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Variation in the microbiome among individual organisms may play a critical role in the 
relative susceptibility of those organisms to infection, disease, and death. However, 
predicting microbiome function is difficult because of spatial and temporal variation in 
microbial diversity, and taxonomic diversity is not predictive of microbiome functional 
diversity. Addressing this issue may be particularly important when addressing pandemic 
diseases, such as the global amphibian die-off associated with Bd. Some of the most 
important factors in probiotic development for disease treatment are whether bacteria 
with desired function can be found on native amphibians in the local environment. To 
address this issue, we  isolated, sequenced, and assayed the cutaneous bacterial 
communities of Plethodon cinereus along a gradient of land use change. Our results 
suggest that cutaneous community composition, but not overall diversity, change with 
changes in land use, but this does not correspond to significant change in Bd-inhibitory 
function. We found that Bd-inhibition is a functionally redundant trait, but that level of 
inhibition varies over phylogenetic, spatial, and temporal scales. This research provides 
further evidence for the importance of continued examination of amphibian microbial 
communities across environmental gradients, including biotic and abiotic interactions, 
when considering disease dynamics.

Keywords: Batrachochytrium dendrobatidis, microbiome, disease, urbanization, functional redundancy,  
spatial variation

INTRODUCTION

The diversity of microbes on an individual has been implicated in the health and resilience of 
organisms in many taxa, from plants (Mendes et  al., 2013) to animals (Yildirim et  al., 2010; 
Sanchez et  al., 2012; Bahrndorff et  al., 2016), including humans (Cho and Blaser, 2012; The 
Human Microbiome Project Consortium et  al., 2012b). For instance, the presence of infection 
or disease is driven by the diversity of, and interactions between, pathogenic and non-pathogenic 
microbiota and the host’s immune system (Blaser, 2006; Benson et  al., 2009, 2010; Blaser and 
Falkow, 2009; Maldonado-Contreras et  al., 2011; Feng et  al., 2017). Yet, the taxonomic diversity 
of microbes on an organism is an imperfect predictor of functional diversity (Gilbert et  al., 
2010; Delgado-Baquerizo et  al., 2016; Widder et  al., 2016). Predicting community function is 
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further confounded because microbiomes vary extensively over 
space and time. Hence, predicting the role of microbiota in 
regulating infection and disease requires a better understanding 
of spatial and temporal variation in both taxonomic and functional 
diversity (The Human Microbiome Project Consortium et  al., 
2012a; Lloyd-Price et  al., 2017; Kolde et  al., 2018).

Bacterial communities may exhibit substantial biogeographic 
variation at both local (Costello et al., 2009; Bakker et al., 2014; 
Zhang et  al., 2014) and continental scales (Fierer and Jackson, 
2006; Meyer et  al., 2018). Further, genetic divergence among 
populations of bacteria is common, due to the limited ability 
of bacteria to cross geographic barriers, their short generation 
times, and high population densities (Martiny et al., 2006; Taylor 
et  al., 2006; Kuehne et  al., 2007; Krause and Whitaker, 2015). 
So, while some genera may appear to be cosmopolitan (Fenchel 
et  al., 1997), morphological and functional differences can arise 
from geographic divergence, creating distinct ecotypes or strains 
(Cohan, 2002; Bissett et  al., 2010; Booth et  al., 2016).

An emerging approach to study how microbial communities 
respond to environmental differences at both local and regional 
spatial scales is analyzing the effects of land use change. Habitat 
destruction, intensification of agriculture, and urbanization all 
alter edaphic properties, with correlated effects on microbial 
community composition (Zhao and Guo, 2010; Suleiman et al., 
2013; Hawkes and Keitt, 2015; Plassart et al., 2019). In particular, 
urbanization may markedly alter the physicochemical properties 
of soil, leading to changes in the abundance and taxa of soil 
microbes (Zhao and Guo, 2010; Xu et  al., 2014; Reese et  al., 
2016). Studies of the effects of land use change, and spatial 
variation in microbiota more generally, have rapidly increased 
in prevalence due to improvements in sequencing technologies 
(Caporaso et  al., 2012; Lal and Seshasayee, 2014; Thompson 
et  al., 2017; Averill et  al., 2019); of critical importance now 
is understanding how these differences relate to community 
function (Robinson et  al., 2010; Belzer and de Vos, 2012; 
Durrant and Bhatt, 2019).

Studies of genes linked to key environmental processes have 
related disturbances to changes in both microbial taxonomic 
and functional diversity (Bissett et  al., 2011; Paula et  al., 2014; 
Plassart et  al., 2019), yet microbiomes usually are classified 
solely using the 16S rRNA gene. As others note, this gene 
alone is not a reliable indicator of the functional ability of a 
microbiome (Mollet et al., 1997; Fukushima et al., 2002; Hilario 
et  al., 2004; Janda and Abbott, 2007; Becker et  al., 2015). This 
weakness partly is because genomic diversity is high within 
microbial species, and adaptation to the local habitat can change 
the gene pool, creating sequence-discrete populations (Philippot 
et al., 2010; Smillie et al., 2011; Mell and Redfield, 2014; Shapiro 
and Polz, 2014; Becker et  al., 2015; Gómez et  al., 2016; Garcia 
et  al., 2018; Ellegaard and Engel, 2019). Thus, 16S data may 
underestimate functional ability of microbiomes, due to strain-
level adaptations to local conditions, or overestimate functional 
ability, due to functional redundancy across taxa (Delgado-
Baquerizo et  al., 2016; Mori et  al., 2016; Vieira-Silva et  al., 
2016). As a result, understanding the complex interactions that 
shape microbial community assembly and structure requires 
complementing taxonomic analyses with assessments of 

functional differences within species and across environments 
(Burke et  al., 2011; Jiang et  al., 2019).

The current global amphibian decline is a critical system 
for assessing associations between microbial diversity and disease 
within a conservation context (Wake and Vredenburg, 2008; 
Ceballos et  al., 2015; Bower et  al., 2017). The decline is driven 
by the combined effects of habitat degradation and the fungal 
disease, Batrachochytrium dendrobatidis (Bd) (Collins and Storfer, 
2003; Stuart et al., 2004). Amphibian infection by Bd, however, 
is blocked by some species of cutaneous bacteria, such as 
Janthinobacterium lividum, which produce antifungal metabolites 
and compete for space and resources with each other and the 
fungus (Longcore et al., 1999; Becker and Harris, 2010; Familiar 
López et  al., 2017; Bates et  al., 2018). However, it is still 
unknown in a variety of systems if these functional defense 
mechanisms, which many times are assumed to remain consistent 
with taxonomic identity, actually differ over space and time 
(Daskin et  al., 2014; Jia and Whalen, 2019).

To address this issue, we  examined bacterial diversity and 
function of the salamander microbiome across a 64 km gradient 
of land use change in the New  York metropolitan area (NY, 
USA). We  hypothesized that both composition and diversity of 
the cutaneous community would differ with urbanization: urban 
communities comprised of mainly cosmopolitan species, exurban 
communities of locally unique species, and suburban a mix of 
both making it the most diverse. In addition, we  hypothesized 
that Bd-inhibitory ability would be a widespread and redundant 
trait but would increase with urbanization. This is because 
bacteria regularly come in contact with and compete with other 
fungi, not only Bd. While Bd prevalence has been suggested 
to be  lower in urban areas (Becker and Zamudio, 2011), large 
urban areas such as New  York are known centers for urban 
invaders and major points of entry for amphibians and Bd in 
the wildlife pet trade. Additionally, New  York has the optimal 
climate for Bd persistence even if hosts are unavailable during 
certain seasons (Schloegel et al., 2009). Given that urban bacteria 
exist in areas with adverse environmental conditions and an 
increase in invaders, higher Bd-resistance could be  an indirect 
benefit of their general response to these stressors. Lastly, we also 
predicted inhibition to vary among isolates of the same species 
based on location and season due to limitations in dispersal 
and potential local adaptations. The results of this study further 
uncover inhibitory bacteria in novel environments, such as urban 
areas, and aid in the discovery of potential native probiotics 
for other at-risk amphibian species in this species-rich region.

METHODS

Study Species
A terrestrial species of salamander, the eastern redback salamander 
(Plethodon cinereus), was sampled at each of the nine study 
sites (n = 65 across all sites). We chose eastern redback salamanders 
for this study because they are locally abundant and are one 
of the most commonly used amphibians for studies on 
Bd-resistance in the United  States. Chytridiomycosis has not 
been demonstrated to affect P. cinereus in nature, but 
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chytridiomycosis symptoms can be induced in artificially infected 
salamanders by removing or augmenting their microbiome (Harris 
et  al., 2009a,b; Becker and Harris, 2010). Thus, because this 
salamander can be  infected by Bd but is not susceptible to it, 
studying its microbiome may provide the key to finding anti-
fungal bacteria to use on vulnerable individuals. Permission to 
sample P. cinereus was obtained through the New  York State 
Department of Environmental Conservation (permit no. 1159), 
the New York City Department of Parks and Recreation (permits 
2016-2018), and the New York State Office of Parks, Recreation, 
and Historic Preservation (permit no. 2016-MP-008) and the 
Fordham University IACUC #JL-17-01.

Study Sites
This research took place in parks and preserves in New  York 
City and the two counties north of the city (Westchester and 
Putnam, NY, USA). We  sampled from a total of nine study 

sites (Figure  1), three sites in each of the following categories: 
urban (Van Cortlandt Park, the New  York Botanical Garden, 
and Pelham Bay Park), suburban (Rockefeller State Park Preserve, 
Fordham University’s Louis Calder Center, and Westmoreland 
Sanctuary), and exurban (two sites within Clarence Fahnestock 
State Park and one within Hudson Highlands State Park 
Preserve). Study site classification was based upon each site’s 
distance from Central Park in New York City, human population 
density, and GIS landcover analysis of percent-developed land 
within 5 miles of each study site (urban: >80%, suburban: 
20–80%, exurban: <20%). All sites were located in mixed 
deciduous forests in New  York State east of the Hudson River.

Sampling
Samples were collected in Fall 2016 (September through October) 
and Spring 2017 (April through May), except for 10 samples 
taken from salamanders at Fahnestock and Hudson Highlands 

FIGURE 1 | Map of sampling locations along urban-to-exurban gradient showing developed land cover (from low to high intensity) in gray and forest in green 
adapted from the National Land Cover Database (NLCD) (2011) United States land cover dataset. Site code used throughout the manuscript is shown within the 
marker to identify each sampling location. Map in bottom-right corner locates New York State within the USA. Sites were classified as urban, suburban, or exurban 
based upon each site’s distance from Central Park in New York City, human population density, and GIS landcover analysis of percent-developed land within 5 miles 
of each study site.
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State Parks in Spring 2018. Salamanders were captured and 
handled using sterile gloves, which were changed between each 
individual. A non-invasive sampling method of bacterial swabbing 
was used based on Boyle et al. (2004). In brief, each salamander 
was rinsed twice with 25  ml of sterile water and swabbed 
using a sterile cotton swab on their ventral, right, and left 
sides (Harris et  al., 2006). Swabs were immediately streaked 
onto LB agar (5  g NaCl, 5  g tryptone, 2.5  g yeast extract, 
7.5  g agar, 200  μl 2.5  N NaOH, and 500  ml H2O) and were 
incubated at ambient temperature for 72  h. We  chose to use 
LB agar to provide a high nutrient alternative to R2A, which 
is commonly used in amphibian microbiome studies as the 
nutrient content of salamander skin is still undetermined. 
Instead, we focused on swabbing a higher number of individuals 
across our sites to maximize culture diversity regardless of 
media (Medina et  al., 2017b).

Identification of Bacterial Isolates
For each individual, we  isolated bacteria based on morphotype 
(colony shape, elevation, margin, surface, and color) to pure 
cultures on LB agar. DNA from these cultures was extracted 
using the Qiagen DNeasy Blood and Tissue kit (Germantown, 
MD, USA) following manufacturer’s protocols, with the addition 
prior to purification of lysozyme incubation for Gram-positive 
bacteria. DNA was amplified with the 515F (5′-GTGYCA 
GCMGCCGCGGTAA-3′) and 806R (5′-GGACTACNVGGG 
TWTCTAAT-3′) primer pair, which targets the V4 region of 
the 16S rRNA gene, in 25  μl reactions: 12.5  μl GoTaq Green 
PCR Master Mix (2X), 1 μl forward primer, 1 μl reverse primer, 
2  μl DNA, and 8.5  μl nuclease-free water. PCR protocols 
included: 95°C for 5  min, followed by 95°C for 1  min, 55°C 
for 1  min, and 72°C for 1  min for 30  cycles, and 72°C for 
5 min. This primer pair was chosen as it targets a small region 
commonly sequenced by high-throughput 16S rRNA sequencing, 
allowing our results to be  easily compared to results from 
other studies. Amplicon lengths were assessed using gel 
electrophoresis (1% agarose), and samples yielding amplicons 
of ~250  bp were then sequenced using Sanger sequencing at 
Macrogen (New York, NY, USA).

Forward and reverse amplicon sequences were aligned to 
obtain a consensus sequence for each isolate in Geneious 
R11.1 (Biomatters Inc., Auckland 1010, New Zealand). Fourteen 
sequences were discarded due to poor read quality. The 
remaining 204 sequences were then run in the EZBioCloud 
database, a curated and integrated database of all 16S rRNA 
bacterial sequences from NCBI, to assign taxonomy (Yoon 
et  al., 2017). OTU identification was assigned based on the 
closest reference sequence match with a taxonomic classification 
if sequence similarity was >97%. In instances where sequence 
similarity was >97% match to two or more OTUs, samples 
were classified based on highest percent query cover and 
completion of read. Additionally, 16S rRNA gene trees for 
isolates within each level of urbanization were built with 
MrBayes v. 3.2.6 (Huelsenbeck and Ronquist, 2001). Our runs 
consisted of four simultaneous Markov chains, each with 
1,000,000  generations, a subsampling frequency of 200, and 

a burn-in fraction of 0.15. Trees were then visualized and 
adapted in FigTree v. 1.4.3 (Rambaut, 2012).

Characterization of Anti-Bd Ability
All bacterial isolates (including multiple isolates of the same 
OTU) were challenged with Bd using the 96-well cell-free 
supernatant (CFS) method developed by Bell et al. (2013). Samples 
of Bd strain JEL423, a hypervirulent strain from the global 
panzootic lineage BdGPL (Farrer et  al., 2011; DiRenzo et  al., 
2014), were obtained from Dr. Joyce Longcore (University of 
Maine). Each isolate was diluted to 1:104  cfu and plated on LB 
agar plates until colonies formed, after which 1  cm2 of agar 
with colonies was excised and placed in 7  ml of 1% tryptone 
broth and allowed to grow at 23°C for 48  h. To obtain Bd used 
in each microcosm, 1 ml of Bd culture was plated on 1% tryptone 
plates and grown at 23°C for 4 days, after which 25  ml of 1% 
tryptone broth was inoculated with decanted zoospores. This Bd 
liquid culture was then grown at 23°C for 48  h.

Each isolate was co-cultured with 2 × 106 zoospores Bd 
(100  μl of each) in 800  μl of 1% tryptone, a minimal-nutrient 
media in which Bd often is grown (Longcore et  al., 1999; 
Piotrowski et al., 2004), for 72 h at 23°C. Cultures were checked 
for turbidity at OD600 to confirm that they were in late log 
to early stationary phase and then centrifuged for 5  min at 
10,000g. Cultures that did not reach these phases (<5% of isolates) 
were incubated for an additional 24  h. The supernatant was 
then filtered through a sterile, 0.22-μm cellulose acetate syringe 
filter (VWR, Radnor, PA, USA) to obtain CFS. CFS was then 
assayed with Bd (50  μl CFS: 50  μl  Bd-zoospore suspension) in 
triplicate in a 96-well plate for 10 days at 23°C. The Bd-zoospore 
suspension consisted of growing Bd on a 1% tryptone agar 
plate for 4 days, flooding the plate with 3  ml 1% tryptone, and 
then filtering this suspension through a 20-μm filter. Zoospore 
concentration was estimated at 2 × 106 zoospores per ml using 
an INCYTO C-Chip™ hemocytometer (SKC Inc., Covington, 
GA, USA). Both positive (50  μl  Bd CFS: 50  μl  Bd-zoospore 
suspension) and negative controls (50  μl  Bd CFS: 50  μl heat-
killed Bd-zoospore suspension) were included to control for 
potential variation in Bd zoospore concentrations, Bd-produced 
metabolites, and Bd growth when alone. Optical density was 
measured at 0, 4, 7, and 10 days using an Infinite 200 Pro 
microplate reader (Tecan Trading AG, Männedorf, Switzerland).

To calculate Bd inhibition, absorbance readings were transformed 
using the equation: ln[OD/(1-OD)] following Becker et al. (2015). 
A linear regression was run to determine the growth rate of Bd 
in the presence of CFS from each isolate. The average slope of 
each triplicate was then divided by the average growth rate of 
the positive control, and this value was subtracted from one. 
This calculated value represented percent Bd inhibition, and 
bacterial OTUs were then classified by taking the mean percentage 
inhibition of multiple isolates of the same OTU.

Statistical Analysis
Alpha diversity was calculated using the Shannon index due 
to its reduced sensitivity to sampling depth differences, as 
compared to Chao-1 (Haegeman et  al., 2013; Preheim et  al., 
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2013). Chi-square test of independence was used to account 
for the relationship between year and site in our sampling. 
Beta diversity between sites was measured by generating a 
Bray-Curtis distance matrix on OTU-level presence-absence 
data (Legendre and Legendre, 1998) and conducting a 
permutational multivariate analysis of variance (PERMANOVA) 
with each site nested by level of urbanization. These data were 
then used for ordination by nonmetric multidimensional scaling 
(NMDS) with 1,000 randomized runs. Pairwise analyses were 
conducted using the package pairwiseAdonis (Martinez, 2019). 
All analyses were conducted in vegan v. 2.5-2  in R 3.6.0 
(Oksanen et  al., 2013).

We examined the distribution of isolate inhibition using 
Hartigan’s dip test (Hartigan and Hartigan, 1985) with the 
diptest package (Maechler and Ringach, 2013) to test for 
multimodality. The distribution was then visualized using the 
EM algorithm in the mixtools package (Benaglia et  al., 2009), 
and the mean and standard deviation of each mode was 
calculated. We compared each isolate’s percent inhibition with 
each plate’s Bd control using a Mann-Whitney U-test to 
classify Bd-inhibitory ability. Differences among bacterial OTUs, 
genera, phyla, site, and level of urbanization were tested with 
a Kruskal-Wallis test followed by Dunn post-hoc test. Differences 

in level of inhibition between the Spring and Fall seasons 
were tested with a Mann-Whitney U-test.

RESULTS

Community Diversity and Composition
One of our primary objectives was to characterize the diversity 
of bacteria on salamanders from a large urban area in the 
northeastern USA. From 69 salamanders, a total of 218 isolates 
were cultured, 204 of which could be  identified as OTUs 
(Table  1). Four phyla were identified: Proteobacteria (69%), 
Firmicutes (21%), Actinobacteria (6%), and Bacteroidetes (4%) 
(Figure  2). Out of 42 total genera, the three most common 
genera were Pseudomonas (43 isolates), Bacillus (28 isolates), 
and Stenotrophomonas (26 isolates). The majority of other genera 
were represented by less than 10 isolates each. While no one 
bacterial OTU was found at all nine sites, Stenotrophomonas 
rhizophila was found across all three levels of urbanization 
and at seven out of nine sites.

OTU richness and abundance varied by site (Table  1) and 
a chi-square test of independence showed that both year and 
site were correlated with regard to OTU richness (X2  =  137.4, 

TABLE 1 | Summary of salamanders sampled across nine sites in three levels of urbanization.

Level 
urbanization

Site No. Indls 
sampled (n = 69)

No. isolates 
(n = 218)

No. Genera; Most 
common

No. OTUs; Most 
common

Diversity (H)

Urban

Van Cortlandt Park

(VC)
7 28

12;

Pseudomonas (PS)

19;

B. gaemokensis (BAGA)
2.82

Total: 3.44

New York 
Botanical Garden

(BG)

8 20
11;

Bacillus (BA)

16;

P. helmanticensis (PSHE)
2.69

Pelham Bay Park

(PB) 9 29
13;

Bacillus (BA)

21;

S. rhizophila (STRH)

B. wiedmannii (BAWI)

2.95

Suburban

Rockefeller State 
Park Preserve

(RF) 11 29
12;

Pseudomonas (PS)

17;

E. cloacae (ENCL)

B. wiedmannii (BAWI)

A. modestus (AIMO)

2.65

Total: 3.48
Louis Calder 
Center

(CC)

5 16
9;

Pseudomonas (PS)

13;

S. myotis (SEMY)
2.48

Westmoreland 
Sanctuary

(WM)

10 27
15;

Stenotrophomonas (ST)

22;

E. cloacae (ENCL)
3.02

Exurban

Fahnestock State 
Park 1

(F1)

13 42
15;

Pseudomonas (PS)

24;

R. inusitata (RAIN)
3.01

Total: 3.29

Fahnestock State 
Park 2

(F2)

4 16
6;

Buttiauxella (BU)

6;

B. gaviniae (BUGA)
1.68

Hudson Highlands

(HH) 2 11

9;

Bacillus (BA)

Pseudomonas (PS)

10;

B. gaemokensis (BAGA)
2.27

Site codes and OTU abbreviations (genus and species) are in parentheses. Diversity is shown for each site and for level of urbanization and was calculated using the Shannon Index.
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p  <  0.05). While there was no trend of richness with land 
use type (p  =  0.73), only 11 genera were found at all three 
levels of urbanization. These include: Pseudomonas, Bacillus, 
Stenotrophomonas, Sphingobacterium, Serratia, Rhodococcus, 
Microbacterium, Lysinibacillus, Enterobacter, Buttiauxella, and 
Bordetella. The remaining 31 genera were unique to certain 
levels of urbanization, with 24 genera (42% of total genera) 
unique to a single site. Interestingly, the most common OTU 
at each site often belonged to a different genus than the genus 
found to be  most common at that site (Table  1).

While urban sites had the greatest number of individual 
isolates compared to suburban and exurban sites, suburban sites 
had the largest overall Shannon’s diversity score, 3.48 (p  =  0.56, 
Table  1). However, high OTU richness did not correlate to 
phylogenetic diversity (Figure  3), as many of the isolates were 
closely related and came from a small number of genera. An 
NMDS of beta diversity indicated that urban, suburban, and 
exurban bacterial communities grouped by level of urbanization 
(R2 = 0.36, p = 0.005; Figure 4). Urban and suburban communities 
overlapped to the left of the plot, but urban communities 
distributed along the first axis while suburban communities 
distributed along the second axis. Exurban sites separated to 
the right of the ordination plot, with some overlap with urban 
communities and a pairwise PERMANOVA revealed a significant 
difference with suburban communities (R2  =  0.15, p  =  0.003).

Functional Redundancy
To assess whether Bd-inhibitory ability was multimodally 
distributed in our sample of salamanders, we  used Hartigan’s 

dip test. We  observed that Bd-inhibitory ability was bimodal 
(p  =  0.030), exhibiting at least two groups of isolates: the first 
with a mean of 25.9% (SD  =  18.5%), and the second with a 
mean of 63.9% Bd-inhibition (SD = 9.5%) relative to the control 
(Figure  3). Isolates within 1.5 SD of the second mean (all 
isolates above 49.6% Bd inhibition) were considered 
inhibitory—32% of all isolates. Isolates above the mean of the 
first mode but below 1.5 SD of the second mean (i.e., isolates 
between 25.9 and 49.6% Bd inhibition) were considered mildly 
inhibitory—30% of isolates, while isolates below this group 
but within 1.5 SD of the mean of the first mode were considered 
to have no effect on Bd-growth—34% of isolates. Lastly, the 
seven isolates (3%) that fell below this threshold were considered 
facilitative: increased Bd-growth relative to the control.

To assess whether Bd-inhibitory function was phylogenetically 
unique vs. redundant across those groups, we  analyzed isolate 
Bd inhibition by phylum, genus, and OTU. When analyzed 
by phylum, Proteobacteria were on average 68% more inhibitory 
than Actinobacteria (p  =  0.004) and Firmicutes (p  <  0.001) 
and 26% more inhibitory than Bacteroidetes (X2  =  22.1, 
Figure  5A). At the genus and OTU level, isolates exhibited a 
large range of inhibitory ability, with few distinct phylogenetic 
patterns (Figure  3). In some extreme cases, isolates within 
the same genus, such as Bacillus and Pseudomonas (identified 
as “BA” and “PS” on the branch tips of the phylogenetic trees), 
were identified as inhibitory, while others were facilitative to 
Bd growth (p  <  0.05). When we  compared a subset of the 
most common bacterial genera (n  ≥  5 isolates), we  found 
differences between genera (p  =  0.012), driven by two genera: 

FIGURE 2 | Percent of bacterial isolates (n = 204) across the gradient by phylum. Number of isolates identified within genera is displayed below each phylum.
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FIGURE 3 | Salamander skin bacterial OTUs (n = 204) at each level of urbanization displayed as phylogenies. OTUs are identified by the first two letters of the 
genera and species names (from the 16S rRNA sequence) followed by the site code and isolate number. Color of each isolate’s branch on phylogenetic tree 
corresponds to Bd-inhibitory ability. Bd-inhibitory ability is divided into intervals of 10% and color is denoted as displayed in the density histogram. Cooler colors 
indicate low Bd-inhibition, whereas warmer colors indicate high Bd-inhibition. Dashed yellow line in the density histogram shows a bimodal distribution of  
Bd-inhibition (p = 0.030).
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FIGURE 5 | Bd-inhibition of isolates (n = 204) by (A) phylum (p < 0.001), (B) level of urbanization (p = 0.252) and site [p = 0.117, but significant (p < 0.05) pairwise 
site effects], and (C) season (p < 0.001).

FIGURE 4 | NMDS of beta diversity by individual salamander (n = 69) blocked by level of urbanization. Beta diversity was measured by calculating a Bray-Curtis 
dissimilarity matrix of OTU-level presence-absence culture data. Color denotes sampling location. PERMANOVA of beta diversity by level of urbanization indicates a 
significant difference between suburban and exurban skin bacterial communities (R2 = 0.375, p = 0.005).
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Bacillus (non-inhibitory, mean  =  25%) and Stenotrophomonas 
(inhibitory, mean  =  54%) (Table  2).

Spatial and Temporal Variation Within 
Genera and Species
We further analyzed Bd-inhibitory function by level of 
urbanization, site, and season. Overall, suburban sites appeared 
to have the largest proportion of inhibitory isolates with 41%, 
followed by exurban (34%) and urban (30%). Similarly, individual 
salamanders also varied in the number of Bd inhibitory isolates 
cultured from their skin. Depending on the site, 17–50% of 
isolates per individual were >49.5% inhibitory, with salamanders 
from suburban sites having on average 15% more inhibitory 
isolates than individuals from urban or exurban sites. However, 

the effect of urbanization was not statistically significant 
(X2  =  2.8, p  =  0.25, Figure  5B)—so, while there appeared to 
be fairly large relative differences in the proportion of inhibitory 
isolates among levels of urbanization, with suburban communities 
10–60% more inhibitory than urban and exurban communities 
(X2  =  2.5, p  =  0.28), there was a lot of variation within genera 
even at the site level.

In addition, Pseudomonas and Bacillus, which make up a 
large proportion (35% of all isolates) of the cultured bacterial 
community, exhibited substantial variation in Bd inhibition, 
with differences by both site (p < 0.05) and season (Pseudomonas: 
p  <  0.001, Bacillus: p  =  0.022). In Bacillus, differences were 
even observed among isolates at the individual site level, such 
as B. gaemokensis between VC and F2 (p  =  0.021), and 

TABLE 2 | Anti-Bd activity of bacterial genera with greater than five isolates.

Inhibition of Bd (%)

Genus No. inhibitory isolates/
total

Mean SD Range Mean by level of 
urbanization

Pseudomonas†,§ 16/43 37.17 25.6 −2.7 to 83.9

U = 29.6

S = 43.2

E = 40.9

Bacillus§ 4/28 25.0 24.1 −37.1 to 88.5

U = 23.1

S = 39.9

E = 23.5

Stenotrophomonas† 19/26 53.8 11.8 18.2–72.6

U = 51.7

S = 60.4

E = 50.3

Enterobacter§ 4/12 34.9 22.4 10.9–69.1

U = 52.1

S = 26.1

E = 27.7

Buttiauxella† 4/8 47.8 32.0 9.8–86.4

U = 43.6

S = 48.1

E = 49.8

Serratia† 3/8 48.1 18.4 24.2–72.5

U = 50.0

S = 42.9

E = 53.0

Sphingobacterium§ 1/7 32.7 16.7 15.7–66.8

U = 47.4

S = 28.9

E = 23.7

Rhodococcus§ 2/5 30.7 23.2 12.5–60.6

U = 29.9

S = 51.0

E = 12.5

Rahnella 2/5 42.7 22.8 16.5–66.8
S = 66.8

E = 36.7
Acinetobacter 2/5 34.0 42.4 −36.9 to 72.7 S = 34.0

Bordetella 2/5 44.2 14.8 24.3–61.9

U = 46.5

S = 51.8

E = 24.3

Raoultella 2/5 41.9 17.5 20.8–66.1
U = 35.2

S = 46.4

Number of isolates determined to be greater than 49.6% Bd-inhibitory are given out of total number of isolates within each genus. Mean level of Bd-inhibition displayed by genus 
and level of urbanization (U = urban, S = suburban, E = exurban).
†Denotes significant difference (p < 0.05) from Bacillus (non-inhibitory).
§Denotes significant difference from Stenotrophomonas (inhibitory).
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B.  wiedmannii between PB and F2 (p  =  0.021). In contrast, 
Stenotrophomonas was consistently inhibitory, exhibiting no 
clear variation in inhibition by level of urbanization, site, 
season, or OTU. When analyzed by season, bacteria isolated 
in the fall season were 72% more inhibitory than bacteria in 
the spring (W  =  2291.5, p  <  0.001; Figure  5C). This same 
trend still held when a subset of the bacteria, which were 
found at the same site in both seasons, were compared 
(W  =  437, p  =  0.002). When we  compared Bd inhibition by 
year, we  found no significant difference between both the 
2017 and 2018 spring seasons (X2  =  43.5, p  =  0.40).

DISCUSSION

Studies on the distribution of bacteria and the variability of 
their function are limited (Kueneman et al., 2014; Becker et al., 
2015; Bletz et  al., 2017; Jiménez and Sommer, 2017; Kruger, 
2019) but are increasingly relevant to the amphibian microbiome 
as changes in microbial community structure have been 
hypothesized to result in changes in anti-fungal function. In 
line with these studies, our results suggest that predicting 
microbiome function across space and time is difficult due to 
strain-level differences and functional redundancy across taxa. 
This knowledge is foundational to understanding the dynamic 
nature of host-associated microbiomes and their function against 
pathogens, especially given the urgent need to conserve and 
protect vulnerable taxa in environments around the globe.

A key constraint to understand the distribution and variability 
of the amphibian microbiome is the limited number of studies 
in certain geographic areas, as indicated by the studies compiled 
in the Antifungal Isolates Database (Woodhams et  al., 2015). 
These areas notably include the Northeastern United  States, 
which has comparatively high salamander diversity and urban 
land use (~11%; Nickerson et  al., 2011). Thus, we  chose to 
sample Plethodon cinereus along a gradient of land use in the 
New York metropolitan area. We acknowledge that our sampling 
design and site selection may result in overlapping effects of 
land use and site microenvironment. However, this study design 
ultimately enabled us to better explore how environmental 
changes over even small geographic distances in these regions 
can influence variability of host microbial community diversity, 
composition, and function.

Community Diversity and Composition
Contrary to our hypothesis, Shannon’s diversity was similar 
regardless of site or land use. This pattern is in contrast to 
other studies on the effects of urbanization on plant and animal 
biodiversity, which suggest that native species richness tends 
to be  reduced in areas with extreme urbanization (Shochat 
et  al., 2006; Faeth et  al., 2011; Laforest-Lapointe et  al., 2017; 
Yan et al., 2019). Additionally, the presence of three cosmopolitan 
genera (Pseudomonas, Bacillus, and Stenotrophomonas) across 
the entire gradient, representing nearly half (48%) of all isolates, 
and our observation that urban sites had the highest OTU 
richness, contrasts with the idea that urbanization generally 

drives homogenization of taxa in these communities at least 
for bacteria (McKinney, 2006). However, we  did find that site 
and year were correlated with regard to richness likely due 
to poor sampling conditions at Fahnestock and Hudson Highlands 
in 2017 leading us to also sample only those sites in Spring 
2018. Despite this, we  found no significant difference in Bd 
inhibition with year regardless of site.

While our use of culturing to examine overall taxonomic 
diversity is known to miss a proportion of taxa, it allowed 
us to assess diversity of many actives, and likely functionally 
relevant, bacteria on salamanders at these locations. However, 
we  do acknowledge that the results of culturing alone are 
sensitive to the growth media chosen and does not enable us 
to distinguish bacterial relative abundances as they occur on 
salamander skin. Our results suggest that while diversity does 
not differ with urbanization, taxonomic composition does. This 
pattern has been seen repeatedly in other studies on microbial 
communities, which suggest that urbanization likely impacts 
relative abundance of taxa in  local communities rather than 
overall diversity (Cousins et  al., 2003; Hall et  al., 2009; Xu 
et  al., 2014; Reese et  al., 2016; Epp Schmidt et  al., 2017; 
Lehtimäki et  al., 2017).

In our comparisons of beta diversity, composition of bacterial 
communities grouped by level of urbanization. Composition 
differed at the site level as well. This is likely because 31 
genera were unique to certain levels of urbanization with 24 
genera (42% of total genera) unique to a single site. Even 
though three cosmopolitan genera dominated most communities, 
sites differed in which OTU within these genera were present. 
This variation we see in OTU-specific composition could partially 
be  explained by dispersal limitation or neutral processes, at 
least across small geographic distances.

Our finding that composition varies with land use is in 
line with our hypotheses: we  saw the most variation between 
individual salamander bacterial communities at exurban sites 
(Figure  4), and more similarity at urban and suburban sites. 
Further, when we  compare the abundance of the 11 genera 
found at all three levels of urbanization, urban sites had on 
average 5–12% more cosmopolitan isolates (a total of 78% of 
urban isolates) than suburban and exurban sites. In these cases, 
regional variation is likely driven by local environmental 
conditions associated with urbanization (i.e., changes in nutrient 
concentrations, habitat fragmentation, heavy metal deposition, 
etc.) that overwhelm stochastic factors to select for particularly 
resilient specialist OTUs as well as cosmopolitan generalists.

This larger role of microenvironment versus stochastic factors 
has repeatedly been seen in soil communities, where soils with 
similar environmental characteristics have similar microbial 
communities regardless of geographic distance (Fierer and 
Jackson, 2006; Lauber et  al., 2009; Xu et  al., 2014; Lladó et  al., 
2018; Plassart et  al., 2019). Interestingly, we  see this same 
trend in the bacterial communities of the soil-dwelling 
salamanders sampled in this study. If skin conditions were 
the primary selective mechanism, we  would see no difference 
in bacterial composition across our gradient. As others have 
demonstrated, the soil and water environments in which 
amphibians live in likely function as species pools providing 
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colonists to amphibian hosts (Loudon et  al., 2016), and all of 
the cosmopolitan genera we  found on our salamanders are 
common soil bacteria known to associate with plants or animals. 
Thus, our results indicate some combination of contemporary 
environmental variation and lingering historical effects driving 
distinct microbial biogeography on these salamanders (Martiny 
et  al., 2006; Kraemer and Kassen, 2015). This study serves as 
an initial investigation into the overall effects of land use 
associated environmental changes on microbial communities, 
but further investigation is needed to determine if and how 
direct land-use associated effects on the soil bacterial reservoir 
indirectly alter amphibian cutaneous microbiomes.

It is worth noting that we  did not find Janthinobacterium 
lividum, a well-known Bd-inhibitory bacteria (Brucker et  al., 
2008), on any of the Plethodon cinereus salamanders sampled 
despite knowledge that strains have been cultured from aquatic 
and soil environments in the Hudson Valley of New  York 
(O’Brien et al., 2018). Instead, Stenotrophomonas, an antifungal 
plant mutualist (Wolf et  al., 2002; Ryan et  al., 2009), was 
found on salamanders at nearly all sites across our sampling 
gradient. This genus has a number of favorable characteristics 
for use as a potential native probiotic in degraded habitats: 
resistance to heavy metals (including lead), high hydrolytic 
potential, high bacterial growth rate, and the ability to grow 
in low-nutrient environments (Ryan et  al., 2009). All of these 
have allowed Stenotrophomonas sp. to colonize and compete 
in many different biotypes adding to its value as potential 
anti-Bd isolate for amphibians in our region.

Functional Redundancy
Despite the compositional differences we  saw in bacterial 
taxonomy across sites, overall Bd-inhibitory ability was similar 
among urban, suburban, and exurban bacterial communities 
but varied among individuals. Each site possessed at least one 
bacterial OTU capable of high Bd-inhibition. Given this, 
Bd-inhibition seems to be a functionally redundant characteristic 
across the gradient, despite differences in the environment and 
OTU composition. This pattern is not surprising given that 
naturally occurring bacteria regularly interact and compete 
with other microbial taxa, including fungi, for space and 
resources. Whether inhibitory metabolites are Bd-specific, fungal-
specific, or generally anti-microbial is still undetermined for 
the majority of bacterial strains isolated from amphibian skin in 
this and other studies and we  encourage continued efforts to 
characterize the amphibian metabolome to identify the mechanisms 
responsible for anti-Bd function (Woodhams et  al., 2014;  
Belden et  al., 2015; Walke et  al., 2015).

Despite functional redundancy of Bd-inhibition across the 
gradient, it does not appear to be  a trait associated with 
phylogenetic relatedness among bacteria (Figure  3). We  found 
variation in inhibition across isolates at the phylum, genus, 
and OTU levels. For example, in comparing isolates from two 
different individuals with bacterial communities composed of 
the same genera, we  found Bacillus, Pseudomonas, and 
Sphingobacterium to vary from 8, 9, and 67% Bd-inhibition 
at PB (urban) to 61, 44, and 16% at F1 (exurban). Given this, 

it might be  better for researchers to focus on maintaining 
functional diversity rather than taxonomic diversity in relation 
to the conservation of amphibian microbiomes. Overall function 
of the community considers distribution, abundance, and the 
products of fluctuating interactions between species in the 
community (Holling, 2001; Alberti, 2005). As shown in this 
study, taxonomic differences are poor predictors of community 
functional differences and presence of particular isolates on 
amphibians in separate locations does not equate to similarities 
in function.

Spatial and Temporal Variation Within 
Genera and Species
Contrary to our hypothesis, suburban sites associated with 
medium levels of environmental change appeared to have the 
largest proportion of inhibitory isolates with 41%, followed by 
exurban (34%) and urban (30%) sites. In addition, only 32% 
of all isolates were inhibitory, which suggests that the majority 
of the salamander microbiomes cultured in this study show 
little to no effect on Bd growth in vitro. While inhibition did 
not significantly differ by level of urbanization, there were 
site-level differences (Figure 5B). Significant differences among 
our sites were driven by one suburban site, CC, which consisted 
of isolates that were on average more inhibitory than all other 
sites. Differences in Bd inhibition among sites could be  due 
to environmental characteristics, absence of particular isolates, 
changes in overall community composition, or isolate-level trait 
differences. Often times, these local factors are not reported 
or considered in other studies using the Anti-fungal Isolates 
Database to determine community function from high throughput 
16S rRNA sequencing. As mentioned before and reiterated by 
our results, the 16S rRNA gene alone is not a reliable indicator 
of Bd-inhibitory function. Thus, averaging the results of globally 
distributed functional assays likely blurs the fine-scale differences 
in microbiome function in different regions and can lead 
researchers to over- or underestimate microbiome function when 
not complemented by functional assays from local isolates 
(Mollet et al., 1997; Fukushima et al., 2002; Hilario et al., 2004; 
Janda and Abbott, 2007; Becker et  al., 2015).

We found a high level of anti-Bd functional variation observed 
across exurban salamander bacterial communities, which was 
not in line with our initial hypotheses. Our exurban sampling 
locations (F1, F2, and HH) consist of well-connected hardwood 
forests and streamside habitats where salamander dispersal is 
far less limited than in both our urban and suburban sites. 
However, habitat connectedness or salamander dispersal may 
not matter at the microbial level. The variation in exurban 
isolate’s Bd-inhibitory function despite high habitat connectivity 
is not unexpected given that bacteria can engage in horizontal 
gene transfer and clonal evolution. Studies have shown that 
multiple clone-types can exist and swap in dominance based 
on abiotic and biotic community factors (Fenchel, 2003; Devevey 
et  al., 2015; Wright and Vetsigian, 2016). We  also observed 
isolate-level trait differences in comparisons of isolates across 
sites from the two most dominant genera, Pseudomonas and 
Bacillus (Figure  3; Table  2). Less than half of the number of 
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isolates from these genera was inhibitory in urban sites as 
compared to exurban and suburban sites. These results agree 
with the findings of Becker et  al. (2015), in that there can 
be substantial functional variation within phylogenetically similar 
bacterial isolates and provide further evidence for the use of 
native bacteria in developing potential probiotics.

Differences in an individual bacterial isolate’s interactions with 
the environment and other microbes are also known to alter 
bacterial metabolite production (Daskin et  al., 2014; Wolz et  al., 
2017; Medina et  al., 2017a; Bird et  al., 2018). Thus, another 
consideration is whether Bd is present and when is it most 
active, as changes in microbial community composition have 
been linked with the onset of Bd infection (Pullen et  al., 2010; 
Longo et al., 2015; Clare et al., 2016; Varela et al., 2018). Specifically, 
Bd is more prevalent during seasons of moderate temperatures 
(between 17 and 25°C) and high precipitation. In our study, 
we observed significantly larger Bd-inhibition in the fall as opposed 
to the spring, which is different than that found in previous 
studies (Figure  5C; Pullen et  al., 2010, Varela et  al., 2018).

Despite marginal difference in precipitation, Spring in the 
New  York region is generally cooler than Fall (April/May 
mean  =  15.2°C, September/October mean  =  18.2°C according 
to the National Weather Service’s New  York City records over 
the last 10  years). Based on these temperatures, Spring may 
be  too cold for Bd growth, whereas Fall is within Bd’s optimal 
temperature range increasing bacterial anti-Bd metabolite response 
(~17–23°C; Piotrowski et al., 2004). Additionally, amphibians have 
been shown to lower intensity of Bd infections through over-
wintering (Savage et  al., 2011; Longo et  al., 2015) or raising 
their own body temperature (Woodhams et  al., 2003), which 
could have confounding effects on their entire microbiome. These 
temperature differences both in the environment and on the 
host could also impact which bacteria are present, their physiologies, 
and their function. Thus, we believe these results warrant further 
research into seasonal patterns of Bd-inhibition at a range of sites.

CONCLUSION

Our results indicate omitting functional assays on locally isolated 
bacteria can lead researchers to over- or underestimate microbiome 
function with potentially drastic implications for probiotic 
development or bioaugmentation. While our study of community 
variation along a relatively small (<65 km) urban land use gradient 
complements other regional high-throughput taxonomic analyses, 
further investigation is needed to determine if and how direct 
land-use associated effects on the soil bacterial reservoir indirectly 
alter amphibian cutaneous microbiomes. Additionally, our results 
highlight the need for research into metabolite composition and 

the genetic mechanisms responsible for their production. These 
analyses should continue to be  performed in both pristine and 
altered environments to account for the continued habitat 
degradation occurring alongside the amphibian disease epidemic. 
In sum, our results provide further evidence for examining the 
whole microbiome, including micro-differences in species-species 
interactions and environmental variability, for understanding how 
it provides disease protection.
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