7-fold higher following an exacerbation of

COPD [21, 22]. There is also some evidence to suggest that there is a relationship between

COPD and worse stroke outcomes such as mortality, pneumonia, epilepsy, length of hospital

stay and also intensive care unit care [23]. COPD is an independent risk factor for mortality

among patients with stroke [24], and stroke patients with COPD are at an increased risk of

aspiration [25], which is a leading cause of death following a stroke.

However, no causal mechanism has been established between COPD and worse outcomes

following a stroke. Heightened levels of systemic inflammation and oxidative stress may con-

tribute to increased stroke severity and the occurrence of post-stroke adverse events [20, 23]. It

is difficult to determine the causal mechanisms that may explain worse outcomes following a

stroke in human COPD. One way to potentially understand the mechanistic links between cig-

arette smoke-induced COPD and stroke outcomes is to use an animal model that combines

cigarette smoke and stroke. Therefore, the aim of this study was to investigate whether prior

cigarette smoke exposure worsens brain injury and stroke outcomes (functional hanging wire

test, neurological scoring, infarct and oedema volume) in mice.

Materials & methods

Mice

All experiments were conducted in accordance with the Australia Code of Practice for the

Care of Experimental Animals, the ARRIVE Guidelines and with RMIT University Animal

Ethics Committee approval (Animal Ethics Application Number 1532). Male 7-12-week-old

C57BL/6 mice (n = 147) were obtained from the Animal Resources Centre (Perth, Australia).

Animals were housed on a 12 h light/dark cycle and had access to water and standard chow ad

libitum. In total, 35 mice were excluded from the study which occurred when, during the sur-

gical procedure: (1) there was an inadequate reduction (<70%) in regional cerebral blood flow

(rCBF) during the ischemic period or inadequate (>80%) increase within the first 10 minutes

of reperfusion (n = 23); (2) technical or anaesthesia complications arose during surgery
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(n = 3); (3) they died prior to the end of the reperfusion period (n = 7); or (4) they had to be

humanely killed due to severity of adverse effects of stroke (n = 2).

Cigarette smoke exposure

Mice were randomly assigned to either sham (room air) or cigarette smoke (CS) exposure

groups. Mice were then placed in an 18-L perspex chamber (The Plastic Man, Huntingdale,

Victoria, Australia) in a standard chemical hood and exposed to CS generated from 9 ciga-

rettes per day, 5 days per week for 2 (acute exposure), 8 (sub-chronic exposure) and 12

(chronic exposure) weeks as previously described [26]. Briefly, mice were exposed to CS gener-

ated from 9 cigarettes/day for 2, 8 and 12 weeks (Monday to Friday but not Saturday and Sun-

day), delivered three times per day at 9 AM, 12 PM and 3 PM with 3 cigarettes spaced over 1 h.

CS was generated in 50-ml tidal volumes over 10 s, by use of timed draw-back mimicking nor-

mal smoking inhalation volume and cigarette burn rate. The mean total suspended particulate

mass concentration in the chamber containing CS was ~420 mg m-3 [26]. Commercially avail-

able filter-tipped Winfield Red cigarettes (manufactured by Philip Morris, Australia) of the fol-

lowing composition were used: 16 mg or less of tar, 1.2 mg or less of nicotine, and 15 mg or

less of CO. Sham-exposed mice were placed in an 18-L perspex chamber but were not exposed

to CS. The acute cigarette smoke-exposure protocol was used as it typically explores the media-

tors and mechanisms involved in the induction of cigarette smoke-induced lung inflammation

and damage. The sub-chronic cigarette smoke-exposure protocol was used as it typically

explores the mediators and mechanisms involved in the progression of cigarette smoke-

induced lung inflammation and damage. We have also shown that mice exposed to 8 weeks of

cigarette smoke have lung inflammation, changes in lung function and structure and extrapul-

monary manifestations including skeletal muscle wasting and dysfunction (unpublished obser-

vations). The chronic protocol was used as it typically causes more severe lung inflammation

and pathology (e.g. emphysema, small airway fibrosis). Thus, these exposure protocols provide

a robust clinically-relevant platform to explore mechanisms that are relevant to cigarette

smoke-induced COPD and its comorbidities.

Focal cerebral ischemia and reperfusion

Mice were anaesthetised with a mixture of ketamine (150 mg/kg, i.p.) and xylazine (10 mg/kg,

i.p.). Body temperature was maintained at 37˚C with a heat lamp throughout the procedure

and until mice regained consciousness. Mice were kept on a heat-pad post-operatively. Focal

cerebral ischemia and reperfusion was performed on mice by transient intraluminal filament-

induced middle cerebral artery occlusion (tMCAo) as previously described [27–29]. Cerebral

ischemia was maintained for 30 min (2-week CS exposure) or 40 min (8 and 12-week CS expo-

sure). Given that we thought CS exposure would significantly exacerbate infarct volume, an

ischemic period of 30 min was used for the 2-week CS exposure protocol to induce a small

infarct such that an exacerbated response would not significantly affect the well-being of the

mice or lead to increased mortality. rCBF in the area of the cortex supplied by the middle cere-

bral artery (MCA) (~2 mm posterior and 5 mm lateral to bregma) was monitored in all stroke

mice and recorded prior to the induction of cerebral ischemia, during cerebral ischemia and

for the first 10 min of reperfusion. For sham surgeries (8 and 12-week CS protocol), the right

external carotid artery and common carotid artery were visualised but the filament was not

inserted. After mice had recovered from anaesthesia, they were housed in individual cages.

Mice were monitored hourly for a minimum of 8 h post-surgery and the following morning

using our monitoring protocol and clinical signs severity scoring system (approved by our eth-

ics committee). Mice were killed 24 hours post-surgery with an overdose of isoflurane followed
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by decapitation to determine whether cigarette smoke exposure impacts acute post-stroke out-

comes. No sham surgeries were performed for the 2-week CS exposure group as our initial pri-

mary goal was to see whether CS-exposure exacerbated stroke outcomes, to ensure that mice

would recover from stroke surgeries after CS exposure and to reduce animal usage.

Neurological scoring and functional impairment test

Neurological assessment was performed 24 h after either sham or stroke surgery using a five-

point scoring system: 0 = normal motor function; 1 = flexion of torso and contralateral fore-

limb when lifted by the tail; 2 = circling to the contralateral side when held by the tail on a flat

surface with normal posture at rest; 3 = leaning on the contralateral side at rest; 4 = no sponta-

neous movement at rest or uncontrolled circling. A hanging wire test was performed at 24 h

after sham or stroke surgery to assess motor impairment, as previously described [27]. Briefly,

mice were suspended by their forelimbs from a wire 30 cm above a padded surface for up to 60

s and the average hanging time (i.e. latency to fall) of 3 trials with 5 min rest in between was

recorded. A score of zero was assigned to those mice that fell immediately and a score of 60

was assigned to animals that did not fall.

Quantification of cerebral infarct and oedema volumes

Cerebral infarct and oedema volumes were evaluated as previously described [27]. Briefly,

brains were coronally sectioned (30 μm thickness; 420 μm apart) and thaw mounted onto 0.1%

poly-L-lysine coated slides. Tissue-mounted slides were subsequently stained with 0.1% thio-

nin to delineate the infarct. Thionin-stained sections were then imaged with an Olympus

VS120 Slide Scanner (Olympus). Total infarct volume was then quantified using ImageJ image

analysis software, correcting for brain oedema, as previously described [27].

Bronchoalveolar lavage and differential cell counts

Lungs were lavaged in situ with a 400 μl aliquot of PBS, followed by three 300 μl aliquots as

previously described [26, 30, 31]. In total up to 1 ml of bronchoalvealor lavage fluid (BALF)

was retrieved per mouse. The total number of viable cells in the BALF was determined using

the fluorophores ethidium bromide and acridine orange (AO/EB), on a Nikon Eclipse E600

(Nikon Instruments, USA). Cytospins were prepared using 100 μl of BALF spun at 400 rpm

for 10 min using a Cytospin 3 (Shandon, UK). Cytospin preparations were then stained with

DiffQuik (Dade Baxter, Australia), and 500 cells per slide were counted and differentiated into

macrophages, neutrophils and lymphocytes using standard morphological criteria.

RNA extraction and qPCR

Lungs from individual mice were crushed to a fine powder in liquid nitrogen using a mortar

and pestle, and subsequently 15 mg homogenised by passing 5 times through a 21G needle

with a 1 ml syringe. Total RNA was extracted from lung samples using an RNeasy Plus kit

(QIAGEN, Australia), according to the manufacturer’s instructions. RNA yield and purity

were quantified using a nanodrop (ND-1000, Biolab). Total RNA from lung samples were

reverse transcribed to cDNA (Applied Biosystems High Capacity RNA-to-cDNA Kit, USA).

Quantitative polymerase chain reaction (qPCR) was then performed using mouse-specific

TaqMan Gene Expression Assays (Applied Biosystems, USA), on an ABI 7900HT Sequence

Detection System. Samples were assayed in triplicate and negative reverse-transcriptase con-

trols were included. Fold change was determined relative to the sham control group, after
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standardising to GAPDH (housekeeping gene), using the standard 2(-ΔΔCT) method as previ-

ously published [26, 30, 32, 33].

Data analysis

All results are presented as mean±standard error of the mean (SEM); n represents the number

of mice. Statistical comparisons between treatment groups were performed using either Stu-

dent’s unpaired t test or two-way ANOVA with Bonferroni multiple comparisons post-hoc

test. Mann-Whitney U test was used for non-parametric data. All statistical analyses were per-

formed using GraphPad Prism 6 for Windows (Version 6.07, La Jolla, CA, USA). Probability

levels less than 0.05 (P<0.05) were taken to indicate statistical significance.

Results

Effect of cigarette smoke exposure on body weight and lung inflammation

We first examined the effect of acute (2 weeks), sub-chronic (8 weeks) and chronic (12 weeks)

CS exposure on body weight. The body weight of mice exposed to CS for 2, 8 and 12 weeks

was lower than mice exposed to room air for these timepoints (Fig 1 and S1 Fig).

We then went on to determine whether stroke and CS exposure influenced BALF cellularity

after 2, 8 and 12 weeks of CS exposure. Mice exposed to CS and for 2 weeks and subjected to a

stroke had similar BALF macrophages to room air exposed and stroke mice (Fig 2). However,

CS plus stroke mice had significantly more BALF total cells, neutrophils and lymphocytes than

room air plus stroke mice (Fig 2, P<0.05, Student’s unpaired t-test; S2 Fig).

Mice exposed to CS for 8 weeks had significantly greater BALF total cells, macrophages,

neutrophils and lymphocytes (Fig 3 and S3 Fig) than air-exposed mice (P<0.05, two-way

ANOVA followed by Bonferroni post-hoc test). Stroke alone did not increase BALF cellularity

in room air-exposed mice nor did it affect CS-induced BALF cellularity. Similarly, mice

exposed to CS for 12 weeks had significantly greater BALF total cells, macrophages and neu-

trophils (but not lymphocytes) than air-exposed mice (P<0.05, two-way ANOVA followed by

Bonferroni post-hoc test) (Fig 4 and S4 Fig). Stroke alone did not increase BALF cellularity in

room air-exposed mice nor did it affect CS-induced BALF cellularity.

Degree of hypoperfusion following stroke

Following insertion of the monofilament at the origin of the MCA, all stroke mice experienced

a similar drop (~75%) in rCBF (Fig 5 and S5 Fig) and this remained steady over the ischaemic

period for all groups. A similar degree of reperfusion was observed in all mice in acute (2

weeks), sub-chronic (8 weeks) and chronic (12 week) experiments, though CBF during reper-

fusion was greater in the 12 weeks CS-exposed mice relative to room-air mice (P<0.05, Stu-

dent’s unpaired t-test; Fig 5C).

Effect of cigarette smoke exposure on stroke outcomes

All stroke animals displayed some degree of neurological deficit 24 h after stroke (Fig 6 and S6

Fig). Mice exposed to CS for 2 weeks and subjected to a stroke had similar neurological deficit

and foregrip strength, as assessed by latency to fall in the hanging wire test, to room air-

exposed and stroke mice (Fig 6A and 6B). Neurological deficit scores and foregrip strength in

experimental stroke groups were significantly different from sham surgery control groups in

the sub-chronic (8 weeks) and chronic (12 weeks) room air and CS exposure groups (Fig 6C,

6D, 6E and 6F; P<0.05, two-way ANOVA followed by Bonferroni post-hoc test or Mann-

Whitney U test). However, prior CS exposure (acute, sub-chronic and chronic) did not worsen
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PLOS ONE | https://doi.org/10.1371/journal.pone.0214246 March 21, 2019 5 / 16

https://doi.org/10.1371/journal.pone.0214246


stroke-induced neurological deficit scores and reduced foregrip strength. All stroke groups

had a significant reduction in hanging time on the hanging wire test, and this was significantly

different from sham surgery control groups in the sub-chronic and chronic smoke exposure

studies (Fig 6C, 6D, 6E and 6F; P<0.05, two-way ANOVA followed by Bonferroni post-hoc

test).

Fig 1. Effect of cigarette smoke exposure on body weight. Mice were exposed to cigarette smoke or room air (sham)

for 2 weeks (A; n = 10), 8 weeks (B; n = 18) or 12 weeks (C; n = 35–47). Data are expressed as mean ± SEM (Student’s

unpaired t-test performed on final weights, �P<0.05 vs room air-exposed group).

https://doi.org/10.1371/journal.pone.0214246.g001
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Effect of cigarette smoke exposure on infarct and oedema

We then went on to investigate whether prior CS exposure influenced infarct and oedema vol-

umes in stroke mice. No statistical differences in infarct volume were observed between smoke

and sham groups after 2, 8 or 12 weeks of CS exposure (Fig 7 and S7 Fig). However, there was

a trend for oedema volumes to be lower in CS-exposed animals compared to room air-exposed

controls, but this was not statistically significant (P>0.05).

Discussion

This study investigated whether prior cigarette smoke exposure worsens brain injury and

stroke outcomes (functional hanging wire test, neurological scoring, infarct and oedema vol-

ume) in mice. The cigarette smoke exposure protocols used in this study replicate many

aspects of human COPD and have been used previously to investigate the molecular and bio-

chemical mechanisms underlying the pathogenesis of COPD [26, 34]. Briefly, the model

involves exposing mice to CS over a period of days to months, depending on what features of

cigarette smoke-induced lung inflammation and damage want to be modelled. Mice begin to

develop an inflammatory response to CS after 4 days of CS exposure and begin to develop

emphysema and a lung phenotype comparable to COPD after 3–6 months of exposure to CS.

This model typically uses BALB/c mice, as they have a robust response to the CS [26]. How-

ever, in this study we used C57BL/6 mice, as their response to tMCAo is well established [27,

Fig 2. Effect of 2 weeks cigarette smoke exposure on inflammatory cells in bronchoalveolar lavage fluid (BALF). Total (A),

macrophage (B), neutrophil (C) and lymphocyte (D) cell counts shown as mean ± SEM (n = 5–6, �P<0.05 vs room air stroke mice,

Student’s unpaired t-test).

https://doi.org/10.1371/journal.pone.0214246.g002
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29]. In addition, we have shown in preliminary studies that BALB/c mice have a very high

mortality rate, so it is not ethical to use the BALB/c strain of mouse for these studies.

It was hypothesized that chronic CS exposure would lead to worse stroke outcomes in mice.

CS exposure causes an immediate inflammatory response in the lungs, by triggering the activa-

tion of proinflammatory mediators such as TNF-α NFκB and MMP-12, resulting in the

recruitment of inflammatory cells such as neutrophils, macrophages and lymphocytes into the

lungs. This immune response contributes to the damage of lung tissue [26]. After 2, 8 and 12

weeks of CS exposure inflammatory cells were elevated in the BALF, indicating that that lung

inflammation was present in these mice. However, these cell counts after 2 weeks of CS expo-

sure were lower than what has historically been seen in the BALB/c mouse strain in response

to CS after 4 days [26, 31, 35]. We have previously shown that the C57BL/6 mouse strain is

more resistant to acute CS-induced lung inflammation compared to the BALB/c mouse strain

[26]. Considering this, we extended the CS exposure period out to 8 (sub-chronic protocol)

and 12 (chronic protocol) weeks. CS exposure led to a reduction in body weight across all

three time-points (2, 8 and 12 weeks). Nicotine, a primary constituent of CS, is known to sup-

press appetite. Although food intake was not measured in this study, we have previously

shown that CS-exposed mice eat less compared to sham-exposed control mice [36]. However,

studies have shown that the weight loss in response to CS is not solely due to a reduction in

Fig 3. Effect of 8 weeks of cigarette smoke exposure on inflammatory cell counts in bronchoalveolar lavage fluid (BALF). Total (A),

macrophage (B), neutrophil (C) and lymphocyte (D) cell counts shown as mean ± SEM (n = 5–7, �P<0.05 vs room air group, #P<0.05 vs

room air stroke group, two-way ANOVA followed by Bonferroni post-hoc test).

https://doi.org/10.1371/journal.pone.0214246.g003
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appetite, but that other metabolic pathways are also involved, such as decreases in energy

intake, increases in energy expenditure and accelerated proteolysis [37, 38].

It was found that although CS exposure caused its expected effects on body weight (i.e.

reduced body weight) and lung inflammation (i.e. increase in lung inflammation), there was

no effect on stroke outcomes measured by neurological scoring, functional tests and analysis

of infarct and oedema volumes in brain tissue. This was a surprise, given that there is increas-

ing evidence to suggest that COPD is associated with worse outcomes (e.g. mortality, pneumo-

nia, epilepsy, length of hospital stay, intensive care unit care) following stroke in humans [24].

It has been suggested that this may be due to increased systemic inflammation and oxidative

stress making the brain more susceptible to brain injury, and the whole body more susceptible

to adverse events following a stroke [20]. The results of this study suggest that the mouse

model of CS-induced lung inflammation and damage used (i.e. 2, 8 and 12 weeks of CS expo-

sure) has no effect on stroke severity. There are a number of possible reasons why stroke sever-

ity was not worse in this study: (i) 12 weeks of CS exposure may have been insufficient to

induce systemic changes believed to play a key role in worsened stroke outcomes, (ii) COPD

may not directly lead to worsened stroke severity, but may make an individual more suscepti-

ble to post-stroke complications and adverse events, and (iii) COPD may increase risk but play

no role in stroke severity. Another important point to consider is that all mice in this study

Fig 4. Effect of 12 weeks cigarette smoke exposure on inflammatory cell counts in bronchoalveolar lavage fluid (BALF). Total (A),

macrophage (B), neutrophil (C) and lymphocyte (D) cell counts shown as mean ± SEM (n = 4–8, �P<0.05 vs room air sham group,

#P<0.05 vs room air stroke group, two-way ANOVA followed by Bonferroni post-hoc test).

https://doi.org/10.1371/journal.pone.0214246.g004

Cigarette smoke exposure and stroke

PLOS ONE | https://doi.org/10.1371/journal.pone.0214246 March 21, 2019 9 / 16

https://doi.org/10.1371/journal.pone.0214246.g004
https://doi.org/10.1371/journal.pone.0214246


Cigarette smoke exposure and stroke

PLOS ONE | https://doi.org/10.1371/journal.pone.0214246 March 21, 2019 10 / 16

https://doi.org/10.1371/journal.pone.0214246


Fig 5. Regional cerebral blood flow during tMCAO surgery and during reperfusion. Surgeries were performed after

2 weeks (A; n = 8–10), 8 weeks, (B; n = 5–7) and 12 weeks (C; n = 8–10). Student’s unpaired t-test performed on final

values, �P<0.05 vs room air group.

https://doi.org/10.1371/journal.pone.0214246.g005

Fig 6. Neurological deficit and functional hanging wire scores 24 h post-stroke or sham surgery. Mice were exposed to 2 (A&B; n = 8–11),

8 (C&D; n = 5–8) or 12 (E&F; n = 8–18) weeks of cigarette smoke or sham smoke (room air) prior to sham or stroke surgery. Results for

neurological scores are presented as median (line) and analysed with non-parametric Mann-Whitney U test (�P<0.05 vs sham). Results for

hanging wire test are expressed as mean ± SEM. (�P<0.05 vs. sham, two-way ANOVA followed by Bonferroni post-hoc test).

https://doi.org/10.1371/journal.pone.0214246.g006
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were culled 24 h post-stroke. In rodents, the vast majority (*70–80%) of the infarct volume

development takes place during the first 24 h [39]. However, we cannot rule out that CS-expo-

sure may influence absolute final infarct volume [39]. Therefore, to assess long-term outcomes

after stroke, future experiments should compare stroke outcomes in the days and weeks fol-

lowing experimental stroke in COPD mice and non-COPD mice. This will allow us to

Fig 7. Cerebral infarct and oedema volumes at 24 h after tMCAO procedure. Mice were exposed to 2 (A&B; n = 5–10), 8

(C&D; n = 5) or 12 (E&F; n = 6–8) weeks of cigarette smoke or room air (sham) prior to stroke surgery. All results are

expressed as mean ± SEM.

https://doi.org/10.1371/journal.pone.0214246.g007
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determine if COPD is causally linked to stroke severity and increased mortality and if so, to

investigate the underlying mechanisms. Future experiments will also require an assessment of

the systemic inflammation and oxidative stress in C57BL/6 mice after CS exposure. The CS

exposure period may need to be lengthened for C57BL/6 mice, as they are not as sensitive to

CS-induced inflammation as the BALB/c mouse strain, and systemic changes may not be

occurring after 12 weeks of cigarette smoke exposure. Finally, it is possible that COPD may

not impact on stroke severity but may just increase the risk of stroke. The model of stroke used

in this study cannot be used to investigate risk; however, it can be used to investigate mecha-

nisms and physiological changes that would likely increase the risk of a stroke. It is known that

CS increases the risk of stroke through a number of mechanisms, such as hypercoagulability

and increased immunoreactivity in atherosclerotic plaques. These changes may be sustained in

COPD. Future studies will investigate cardiovascular changes in this preclinical animal model

of COPD, which may elicit an increased risk of stroke.

In conclusion, this study found that although CS exposure caused significant BALF inflam-

mation, it did not worsen acute post-stroke outcomes in mice measured by neurological scor-

ing, functional tests and analysis of infarct and oedema volumes in brain tissue. Future studies

should investigate stroke outcomes in the weeks following a stroke, and the effect of CS expo-

sure on stroke risk.
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S1 Fig. Bodyweight raw data. Mice were exposed to cigarette smoke or room air (sham) for 2,
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matory cells in BALF.
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S6 Fig. Neurological deficit and functional hanging wire raw data scores. Mice were

exposed to 2, 8 or 12 weeks of cigarette smoke or sham smoke (room air) prior to sham or
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S7 Fig. Cerebral infarct and oedema volume raw data. Mice were exposed to 2, 8 or 12 weeks
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