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For the few years, two-dimensional (2D) materials have aroused general focus. In order to
expand the properties and application range of 2D materials, two different layered
materials are usually combined into heterostructure through van der Waals (vdW)
interaction. In this research, based on first-principles simulation, we propose CdO/
Arsenene (CdO/As) vdW heterostructure as a semiconductor possessing a direct
bandgap by 2.179 eV. Besides, the CdO/As vdW heterostructure presents type-II
band alignment, which can be used as a remarkable photocatalyst. Importantly, the
CdO/As heterostructure demonstrates a direct Z-type principle photocatalyst by exploring
the band bending mechanism in the heterostructure. Furthermore, we calculated the light
absorption characteristics of CdO/As vdW heterostructure by optical absorption spectrum
and conversion efficiency of a novel solar-to-hydrogen efficiency (ηSTH) about 11.67%,
which is much higher than that of other 2D photocatalysts. Our work can provide a
theoretical guidance for the designing of Z-scheme photocatalyst.
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INTRODUCTION

Since graphene was discovered in 2004 (Geim and Novoselov, 2007), it has continuously promoted the
research and development of two-dimensional (2D)materials (Miró et al., 2014; Zhong et al., 2019a; He
et al., 2019; Sun et al., 2019; Qi et al., 2020; Cui et al., 2021; Dai et al., 2021). After a long time of study on
2Dmaterials, it was found that 2Dmaterial has extensive applications and is considered to be one of the
most attractive and interesting material fields. All 2D materials show outstanding properties (Vahedi
Fakhrabad et al., 2015; Xu et al., 2016; Zhong et al., 2017; Yuan et al., 2018; Sun and Schwingenschlögl,
2020; Luo et al., 2021), for example, the transition metal dichalcogenides (TMDs) materials have
remarkable mechanical (Liu and Li, 2015), electronic (Zhang and Singh, 2009), optical (He et al., 2014),
magnetic (Yuan et al., 2020) and thermal stability (Ding et al., 2016). Phosphorous possesses novel
physical, chemical, optical properties and electrical conductivity (Li and Chen, 2014; Lee et al., 2016).
Metal carbide (MXene) has excellent magnetic, thermoelectric properties and carrier mobility. In
particular, Cr2TiC2 monolayer is a new 2D bipolar antiferromagnetic semiconductor and can be used
as antiferromagnetic spin field effect transistor (He et al., 2018). The Hf2CO2 shows the excellent
thermal conductivity (about 86.25–131.2Wm−1·K−1) along the armchair direction, and the expansion
coefficient at room temperature is about 6.094 × 10−6 K−1 (Ren et al., 2021), and the carrier mobility
reaches about 1,531.48 cm2/V·s (Cai et al., 2014). All these excellent performances explain that 2D
materials show potential usage in photocatalysis, photovoltaic devices and heterostructure (Xu et al.,
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2015; Zhong et al., 2019b; Wang et al., 2020a; Sun et al., 2020b;
Wang et al., 2020b; Sun and Schwingenschlögl, 2021a; Sun and
Schwingenschlögl, 2021b; Lou et al., 2021; Sun et al., 2021; Zhu
et al., 2021).

When TiO2 was found to be able to produce hydrogen (H2)
from ultraviolet irradiated water in 1972 (Fujishima and Honda,
1972), many studies have been carried out using semiconductors
as photocatalysts to decompose water (Yuan et al., 2016; Yang
et al., 2017; Liu et al., 2018; Wang et al., 2020c; Yong et al., 2020).
When the semiconductor is illuminated, the electrons are
inspired to move from the valence band maximum (VBM) to
the conduction band minimum (CBM), generating holes at the
VBM (Maeda and Domen, 2007). However, recompositing rate of
photogenerated electron–hole pairs is extraordinary increased
due to the simultaneous reduction and oxidation reactions on the
surface of monolayer material during water splitting. The popular
way to solve this problem is to construct the type-II
heterostructure (Ren et al., 2020a), which can effectively
separate photogenerated electrons and holes. All 2D
heterostructures are formed by van der Waals force (vdW)
interaction, which produces more novel properties on the
basis of original properties (Ren et al., 2019a), inducing more
fantastic optical (Wang et al., 2018), interface properties (Ren
et al., 2020b), carrier mobility (Luo et al., 2019) and Gibbs free
energy (Ren et al., 2019b). In particular, the Z-scheme
photocatalyst has become more and more popular because its
special and efficient catalytic mechanism (Xu et al., 2018), such
as As/PtS2 (Ren et al., 2020c), MoSe2/HfS2 (Wang et al., 2019),
TiO2/CdS (Meng et al., 2017) etc., which are proved to possess
novel catalytic performance by theoretical and experimental
methods. Recently, it has been reported that a hexagonal
monolayer semiconductor CdO was prepared by chemical
spray pyrolysis and has got a lot of attention due to its
outstanding mechanical and stability properties
(Subramanyam et al., 1998; Zhuang and Hennig, 2013;
Chaurasiya and Dixit, 2019; Chaurasiya et al., 2019; Ali et al.,
2021). In addition, heterostructures based on CdO monolayer
[such as ZnO/CdO (Sang et al., 2012), CdO/GaS (Zhao et al.,
2021), etc.] also demonstrate unusual structural and electronic
properties (Sang et al., 2012; Zhao et al., 2021). At the same time,
Arsenene (As) is also a 2D material with many special
properties, in particular, the band gap can be adjusted by
applying external strain on the surface (Kamal and Ezawa,
2015). However, the heterostructures constructed by CdO
and As are rarely reported, who share the same honeycomb
hexagonal structure. Besides, considering that both CdO and As
possess excellent electronic and optical characteristics, it is
worth to explore the potential applications of heterostructure
based on CdO and As monolayers.

In this study, performing first-principles calculations, the
electronic characteristic of the CdO, As and CdO/As
heterostructure are investigated with semiconductor nature.
Furthermore, the CdO/As heterostructure has a type-II band
structure to separate the photogenerated electrons and holes
continuously. Interestingly, the bend bending style in CdO/As
heterostructure demonstrates a potential direct Z-type
photocatalyst and the optical performance is also addressed.

MATERIALS AND METHODS

Considering the density functional theory (DFT), all simulation
studies in this work were implemented by Vienna ab initio
simulation software package (VASP) (Capelle, 2006; Togo et al.,
2008; Togo and Tanaka, 2015). The core electron is described by
projection enhanced wave potential (PAW) (Kresse and Joubert,
1999). The commutative relevant functional was explored, which is
introduced by generalized gradient approximation (GGA) and
Perdew–Burke–Ernzerhof (PBE) functional (Perdew et al., 1996;
Grimme, 2006). At the same time, the weak dispersion force was
considered by DFT-D3 with Grimme method (Grimme et al., 2010).
Heyd–Scuseria–Ernzerhof mixed functional was used to obtain more
accurate electronic and optical properties (Heyd et al., 2003). The
parameters of 550 eV and 17× 17× 1were used for the energy cut-off
and the Monkhorst–Pack k-point grids in the first Brillouin zone. A
vacuum space of 25 Å was used in the calculation to keep away from
the interaction between adjacent mirror layers. The relaxation of the
structure is simulated by conjugate gradient method. The
Hellmann–Feynman force on each atom is limited to 0.01 eVÅ−1.

According to the calculation method of solar-to-hydrogen
efficiency (ηSTH) proposed by Yang etc (Xu et al., 2016)
(ηSTH), where ηSTH � ηabs × ηcu, and ηabs, ηcu represents light
absorption and carrier efficiency, respectively. Besides, the ηabs is
calculated by:

ηabs �
∫∞

Eg
P(hω)d(hω)

∫∞

0
P(hω)d(hω) (1)

where P(hω) is the solar energy flux by AM1.5G with the photon
energy hω. Eg is the bandgap of studied materials. Furthermore,
the ηcu is decided by:

ηcu �
ΔG∫∞

E
P(hω)
hω d(hω)

∫∞

Eg
P(hω)d(hω) (2)

where ΔG is 1.23 eV for the potential difference in water splitting.
E is the photon energy using for water splitting, which is
calculated by:

E �
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Eg, (χ(H2)≥ 0.2, χ(O2)≥ 0.6)
Eg + 0.2 − χ(H2), (χ(H2)< 0.2, χ(O2)≥ 0.6)
Eg + 0.6 − χ(O2), (χ(H2)≥ 0.2, χ(O2)< 0.6)

Eg + 0.8 − χ(H2) − χ(O2), (χ(H2)< 0.2, χ(O2)< 0.6)
(3)

where χ(H2) and χ( O 2) are demonstrating the over potential for
HER and OER, respectively.

RESULTS AND DISCUSSION

First, the crystal structures of single-layer CdO and As was
constructed and optimized. The side and top views of CdO
and As monolayers are shown in Figures 1A,C, respectively.
The lattice constants of CdO and As are calculated to be 3.684 and
3.607 Å, showing a small lattice mismatch of 2.11% for the CdO/
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As heterostructure, respectively. Besides, the energy band
structures of monolayered CdO and As are calculated by
HSE06 method, shown in Figures 1B,D, respectively. It can be
clearly seen that monolayered CdO and As are semiconductors
with the band gaps of 2.073 and 2.234 eV, respectively. For single-
layer CdO, the CBM and VBM are located at Γ point, showing a
direct bandgap structure. While the CBM of As monolayer is
located between Γ and M points, the VBM exists at Γ points.
Besides, the bond lengths of Cd–O and As–As in single-layer
CdO and single-layer As were calculated to be 2.127 and 2.506 Å,
respectively. Furthermore, all the above calculated results of CdO
and As are almost consistent with previous investigations (Ren
et al., 2020c; Zhao et al., 2021).

When monolayered CdO and As combine to form a
heterostructure, 6 most representative highly symmetrical
configurations have be considered. The side and top views of
these 6 stacking combinations are shown in Figure 2. Among
these 6 heterostructures, the most stable structure is determined
by the binding energy (Ebinding) between single-layer CdO and As.
The investigation shows that the smaller the binding energy is, the

more stable the heterostructure is (Singh et al., 2015). The binding
energy of CdO/As heterostructures is determined as following:

Ebinding � ECdO/As − ECdO − EAs, (4)

where ECdO/As, ECdO and EAs show the total energy of CdO/As
heterostructure, single-layer CdO and As respectively. The
binding energy of the most stable structure among the 6
stacked heterostructures is −36.64 meV/Å2 for the CA5

configuration, which is smaller than that in the vdW bonding
in weak interlayer interactions in graphites of about −18 meV/Å2,
shown as Figure 2E, suggesting that there is also a weak vdW
force between CdO and As monolayers (Chen et al., 2013). The
optimized bond length of Cd−O and As−As in CdO/As
heterostructure are 2.082 and 2.504 Å, respectively, which just
changed a little comparing with that in CdO and As monolayers,
further showing the vdW interaction in CdO/As heterostructure.
At the same time, we calculated the different interface distance
(dH) of CdO/As vdW heterostructure, shown in Table 1.
Furthermore, the discussed properties of the CdO/As vdW
heterostructure is based on CA5 stacking configuration.

FIGURE 1 | The (A,C) crystal structure and the (B,D) band structure of the (A,B) CdO and (C,D) As monolayers; the black, red and blue balls represent Cd, O and
As atoms, respectively; the Fermi level is 0 shown as gray dashed line.
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The projected band structure of CdO/As vdW heterostructure
is calculated using HSE06 method, shown Figure 3A. Obviously,
it can be clearly seen that CdO/As vdW heterostructure
demonstrates the nature of semiconductor and shows a direct
bandgap of 2.179 eV. Besides, it also can be seen that the CBM
and VBM of CdO/As vdW heterostructure are located as Γ point
contributed by As and CdO monolayers, respectively, which
reveals a type-II band style. Then, such type-II band structure
is further proved using the band-resolved charge densities for the
CdO/As vdW heterostructure shown in Figure 3B. When the
CdO/As vdW heterostructure is illuminated by the light,

expressed by Figure 3C the photogenerated electrons will
move from the VB of both CdO and As monolayers to the CB
and the holes are keep. Then, by the assistance of the valence band
offset (conduction band offset), the photogenerated electrons
(holes) at CB (VB) of the CdO (As) layer migrate to the CB
(VB) of the As (CdO) layer, thus, the photogenerated electrons
and holes are effectively separated. Therefore, the gained type-II
band alignment of CdO/As vdW heterostructure can effectively
resist the recomposite of photogenerated electrons and holes,
showing potential candidate use in application as a photocatalyst
for water splitting.

Next, we explain how the direct Z-scheme structure can be
used as a photocatalyst in CdO/As vdW heterostructure. It is of
great significance to calculate the work function (W) difference
between single-layer CdO and single-layer As, which is a
prerequisite for driving charge redistribution and forming
built-in electric field through CdO/As vdW heterostructure
interface (Bai et al., 2015; Liu et al., 2016). Shown in
Figure 4A, Before the intercourse of single-layer CdO and
single-layer As, the work functions of CdO (W2) and As (W1)
are calculated to be 5.783 and 5.443 eV respectively. It can be seen
from the calculation results thatW1 is less thanW2. According to
the electron transfer mechanism, it can be concluded that

FIGURE 2 | The CdO/As heterostructure constructing by (A) CA1, (B) CA2, (C) CA3, (D) CA4, (E) CA5 and (F) CA6 configurations.

TABLE 1 | The binding energy (Ebinding, meV/Å2), interface distance (dH, Å) and the
bond length (L, Å) of the different stacking style CdO/As heterostructure.

Ebinding dH LAs–As LCd–O

CA1 −32.07 3.158 2.503 2.082
CA2 −28.62 3.334 2.509 2.083
CA3 −32.67 3.119 2.501 2.082
CA4 −28.19 3.332 2.508 2.084
CA5 −36.64 2.892 2.504 2.082
CA6 −35.17 2.972 2.505 2.083
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electrons will be transferred from CdO layer to As layer until the
Fermi level conforms to the equilibrium of Anderson rule (Zhang
and Yates, 2012), shown in Figure 4B. Due to the transfer of
electrons from CdO layer to As layer, positive holes are left in

CdO layer, while negative electrons are accumulated in As layer,
and a built-in electric field is generated at the interface.
Subsequently, the electrons in the CdO layer and the negative
charges in the As layer repel each other, which leads to the

FIGURE 3 | (A) The projected band structure and (B) the band-resolved charge densities of the CdO/As vdW heterostructure; the Fermi level is zero energy
indicated by gray dashed line. (C) Schematic of the migration for the CdO/As vdW heterostructure using as a photocatalyst.

FIGURE 4 | The direct Z-schememechanism demonstration for CdO/As vdW heterostructure: (A) before combining, (B) in combining; (C–E) photoinduced charge
carrier migration process.
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upward bending of the CdO band and the downward bending of
the As layer at the interface for the same reason (Zhang and Yates,
2012; Huang et al., 2017). After photon excitation, both CdO and
As can induce electrons and holes, as shown in Figure 4C. In this
case of band bending, it is best to use the direct Z-scheme to
transform the structure (Xu et al., 2018). The bending mode and
built-in electric field of the band support the recomposite of light
photogenerated holes in the VB of the CdO and photogenerated
electrons in the CB of the As. Furthermore, this built-in electric
field and extra potential barrier, which is also generated by band
bending, will obstacle the flowing of the photogenerated electrons
fromCB of the CdO to the As, and the photogenerated holes from
VB of the As to CdO, shown as Figure 4D. The built-in electric
field also has ability to prevent the recomposite of the
photogenerated electron in the CB of the CdO to the holes in
the VB of the As, explained as Figure 4E. Therefore, the CdO/As
vdW heterostructure can be considered as a potential direct
Z-type photocatalyst in water splitting.

However, the process that the built-in electric field generated
by the band bending trend inducing the photogenerated electrons
and holes moving mode provides the Z-scheme photocatalytic
mechanism for CdO/As vdW heterostructure to decompose the
water is not coincidental. It is contributed form the critical band
bending trend of the CdO/As vdW heterostructure. In contrast,
another band bending method, such as p–n heterostructure, will
not result the Z-scheme photocatalytic path for the photoinduced
charges. As shown in Figure 5A, when the heterostructure is
formed by n-type (work function of W1) and p-type
semiconductors (work function of W2), the W1 is smaller than
W2, free electrons can move from n-type material to p-type
material, inducing the band of the n-type semiconductor
bending upward, while the band of the p-type semiconductor
bending downward across the interface of the heterostructure.
Subsequently, the built-in electric field is constructed, as shown in
Figure 5B. Under this built-in electric field assistances, the
electrons at the CB of the p-type material will prefer moving

to the CB of the n-type material, and the photogenerated holes at
the VB of the n-type semiconductor will choose to migrate to the
VB of the p-type semiconductor (Figure 5C). Moreover, even the

FIGURE 5 | The p–n heterostructure schematic illustration: (A) before combining, (B) in combining, (C) transformation of photogenerated charge carriers in p–n
heterostructure, and (D) suppressed transformation of photogenerated charge carrier in direct Z-scheme style.

FIGURE 6 | (A) The HSE06 method obtained optical absorption
spectrum and (B) the STH efficiency of CdO/As vdW heterostructure
comparing with other 2D materials (Fan et al., 2019; Jin et al., 2019; Yang
et al., 2019).
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band alignment of this heterostructure satisfy the band edge
positions of the Z-scheme photocatalyst, the built-in electric field
resulted by this band bending trend will not boost a combination
for the photoinduced electrons at the CB of the n-type
semiconductor and the photoinduced holes at the VB of the
p-type semiconductor (Figure 5D) (Xu et al., 2018). Therefore,
the direct Z-scheme mechanism is an intrinsic property of the
CdO/As vdW heterostructure.

As a potential candidate for direct Z-scheme photocatalyst to
decompose water, the optical property is essential performance to
be assessed. The optical absorption spectrum of the CdO, As and
CdO/As vdW heterostructure are calculated in Figure 6A, which
evidently explain the CdO/As vdW heterostructure can improve
the visible light absorption capacity (wavelength range
380–800 nm). The obtained excellent absorption peak of the
CdO/As vdW heterostructure is 8.47 × 104 cm−1 at the
wavelength of 542 nm. Besides, enhancing solar energy
conversion efficiency is the ultimate target for that, which
demonstrates the indeed usage of solar energy for HER and
OER (Lu et al., 2019). Therefore, we calculated STH efficiency
(ηSTH) for the CdO/As vdW heterostructure. The obtained ηabs
and ηcu are 58.1 and 20.1%, respectively. The ηSTH of the
monolayered CdO, As and CdO/As vdW heterostructure is
also calculated in the Table 2. The obtained ηSTH of the CdO/
As vdW heterostructure as 11.67% indicates such Z-scheme
photocatalyst possesses a novel STH efficiency, which is also
higher than other reported photocatalysts, shown in Figure 6B. It
worth noting that we assumed the 100% efficiency of the catalytic
reaction for the calculations of the STH efficiency (Fu et al., 2018).

CONCLUSIONS

Based on the first-principles calculation, firstly, we
systematically studied the geometry and band structure of
single-layer CdO and As. Then, the CdO/As heterostructure
is constructed using vdW forces possessing a direct bandgap as
2.179 eV and a type-II band alignment structure is realized,
which can limit the recomposite of photogenerated
electron−hole pairs. Next, the band bending configuration of
CdO/As vdW heterostructure is addressed, which demonstrates
the potential Z-scheme conversion mechanism using as a
photocatalyst for HER and OER. Furthermore, the excellent
ηSTH of CdO/As vdW heterostructure is obtained by 11.67%. All
our results show that the CdO/As vdW heterostructure can be
used as a potential direct Z-scheme photocatalyst for water
splitting.
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